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1. Introduction

The search for the identification of possible extensions of the Standard Model (SM) is a

challenging area both from the theoretical and the experimental perspectives. It is even

more so with the upcoming experiments at the LHC, where the hopes are that at least

some among the many phenomenological scenarios that have been formulated in the last

three decades can finally be tested. The presence of so many wide and diverse possibilities

certainly render these studies very challenging. Surely, among these, the choice of simple

abelian extension of the basic gauge structure of the SM is one of the simplest to take into

consideration. These extensions will probably be the easiest to test and be also the first to

be confirmed or ruled out. Though Υ(1) extensions are ubiquitous, they are far from being

trivial. These theories predict new gauge bosons, the extra Z’, with masses that are likely

to be detected if they are up to 4 or 5TeV’s (see for instance [1 – 3] for an overview and

topical studies). These extensions are formulated, with a variety of motivations, within

a well-defined theoretical framework and involve phenomenological studies which are far

simpler than those required, for instance, in the case of supersymmetry, where a large set

of parameters and of soft-breaking terms clearly render the theoretical description much

more involved.

On the other hand, simple abelian extensions are also quite numerous, since new neutral

currents are predicted both by Grand Unified Theories (GUT’s) and/or by superstring

inspired models based on E6 and SO(10) (see [4] for instance). One of the common features

of these models is the absence of an anomalous fermion spectrum, as for the SM, with the

anomaly cancelation mechanism playing a key role in fixing the couplings of the fermions

to the gauge fields and in guaranteeing their inner consistency. In this respect, unitarity

and renormalizability, tenets of the effective theory, are preserved.

When we move to enlarge the gauge symmetry of the SM, the unitarity has to be

preserved, but not necessarily the renormalizability of the model. In fact, operators of
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dimension-5 and higher which may appear at higher energies have been studied and clas-

sified under quite general assumptions [5].

Anomalous abelian models, differently from the non-anomalous ones, show some strik-

ing features, which have been exploited in various ways, for example in the generation of

realistic hierarchies among the Yukawa couplings [6] and to analyze neutrino mixing. There

are obvious reasons that justify these studies: the mechanism of anomaly cancelation that

Nature selects may not just be based on an anomaly-free spectrum, but may require a

more complex pattern, similar to the Green-Schwarz (GS) anomaly cancelation mechanism

of string theory, that invokes an axion. Interestingly enough, the same pattern appears if,

for a completely different and purely dynamical reason, part of the fermion spectrum of

an anomaly free theory is integrated out, together with part of the Higgs sector [12]. In

both cases, the result is a theory that shows the features discussed in this work, though

some differences between the two different realizations may remain in the effective theory.

For instance, it has been suggested that the PVLAS result can be easily explained within

this class of models incorporating a single anomalous Υ(1). The anomaly can be real (due

to anomaly inflow from extra dimensions, (see [7] as an example), or effective, due to the

partial decoupling of a heavy Higgs, and the Stückelberg field is the remnant phase of this

partial decoupling. The result is a “gauging” of the PQ axion [12].

1.1 The quantization of anomalous abelian models and the axion

The interest on the quantization of anomalous models and their proper field theoretical

description has been a key topic for a long period, in an attempt to clarify under which

conditions an anomalous gauge theory may be improved by the introduction of suitable

interactions so to become unitary and renormalizable. The introduction of the Wess-

Zumino term (WZ), a θF ∧F term), which involves a pseudoscalar θ times the divergence

of a topological current, has been proposed as a common cure in order to restore the gauge

invariance of the theory [8, 9]. Issues related to the unitarity of models incorporating Chern-

Simons (CS) and anomalous interactions in lower dimensions have also been analyzed in

the past [13].

Along the same lines of thought, also non-local counterterms have been proposed as

a way to achieve the same objective [14]. The gauge dependence of the WZ term and its

introduction into the spectrum so to improve the power counting in the loop expansion

of the theory has also been a matter of debate [11]. Either with or without a WZ term,

renormalizability is clearly lost, while unitarity, in principle, can be maintained. As we

are going to illustrate in specific and realistic examples, gauge invariance and anomaly

cancelation play a subtle role in guaranteeing the gauge independence of matrix elements

in the presence of symmetry breaking.

So far, the most interesting application of this line of reasoning in which the Wess-

Zumino term acquires a physical meaning is in the Peccei-Quinn solution of the strong-CP

problem of QCD [18], where the SM lagrangean is augmented by a global anomalous U(1)

and involves an axion.

The PQ symmetry, in its original form, is a global symmetry broken only by instanton

effects. The corresponding axion, which in the absence of non perturbative effects would be
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the massless Nambu-Goldstone boson of the global (chiral) symmetry, acquires a tiny mass.

In the PQ case the mass of the axion and its coupling to the gauge field are correlated,

since both quantities are defined in terms of the same factor 1/fa, with fa being the PQ-

breaking scale, which is currently bounded, by terrestrial and astrophysical searches, to be

very large (≈ 109 GeV) [10].

This tight relation between the axion mass and the coupling is a specific feature of

models of PQ type where a global symmetry is invoked and, as we are going to see, it can

be relaxed if the anomalous interaction is gauged. These issues are briefly mentioned here,

while more phenomenological details concerning some applications involving the PVLAS

experiment [16] will be presented elsewhere. The axion discussed in this paper and its

effective action has some special features that render it an interesting physical state, quite

distinct from the PQ axion. The term “gauged axion” or “Stückelberg axion” or “axi-

Higgs” all capture some of its main properties. Depending on the size of the PQ-breaking

potential, the value of the axion mass gets corrected in the form of additional factors which

are absent in the standard PQ axion.

Although some of the motivations to investigate this class of models come from the

interest toward special vacua of string theory [19], the study of anomalous abelian interac-

tions, in the particular construction that we are going to discuss in this work, are applicable

to a wide variety of models which share the typical features of those studied here.

1.2 The case of string/branes inspired models

As we have mentioned, we work under quite general assumptions that apply to abelian

anomalous models that combine both the Higgs and the Stückelberg mechanisms [17] in

order to give mass to the extra (anomalous) gauge bosons. There are various low-energy

effective theories which can be included into this framework, one example being low energy

orientifold models, but we will try to stress on the generality of the construction rather

than on its stringy motivations, which, from this perspective, are truly just optional.

These models have been proposed as a possible scenario for physics beyond the Stan-

dard Model, with motivations that have been presented in [19]. Certain features of these

models have been studied in some generality [20], and their formulation relies on the Green-

Schwarz mechanism of anomaly cancelation that incorporates axionic and Chern-Simons

interactions. At low energy, the Green-Schwarz term is nothing but the long known Wess-

Zumino term. In particular, the mechanism of spontaneous symmetry breaking, that now

involves both the Stückelberg field (the axion) and the Standard Model Higgs, has been

elucidated [19]. While the general features of the theory have been presented before, the

selection of a specific gauge structure (the number of anomalous Υ(1)’s in [19] was generic),

in our case of a single additional anomalous Υ(1), allows us to specify the model in much

more detail and discuss the structure of the effective action to a larger extent. This study

is needed and provides a new step toward a phenomenological analysis for the LHC that

we will present elsewhere.

This requires the choice of a specific and simplified gauge structure which can be

amenable to experimental testing. While the number of anomalous abelian gauge groups

is, in the minimal formulation of the models derived from intersecting branes, larger or
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equal to three, the simplest (and the one for which a quantitative phenomenological analy-

sis is possible) case is the one in which a single anomalous Υ(1) is present. This simplified

structure appears once the assumption that the masses of the new abelian gauge inter-

actions are widely (but not too widely) separated so to guarantee an effective decoupling

of the heavier Z ′, is made. Clearly, in this simplified setting, the analysis of [19] can be

further specialized and extended and, more interestingly, one can try to formulate possible

experimental predictions.

1.3 The content of this work

This work and [25] address the construction of anomalous abelian models in the presence

of an extra anomalous Υ(1), called Υ(1)B . This extra gauge boson becomes massive via a

combined Higgs-Stückelberg mechanism and is accompanied by one axion, b. We illustrate

the physical role played by the axion when both the Higgs and the Stückelberg mechanisms

are present. The physical axion, that emerges in the scalar sector when b is rotated into

its physical component (the axi-Higgs, denoted by χ) interacts with the gauge bosons with

dimension-5 operators (the WZ terms). The presence of these interactions renders the

theory non-renormalizable and one needs a serious study of its unitarity in order to make

sense of it, which is the objective of these two papers. Here the analysis is exemplified in

the case of two simple models (the A-B and Y-B models) where the non-abelian sector is

removed. A complete model will be studied in the second part. Beside the WZ term the

theory clearly shows that additional Chern-Simons interactions become integral part of the

effective action.

1.4 The role of the Chern-Simons interactions

There are some very interesting features of these models which deserve a careful study, and

which differ from the case of the Standard Model (SM). In this last case the cancelation

of the anomalies is enforced by charge assignments. As a result of this, before electroweak

symmetry breaking, all the anomalous trilinear gauge interactions vanish. This cancela-

tion continues to hold also after symmetry breaking if all the fermions of each generation

are mass degenerate. Therefore, trilinear gauge interactions containing axial couplings are

only sensitive to the mass differences among the fermions. In the case of extensions of the

SM which include an anomalous Υ(1) this pattern changes considerably, since the massless

contributions in anomalous diagrams do not vanish. In fact, these theories become con-

sistent only if a suitable set of axions and Chern-Simons (CS) interactions are included as

counterterms in the defining lagrangean. The role of the CS interactions is to re-distribute

the partial anomalies among the vertices of a triangle so to restaure the gauge invariance of

the 1-loop effective action before symmetry breaking. For instance, a hypercharge current

involving a generator Y ,would be anomalous at 1-loop level in a trilinear interaction of the

form Y BB or Y Y B, if B is an anomalous gauge boson. In fact, while anomalous diagrams

of the form Y Y Y are automatically vanishing by charge assignment, the former ones are

not. The theory requires that in these anomalous interactions the CS counterterm moves

the partial anomaly from the Y vertex to the B vertex, rendering in these diagrams the

hypercharge current effectively vector-like. The B vertex then carries all the anomaly of
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the trilinear interaction, but B is accompanied by a Green-Schwarz (GS) axion (b) and its

anomalous gauge variation is canceled by the GS counterterm. It is then obvious that these

theories show some new features which have never fully discussed in the past and require

a very careful study. In particular, one is naturally forced to develope a regularization

scheme that allows to keep track correctly of the distributions of the anomalies on the vari-

ous vertices of the theory. This problem is absent in the case of the SM since the vanishing

of the anomalous vertices in the massless phase renders any momentum parameterization of

the diagrams acceptable. We have described in detail some of these more technical points

in several appendices, where we illustrate how these theories can be treated consistently

in dimensional regularization but with the addition of suitable shifts that take the form of

CS counterterms.

2. Massive Υ(1)’s a la Stückelberg

One of the ways to render an abelian Υ(1) gauge theory massive is by the mechanism

proposed by Stückelberg [17], extensively studied in the past, before that another mecha-

nism, the Higgs mechanism, was proposed as a viable and renormalizable method to give

mass both to abelian and to non abelian gauge theories. There are various ways in which,

nowadays, this mechanism is implemented, and Stückelberg fields appear quite naturally

in the form of compensator fields in many supergravity and string models. On the phe-

nomenological side, one of the first successfull investigations of this mechanism for model

building has been presented in [27], while, rather recently, supersymmetric extensions of

this mechanism have been investigated [21]. In other recent work some of its perturbative

aspects have also been addressed, in the case of non anomalous abelian models. For in-

stance in [28], among other results, it has been shown that the mass renormalization and

the wave function renormalization of the abelian vector field, in this model, are identical.

In the seventies, the Stückelberg field (also called the “Stückelberg ghost”) re-appared

in the analysis of the properties of renormalization of abelian massive Yang-Mills theory

by Salam and Strathdee [22], Delbourgo [23] and others [29], while Gross and Jackiw [30]

introduced it in their analysis of the role of the anomaly in the same theory. According

to these analysis the perturbative properties of a massive Yang-Mills theory, which is not

renormalizable in its direct formulation, can be ameliorated by the introduction of this field.

Effective actions in massive Yang-Mills theory have been also investigated in the past, and

shown to have some predictivity also without the use of the Stückelberg variables [24], but

clearly the advantages of the Higgs mechanism and its elegance remains a firm result of the

current formulation of the Standard Model. We briefly review these points to make our

treatment self-contained but also to show that the role of this field completely changes in

the presence of an anomalous fermion spectrum, when the need to render the theory unitary

requires the introduction of a bF F̃ interaction, spoiling renormalizability, but leaving the

resulting theory, for the rest, well defined as an effective theory. For this to happen one

needs to check explicitly the unitarity of the theory, which is not obvious, especially if the

Higgs and Stückelberg mechanisms are combined. This study is the main objective of the

first part of this investigation, which is focused on the issues of unitarity of simple models
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which include both mechanisms. Various technical aspects of this analysis are important

for the study of realistic models, as discussed in [25], where we move toward the study of an

extension of the SM with two abelian factors, one of them being the standard hypercharge

(Y-B). The charge assignments for the anomalous diagrams involving a combinations of

both gauge bosons are such that additional Ward identities are needed to render the theory

unitary, starting from gauge invariance. We study most of the features of this model in

depth, and show how the neutral vertices of the model are affected by the new anomaly

cancelation mechanism. We will work out an application of the theory in the process

Z → γγ, which can be tested at forthcoming experiments at the LHC.

2.1 The Stückelberg action from a field-enlarging transformation

We start with a brief introduction on the derivation of an action of Stückelberg type to set

the stage for further elaborations.

A massive Yang Mills theory can be viewed as a gauge-fixed version of a more general

action involving the Stückelberg scalar. A way to recognize this is to start from the standard

lagrangian

L = −
1

4
FµνFµν +

1

2
M2

1 (Bµ)2 (2.1)

with Fµν = ∂µBν − ∂νBµ and perform a field-enlarging transformation (see the general

discussion presented in [31])

Bµ = B′
µ −

1

M1
∂µb, (2.2)

that brings the original (gauge-fixed) theory (2.1) into the new form

L = −
1

4
FµνFµν +

1

2
M2

1 (Bµ)2 +
1

2
(∂µb)2 − M1Bµ∂µb (2.3)

which now reveals a peculiar gauge symmetry. It is invariant under the transformation

b → b′ = b − Mθ

Bµ → B′
µ = Bµ + ∂µθ. (2.4)

We can trace back our steps and gauge-fix this lagrangean in order to obtain a new version

of the original lagrangean that now contains a scalar. One can choose to remove the mixing

between Bµ and b by the gauge-fixing condition

Lgf = −ξ

(

∂ · B +
M1

2ξ
b

)2

(2.5)

giving the gauge-fixed lagrangian

L = −
1

4
FµνFµν +

1

2
M2

1 (Bµ)2 +
1

2
(∂µb)2 − ξ(∂B)2 −

M2
1

4ξ
b2. (2.6)

It is easy to show that the BRST charge of this model generates exactly the Stückelberg

condition on the physical subspace, decoupling the unphysical Faddeev-Popov ghosts from

the physical spectrum.
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Different gauge choices are possible. The choice of a unitary gauge (b = 0) in the

lagrangean (2.3) brings us back to the original massive Yang Mills model (2.1). In the

presence of a chiral fermion, the same field-enlarging transformation trick goes through,

though this time we have to take into account the contribution of the anomaly

L = −
1

4
F 2

B +
M2

1

2

(

Bµ +
1

M1
∂µb

)2

+ iψLγµ(∂µ + ig1Bµ + ig∂µb)ψL, (2.7)

where ψL = 1
2(1− γ5) is the left handed anomalous fermion. The Fujikawa method can be

used to derive from the anomalous variation of the measure the relation

gψLγµ∂µbψL =
g3

32π2
ϵµνρσFµνFρσ (2.8)

thereby obtaining the final anomalous action

L = −
1

4
F 2

B +
M2

1

2

(

Bµ +
1

M1
∂µb

)2

+ iψLγµ(∂µ + ig1Bµ)ψL −
g3

32π2
b ϵµνρσFµνFρσ . (2.9)

Notice that the b field can be integrated out [30]. In this case one obtains an alternative

effective action of the form

L = −
1

4
F 2

B +
M2

1

2
(Bµ)2 + iψLγµ(∂µ + ig1Bµ)ψL

−
g3

96π2

∫

d4yFαβ
B F̃Bαβ(x)D(x − y|M2

1 ξ)Fµν(y)F̃µν(y) (2.10)

with (! + M2
1 ξ2)D(x|M2

1 ) = −δ4(x). The locality of the description is clearly lost. It is

also obvious that the role of the axion, in this case, is to be an unphysical field. How-

ever, in the case of a model incorporating both spontaneous symmetry breaking and the

Stückelberg mechanism, the axion plays a physical role and can be massless or massive

depending whether it is part of the scalar potential or not. Our interest, in this work, is

to analyze in detail the contribution to the 1-loop effective action of anomalous abelian

models, here defined as the classical lagrangean plus its anomalous trilinear fermionic in-

teractions. Anomalous Ward identities in these effective actions are eliminated once the

divergences from the triangles are removed either by 1) suitable charge assignments for

some of generators, or by 2) shifting axions or 3) by a judicious (and allowed) distribution

of the partial anomalies on each vertex.

Since this approach of anomaly cancelations is more involved than in the SM case,

we have decided to analyze it in depth using some simple (purely abelian) models as

working examples, before considering a realistic extension of the Standard Model. This

extension is addressed in [25]. There, all the methodology developed in this work will

be widely applied to the analysis of a string-inspired model derived from the orientifold

construction [19]. In fact, this analysis tries to clarify some unobvious issues that naturally

appear once an effective anomaly-free gauge theory is generated at lower energies from an

underlying renormalizable theory at a higher energy. For this purpose we will use a simple

approach based on s-channel unitarity, inspired by the classic work of Bouchiat, Iliopoulos

and Meyer [32].
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Figure 1: The AVV diagrams.

2.2 Implications at the LHC

A second comment concerns the possible prospects for the discovery of a Z ′ of anomalous

origin. Clearly with Z ′’s being ubiquitous in GUT’s and other SM extensions, discerning

an anomalous Z ′ from a non-anomalous one is subtle, but possible. In [25] we propose the

Drell-Yan mechanism as a possible way to make this distinction, since some new effects

related to the treatment of the anomalies are already (at least formally) apparent near the Z

resonance already in this process. Anomalous vertices involving the Z gauge boson appear

both in the production mechanism and in its decay into two gluons or two photons. In

the usual Drell-Yan process, computed in the SM, these contributions, because of anomaly

cancelations, are sensitive only to the mass difference between the fermion of a given

generation and are usually omitted in NNLO computations. If these resonances, predicted

by theories with extra abelian gauge structures, are very weakly coupled, then a precise

determination of the QCD background is necessary to detect them.

3. The effective action in the AB model

As we have already mentioned, we will focus our analysis on the anomalous effective actions

of simple abelian theories. We will analize two models: a first one called “A-B”, with a A

vector-like (and anomaly-free) and B axial-vector like and anomalous; and a second model,

called the “Y-B” model where B is anomalous and Y is anomaly-free but has both vector

and axial-vector interactions. Differently from the A-B model, which will be introduced in

the next section, the Y-B model will be teated in one of the final sections.

We start defining a model that we will analyze next. We call it the “AB” model,

defined by the lagrangean

L0 = |(∂µ + igBqBBµ)φ|2 −
1

4
F 2

A −
1

4
F 2

B +
1

2
(∂µb + M1 Bµ)2 − λ

(

|φ|2 −
v2

2

)2

+ψiγµ(∂µ + ieAµ + igBγ5Bµ)ψ − λ1ψLφψR − λ1ψRφ∗ψL (3.1)

and contains a non anomalous (A) and an anomalous (B) gauge interaction.

Its couplings are summarized in tables 1 and 2, where “S” refers to the presence of a

Stückelberg mass term for the corresponding gauge boson, if present. We have indicated, in

this and in the model below, with a small lowercase (i.e. b and c) the corresponding axions.

The Υ(1)A symmetry is unbroken while B gets its mass by the combined Higgs-Stückelberg

mechanism. Another feature of the model, as we are going to see, is the presence of an

– 9 –
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Figure 2: The AAA diagrams.

A B

ψ qA
L = qA

R = 1 qB
R = −qB

L = 1

Table 1: Fermion assignments, A-B Model.

φ S

A qA = 0 0

B qB = −2 b

Table 2: Gauge structure, A-B Model.

Higgs-axion mixing generated not by a scalar potential (such as V (φ, b)), as we will show

in other examples, but by the fact that both mechanisms communicate their mass to the

same gauge boson B. The axion remains a massless field in this case.

Our discussion relies on the formalism of the 1-loop effective action, which is the

generating functional of the one-particle irreducible correlation functions of a given model.

The correlators are multiplied by external classical fields and the formalism allows to derive

quite directly the anomalous Ward identities of the theory. The reader can find a discussion

of the formalism in the appendix, where we study the properties of the Chern-Simons and

Wess Zumino vertices of the model and their gauge variations.

In the A-B model, this will involve the classical defining action plus the anomaly dia-

grams with fermionic loops and we will require its invariance under gauge transformations.

The structure of the (total) effective action is summarized, in the case of, say, one vector

(A) and one axial vector (B) interaction by an expansion of the form

W [A,B] =
∞
∑

n1=1

∞
∑

n2=1

in1+n2

n1!n2!

∫

dx1 . . . dxn1
dy1 . . . dyn2

T λ1...λn1
µ1...µn2 (x1 . . . xn1

, y1 . . . yn2
)

Bλ1(x1) . . . Bλn1 (xn1
)Aµ1

(y1) . . . Aµn2
(yn2

), (3.2)

corresponding to the diagrams in figure 3 where we sum, for each diagram, over the sym-

metric exchanges of all the indices (including the momentum) of the identical gauge bosons

(see also figure 4). As we are going to discuss next, also higher order diagrams of the form,

for instance, AVVV will be affected by the presence of an undetermined shift in the triangle

amplitudes, amounting to Chern-Simons interactions (CS). They turn to be well-defined
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. .
.

..

Figure 3: Expansion of the effective action.

B

B

A =

B

B

A

B

B

A+

Figure 4: Triangle diagrams with permutations.

A

B

B = A + perm.B

B

BB

Figure 5: Symmetric expansion.

once the distribution of the anomaly on 3-point functions is performed according to the

correct Bose symmetries of these correlators of lower order.

Computing the variation of the generating functional we obtain

δBW an[A,B] =
1

2!

∫

dxdydz T λµν(z, x, y) δBλ(z)Aµ(x)Aν(y)

+
1

3!

∫

dxdydzdw T λµνρ(z, x, y, w)Bλ(z)Aµ(x)Aν(y)Aρ(w), (3.3)

using δBλ(z) = ∂µθB(z) and integrating by parts we get

δBW an[A,B] = −
1

2!

∫

dxdydz
∂

∂zλ
T λµν(z, x, y) θB(z)Aµ(x)Aν(y)

−
1

3!

∫

dxdydzdw
∂

∂zλ
T λµνρ(z, x, y, w) θB(z)Aµ(x)Aν(y)Aρ(w).

(3.4)

Notice that in configuration space the 4- and the 3- point function correlators are related

by

∂

∂zλ
T

λµνρ
(z, x, y, w) = δ(z − w)T

ρµν
(w, x, y, ) − δ(z − x)T

µνρ
(x, y,w)+ perm. (3.5)
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For T we will be using the same conventions as for ∆, with T
λµν

indicating a single diagram

with non-permuted external gauge lines, while T λµν will denote the symmetrized one (in

µν). Clearly, the 1-loop effective theory of this model contains anomalous interactions that

need to be cured by the introduction of suitable compensator fields. The role of the axions

(b, for instance) is to remove the anomalies associated to the triangle diagrams which are

correlators of 1 and 3 chiral currents respectively

T (AVV)
λµν (x, y, z) = ⟨0|T

(

Jµ(x)Jν(y)J5
λ(z)

)

|0⟩ (3.6)

and

T (AAA)
λµν (x, y, z) = ⟨0|T

(

J5
µ(x)J5

ν (y)J5
λ(z)

)

|0⟩, (3.7)

where

Jµ = −ψγµψ J5
µ = −ψγµγ5ψ. (3.8)

We denote by ∆(k1, k2) and ∆3(k1, k2) their corresponding expressions in momentum space

(2π)4δ(k − k1 − k2)∆
λµν(k1, k2) =

∫

dx dy dz eik1·x+ik2·y−ik·z T λµν
(AVV)(x, y, z) (3.9)

(2π)4δ(k − k1 − k2)∆
λµν
3 (k1, k2) =

∫

dx dy dz eik1·x+ik2·y−ik·z T λµν
(AAA)(x, y, z). (3.10)

Another point to remark is that the invariant amplitudes linear in momenta in the

definition of the AVV trangle diagram correspond, in configuration space, to Chern-Simons

interactions. In momentum space these are proportional to

V λµν
CS (k1, k2) = −iϵλµνσ(kσ

1 − kσ
2 ) (3.11)

and we denote with T λµν
CS the corresponding contribution to the effective lagrangian in

Minkowski space (see the appendices)

LCS,ABA =

∫

dxAµ(x)Bν(x)F ρσ
A (x)εµνρσ . (3.12)

Moving to the anomalous part of the effective action, this takes the form, for generic

gauge bosons Ai

Seff = S0 + S1, (3.13)

where

S1 =
∑

i j k

1

ni!nj!nk!
gijk

∫

dxdydzAλ
i (x)Aµ

j (y)Aν
k(z)T λµν

AiAjAk
(x, y, z), (3.14)

and where Ai indicates an A or a B gauge boson, while gijk is a short-hand notation for

the product of the 3 coupling constants gAigAjgAk
, with an additional normalization due

to a counting of identical external gauge bosons (ni!). All the anomalous contributions are

included in the definition. In order to derive its explicit structure in our simplified cases,

we consider the case of the BAA vertex, the other examples being similar. We have, for

instance, the partial contribution

SBAA = gB

∫

dxdydzBλ(z)⟨Jλ
5 (z)eigA

R

d4xJµ(x)Aµ(x)⟩, (3.15)
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where the gauge fields are treated as classical fields and ⟨, ⟩ indicate the vacuum expectation

value. Expanding to second order, we keep only the connected contributions obtaining for

instance

SBAA =
i2

2!
gBg2

A

∫

dxdydzBλ(z)Aµ(x)Aν(y)⟨Jλ
5 (z)Jµ(x)Jν(y)⟩. (3.16)

This expresssion is our starting point for all the further analysis. Most of the manipulations

concerning the proof of gauge-invariance of the effective action are more easily worked out

in this formalism. Moving from momentum space to configuration space and back, may

also be quite useful in order to detail the Ward identities of a given anomalous effective

action.

In the presence of spontaneous symmetry breaking and of Stückelberg mass terms one

has to decide whether the linear mixing between the Stückelberg field and the gauge boson

is kept or not. One can keep the mixing and derive ordinary Ward identities for a given

model. This is a possibility which is clearly at hand and can be useful. The disadvantage

of this approach is that there is no gauge fixing parameter that can be used to analyze the

gauge dependence of a given set of amplitudes and their cancelation. When the mixing is

removed by going to a Rξ gauge, one can identify the set of gauge-invariant contributions

to a given amplitude and identify more easily the conditions under which a given model

becomes unitary. We follow this second approach. We are then able to combine gauge-

dependent contributions in such a way that the unphysical poles of a given amplitude

cancel. The analysis that we perform is limited to the s-channel, but the results are easily

generalizable to the t and u channels as well. From this simple analysis one can easily

extract information on the perturbative expansion of the effective action.

3.1 The anomalous effective action of the A − B Model

We start from the simplest model. In the A−B model, defined in eq. (3.1), the contribution

to the anomalous effective action is given by

San = S1 + S3

S1 =

∫

dx dy dz

(

gB g2
A

2!
T λµν
AVV

(x, y, z)Bλ(z)Aµ(x)Aν(y)

)

S3 =

∫

dx dy dz

(

g3
B

3!
T λµν
AAA

(x, y, z)Bλ(z)Bµ(x)Bν(y)

)

, (3.17)

where we have collected all the anomalous diagrams of the form (AVV and AAA). We

can easily express the gauge transformations of A and B in the form

1

2!
δB⟨TAVVBAA⟩ =

i

2!
a3(β)

1

4
⟨FA ∧ FAθB⟩

1

3!
δB⟨TAAABBB⟩ =

i

3!

an

3

3

4
⟨FB ∧ FBθB⟩, (3.18)

where we have left open the choice over the parameterization of the loop momentum,

denoted by the presence of the arbitrary parameter β with

a3(β) = −
i

4π2
+

i

2π2
β a3 ≡

an

3
= −

i

6π2
, (3.19)
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while

1

2!
δA⟨TAVVBAA⟩ =

i

2!
a1(β)

2

4
⟨FB ∧ FAθA⟩. (3.20)

We have the following equations for the anomalous variations of the effective lagrangean

δBLan =
igBg 2

A

2!
a3(β)

1

4
FA ∧ FAθB +

ig 3
B

3!

an

3

3

4
FB ∧ FBθB

δALan =
igBg 2

A

2!
a1(β)

2

4
FB ∧ FAθA, (3.21)

while Lb,c, the axionic contributions (Wess-Zumino terms), needed to restore the gauge

symmetry violated at 1-loop level, are given by

Lb =
CAA

M
bFA ∧ FA +

CBB

M
bFB ∧ FB . (3.22)

Notice that since the axion shifts only under a gauge variation of the anomalous U(1)

gauge field B (and not under A), gauge invariance of the effective action under a gauge

transformation of the gauge field A requires that

δALan = 0. (3.23)

Clearly, this condition fixes β = −1/2 ≡ β0 and is equivalent to the CVC condition

on A that we had relaxed at the beginning. Imposing gauge invariance under B gauge

transformations, on the other hand, we obtain

δB (Lb + Lan) = 0 (3.24)

which implies

CAA =
i gBg 2

A

2!

1

4
a3(β0)

M

M1
, CBB =

ig 3
B

3!

1

4
an

M

M1
. (3.25)

These conditions on the coefficients C are sufficient to render gauge-invariant the total la-

grangean. We observe that the presence of an abelian symmetry which has to remain exact

and is not accompanied by a shifting axion has important implications on the consistency

of the theory. We have brought up this example because in more complex situations in

which a given gauge symmetry is broken and the pattern of breakings is such to preserve a

final symmetry (for instance Υ(1)em), the structure of the anomalous correlators, in some

case, is drastically constrained to assume the CVC form. However this is not a general

result.

Under a more general assumption, we could have allowed some Chern-Simons contri-

butions in the counterterm lagrangean. This is an interesting variation that can be worked

out at a diagrammatic level in order to identify the role played by the CS interactions. We

will get back to this point once we start our diagrammatic analysis of these simple models.
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4. Higgs-axion mixing in Υ(1) models: massless axi-Higgs

Having discussed how to render consistent to all orders the effective action, we need to

discuss the role played by the shifting axions in the spectrum of the theory. We have

already pointed out that the axion will mix with the remaining scalars of the model. In the

presence of a Higgs sector such a mixing can take place at the level of the scalar potential,

with drastic implications on the mass and the coupling of the axion to the remaining

particles of the model. Naturally, one would like to understand the way the mixing occurs

and this is exemplified in the case of the AB model.

This model has two scalars: the Higgs and the Stückelberg fields. We assume that

the Higgs field takes a non-zero vev and, as usual, the scalar field is expanded around the

minimum v

φ =
1√
2

(v + φ1 + iφ2) , (4.1)

while from the quadratic part of the lagrangean we can easily read out the mass terms and

the goldstone modes present in the spectrum in the broken phase. This is given by

Lq =
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2 +
1

2
(∂µb)2 +

1

2

(

M2
1 + (qBgBv)2

)

BµBµ −
1

2
m2

1φ
2
1

+Bµ∂µ (M1b + vgBqBφ2) , (4.2)

from which, after diagonalization of the mass terms we obtain

Lq =
1

2
(∂µχB)2 +

1

2
(∂µGB)2 +

1

2
(∂µh1)

2 +
1

2
M2

BBµBµ −
1

2
m2

1h
2
1

+MBBµ∂µGB (4.3)

where we have redefined φ1(x) = h1(x) and m1 = v
√

2λ, for the Higgs field and its mass.

We have identified the linear combinations

χB =
1

MB
(−M1 φ2 + qBgBv b) ,

GB =
1

MB
(qBgBv φ2 + M1 b) , (4.4)

corresponding to a massless particle, the axi-Higgs χB , and a massless goldstone mode GB .

The rotation matrix that allows the change of variables (φ2, b) → (χB , GB) is given by

U =

(

− cos θB sin θB

sin θB cos θB

)

(4.5)

with θB = arccos(M1/MB) = arcsin(qBgBv/MB). The axion b can be expressed as linear

combination of the rotated fields χB,GB as

b = α1χB + α2GB =
qBgBv

MB
χB +

M1

MB
GB , (4.6)

while the gauge fields Bµ get its mass MB through the combined Higgs-Stückelberg mech-

anism

MB =
√

M2
1 + (qBgBv)2. (4.7)
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To remove the mixing between the gauge fields and the goldstones we work in the Rξ

gauge. The gauge-fixing lagrangean is given by

Lgf = −
1

2
G2

B (4.8)

where

GB =
1√
ξB

(∂ · B − ξBMBGB) , (4.9)

and the corresponding ghost lagrangeans

LB gh = cB

(

−! − ξBvu(h1 + vu) − ξBM2
1

)

cB . (4.10)

For convenience we report the form of the full lagrangean in the physical basis for future

reference. After diagonalization of the mass matrix this becomes

L = −
1

4
F 2

A −
1

4
F 2

B + LBgh + Lf + LB (4.11)

where

LB =
1

2
(∂µχ)2 −

1

2ξB
(∂ · B)2 +

1

2
(∂µGB)2 (4.12)

+
1

2
(∂µh1)

2 −
1

2
m2

1h
2
1 +

1

2
M2

BB2
µ − 4

vg2
B

MB
BµGB∂µh1

−
4λv4g4

B

M4
B

G4
B +

8v2g4
B

M2
B

(Bµ)2G2
B +

8λM1v3g3
B

M4
B

χBG3
B −

8M1vg3
B

M2
B

(Bµ)2χBGB

−
4g2

Bλv3

M2
B

G2
Bh1 + 4g2

B(Bµ)2h1v + 2
g2
BM2

1

M2
B

(Bµ)2χ2 + 2g2
B(Bµ)2h2

1
vg2

B

MB
Bµh1∂

µGB

+
2λM1vgB

M2
B

χGBh2
1 +

2gBλM3
1 v

M4
B

GBχ3 +
4gBλM1v2

M2
B

GBh1χB −
2gBM1

MB
Bµ∂µχh1

−
λM4

1

4M4
B

χ4 +
2gBM1

MB
Bµ∂µh1χB −

1

4
λh4

1 − λvh3
1 +

3λM4
1

2M4
B

χ2G2
B −

3λM2
1

2M2
B

χ2G2
B

−
1

2
λh2

1G
2
B −

1

2
M2

BξBG2
B −

λM2
1

2M2
B

χ2h2
1 +

λM2
1

2M2
B

G2
Bh2

1 −
λM2

1 v

M2
B

χ2h1

where Lf denotes the fermion contribution.

At this stage there are some observations to be made. In the Stückelberg phase the

axion b is a goldstone mode, since it can be set to vanish by a gauge transformation on the

B gauge boson, while B is massive (with a mass M1) and has 3 degrees of freedom (dof).

Therefore in this phase the number of physical dof’s is 3 for B, 2 for A, 2 for the complex

scalar Higgs φ, for a total of 7. After electroweak symmetry breaking we have 3 d.o.f.’s for

B, 2 for A which remains massless in this model, 1 real Higgs field h1 and 1 physical axion

χ, for a total of 7. The axion, in this case, on the contrary of what happens in the case

of ordinary symmetry breaking is a massless physical scalar, being not part of the scalar

potential. Not much surprise so far. Let’s now move to the analysis of the case when the

axion is part of the scalar potential. In this second case the physical axion (the axi-Higgs)

gets its mass by the combined Higgs-Stückelberg mechanisms and shows some interesting

features.
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4.1 Higgs-axion mixing in Υ(1) models: massive axi-Higgs

We now illustrate the mechanism of mass generation for the physical axion χ. We focus on

the breaking of the Υ(1)B gauge symmetry of the AB model. We have a gauge-invariant

Higgs potential given by

VPQ = µ2φ∗φ + λ (φ∗φ)2 (4.13)

plus the new PQ-breaking terms, allowed by the symmetry [19]

VP/ Q/ = b1

(

φ e
−iqBgB

b
M

1

)

+λ1

(

φ e
−iqBgB

b
M

1

)2

+2λ2 (φ∗φ)

(

φ e
−iqBgB

b
M

1

)

+c.c. (4.14)

so that the complete potential considered is given by

V (H, b) = VPQ + VP/ Q/ + V ∗
P/ Q/ . (4.15)

We require that the minima of the potential are located at

⟨b⟩ = 0 ⟨φ⟩ = v, (4.16)

which imply that the mass parameter satisfies

µ2 = −
b1

v
− 2v2λ − 2λ1 − 6vλ2. (4.17)

We are interested in the matrix describing the mixing of the CP-odd Higgs sector with the

axion field b, given by

( φ2, b )M2

(

φ2

b

)

(4.18)

where M2 is a symmetric matrix

M2 = −
1

2
cχv2

(

1 −v
qBgB
M

1

−v
qBgB
M

1

v2 q2
Bg2

B

M2
1

)

(4.19)

and where the dimensionless coefficient multiplied in front is given by

cχ = 4

(

b1

v3
+

4λ1

v2
+

2λ2

v

)

. (4.20)

Notice that this parameter plays an important role in establishing the size of the mass of

the physical axion, after diagonalization. It encloses all the dependence of the mass from

the PQ corrections to the standard Higgs potential. They can be regarded as corrections

of order p/v, with p being any parameter of the PQ potential. If p is very small, which is

the case if the VP/ Q/ term of the potential is generated non-perturbatively (for instance by

instanton effects in the case of QCD), the mass of the axi-Higgs can be pushed far below

the typical mass of the electroweak breaking scenario (the Higgs mass), as discussed in [12].
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The mass matrix has 1 zero eigenvalue corresponding to the goldstone boson G and 1

non-zero eigenvalue corresponding to a physical axion field −χ− with mass

m2
χ = −

1

2
cχv2

[

1 +
q2
Bg2

Bv2

M2
1

]

= −
1

2
cχ v2 M2

B

M2
1

. (4.21)

The mass of this state is positive if cχ < 0. The rotation matrix that takes from the

interaction eigenstates to the mass eigenstates is denoted by Oχ

(

χ

G

)

= Oχ

(

φ2

b

)

(4.22)

so that we obtain the rotations

φ2 =
1

MB
(−M1 χ + qBgB v G) (4.23)

b =
1

MB
(qBgB v χ + M1 G). (4.24)

The mass squared matrix can be diagonalized as

( χ, G )Oχ M2(O
χ)T

(

χ

G

)

= ( χ, G )

(

m2
χ 0

0 0

)

(

χ

G

)

(4.25)

so that G is a massless goldstone mode and mχ is the mass of the physical axion. In [12] one

can find a discussion of some physical implications of this field when its mass is driven to be

small in the instanton vacuum, similarly to the Peccei-Quinn axion of a global symmetry.

However, given the presence of both mechanisms, the Stückelberg and the Higgs, it is not

possible to decide whether this axion can be a valid dark-matter candidate. In the same

work it is shown that the entire Stückelberg mechanism can be the result of a partial

decoupling of a chiral fermion.

5. Unitarity issues in the A-B model in the exact phase

In this section we start discussing the issue of unitarity of the model that we have intro-

duced. This is a rather involved topic that can be addressed by a diagrammatic analysis of

those Feynman amplitudes with s-channel exchanges of gauge particles, the axi-Higgs and

the NG modes, generated in the various phases of the theory (before and after symmetry

breaking, with/without Yukawa couplings). The analysis could, of course, be repeated in

the other channels (t,u) as well, but no further condition would be obtained. We will gather

all the information coming from the study of the S-matrix amplitudes to set constraints

on the parameters of the model. We have organized our analysis as a case-by-case study

verifying the cancelation of the unphysical singularities in the amplitude in all the phases

of the theory, establishing also their gauge independence. This is worked out in the Rξ

gauge so to make evident the disappearance of the gauge-fixing parameter in each ampli-

tude. The scattering amplitudes are built out of two anomalous diagrams with s-channel

exchanges of gauge dependent propagators, and in all the cases we are brought back to the

analysis of a set of anomalous Ward identities to establish our results.
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5.1 Unitarity and CS interactions in the A − B model

The first point that we address in this section concerns the role played by the CS inter-

actions in the unitarity analysis of simple s-channel amplitudes. This analysis clarifies

that CS interactions can be included or kept separately from the anomalous vertices with

no consequence. To show this, we consider the following modification on the AB model,

where the CS interactions are generically introduced as possible counterterms in the 1-loop

effective action, which is given by

L = L0 + LGS + LCS, (5.1)

where L0 is already known from previous sections, but in particular we focus on the com-

ponents

LGS =
CAA

M
bFA ∧ FA +

CBB

M
bFB ∧ FB (5.2)

and

LCS = d1B
µAνF ρσ

A ϵµνρσ ≡ d1BA ∧ FA. (5.3)

Under an A-gauge transformation we have 1

δAL =
d1

2
θAFB ∧ FA +

i

2!
a1(β)

2

4
θAFB ∧ FA, (5.4)

so that we obtain

d1

2
+

ia1(β)

4
= 0 ↔ d1 = −

i

2
a1(β). (5.5)

Analogously, under a B-gauge transformation we have

δBL = −
d1

2
θBFA ∧ FA +

i

2!
a3(β)

1

4
FA ∧ FAθB − CAA

M1θB

M
FA ∧ FA

−CBB
M1θB

M
FB ∧ FB +

i

3!

an

3

3

4
θBFB ∧ FB , (5.6)

to obtain

−
d1

2
− CAA

M1

M
+

i

2!
a3(β)

1

4
= 0 ↔ CAA =

(

−
d1

2
+

i

2!
a3(β)

1

4

)

M

M1

. (5.7)

We refer the reader to one of the appendices where the computation is performed in detail.

We have shown that the presence of external Ward identities forcing the invariant

amplitudes of a given anomalous triangle diagram to assume a specific form, allow to re-

absorb the CS coefficients inside the triangle, thereby simplifyig the computations. In this

specific case the CVC condition for A is a property of the theory. In other cases this does

1In the language of the effective action the multiplicity factors are proportional to the number (n!) of

external gauge lines of a given type. We keep these factors explicitly to backtrack their origin.
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Figure 6: Diagrams involved in the unitarity analysis with external CS interactions.

not take place. For instance, instead of the condition a1(β) = 0, a less familiar condition

such as a3(β) = 0 (conserved axial current, CAC) may be needed. In this sense, if we

define the CVC condition to be the “standard case”, the CAC condition points toward

a new anomalous interaction. We remark once more that β remains “free” in the SM,

since the anomaly traces cancel for all the generators, differently from this new situation.

The theory allows new CS interactions, with the understanding that, at least in these

cases, these interactions can be absorbed into a redefinition of the vertex. However, the

presence of a Ward identity, that allows us to re-express a1 and a2 in terms of a3 . . . a6

in different ways, at the same time allows us to come up with different gauge invariant

expressions of the same vertex function (fixed by a CVC or a CAC condition, depending

on the case). These different versions of these AVV 3-point functions are characterized by

different (gauge-variant) contact interactions since a1 and a2 in Minkowski space contain,

indeed, CS interactions. We will elaborate on this point in a following section where we

discuss the structure of the effective action in Minkowski space.

The extension of this pattern to the broken Higgs phase can be understood from figure 7

where the additional contributions have been explicitly included. We have depicted the CS

terms as separate contributions and shown perfect cancelation also in this case.

The complete set of diagrams is shown in figure (7)

Sξ = Aξ + Bξ + Cξ + Dξ + Eξ + Fξ + Gξ + Hξ (5.8)

and the total gauge dependence vanishes. Details can be found in the appendix.

6. Gauge independence of the A self-energy to higher orders and the loop

counting

In this section we move to an analysis performed to higher orders that illustrates how

the loop expansion and the counterterms get organized so to have a consistent gauge

independent theory.
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Figure 7: Unitarity issue for the AB model in the broken phase.

For this purpose, let’s consider the diagrams in figure 8, which are relevant in order to

verify this cancelation in the massless fermion case. It shows the self-energy of the A gauge

boson. From now on we are dropping all the coupling constants to simplify the notation,

which can be re-inserted at the end. We have omitted diagrams which are symmetric

with respect to the two intermediate lines of the B and A gauge bosons, for simplicity.

This symmetrization is responsible for the cancelation of the gauge dependence of the

propagator of A and the vector interaction of B, while the gauge dependence of the axial-

vector contribution of B is canceled by the corresponding goldstone (shown). Diagram

(A) involves 3 loops and therefore we need to look for cancelations induced by a diagram

involving the s-channel exchange both of an A and of a B gauge boson plus the 1-loop

interactions involving the relevant counterterms. In this case one easily identifies diagram

(B) as the only possible additional contribution.

To proceed with the demonstration we first isolate the gauge dependence in the prop-

agator for the gauge boson exchanged in the s-channel

−i

k2−M2
1

[

g λ λ′

−
kλ kλ′

k2−ξBM2
1

(1−ξB)

]

=
− i

k2−M2
1

(

g λ λ′

−
kλ kλ′

M2
1

)

+
− i

k2−ξB M2
1

(

kλkλ′

M2
1

)

= P λ λ′

0 + P λ λ′

ξ . (6.1)

and using this separation, the sum involving the two diagrams gives

S =

∫

d4k2

(2π)4
(A + B), (6.2)
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Figure 8: 3 loop cancelations of the gauge dependence.

with the gauge-dependent contributions being given by

Aξ0 = ∆λµν(−k1,−k2)P
λλ′

ξ ∆λ′µ′ν′

(k1, k2)P
νν′

o

= ∆λµν(−k1,−k2)

[

−i

k2 − ξBM2
1

(

kλkλ′

M2
1

)]

∆λ′µ′ν′

(k1, k2)

[

−igνν′

k2
2

]

Bξ0 = 4 ×
(

4

M
CAA

)2

ϵµνρσk1ρk2σ
i

k2 − ξBM2
1

ϵµ′ν′ρ′σ′

k1ρ′k2σ′P νν′

o . (6.3)

Using the anomaly equations and substituting the appropriate value already obtained for

the WZ-coefficient, we obtain a vanishing expression

Aξ0 + Bξ0 = (−a3(β)ϵµνρσk1ρk2σ)

[

−i

k2 − ξBM2
1

1

M2
1

]

(a3(β)ϵµ′ν′ρ′σ′

k1ρ′k2σ′)P νν′

o

+4
16

M2

(

i

2!

1

4
a3(β)

M

M1

)2

ϵµνρσk1ρk2σ
i

k2 − ξBM2
1

ϵµ′ν′ρ′σ′

k1ρ′k2σ′P νν′

o

= 0. (6.4)

After symmetry breaking, with massive fermions, the pattern gets far more involved and

is described in figure 9. Also in this case we have

S =

∫

d4k2

(2π)4
(A + B + C + D + E) (6.5)

and it can be shown by direct computation that the gauge dependences cancel in this

combination. The interested reader can find the discussion in the appendix (“Gauge can-

celations in the self-energy diagrams”). Notice that the pattern to follow in order to identify

the relevant diagrams is quite clear, and it is not difficult to identify at each order of the

loop expansion contributions with the appropriate s-channel exchanges that combine into

gauge invariant amplitudes. These are built identifying direct contributions and countert-

erms in an appropriate fashion, counting the counterterms at their appropriate order in

Planck’s constant (h). The identification of similar patterns in the broken phase is more

cumbersome and is addressed below.
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Figure 9: The complete set of diagrams in the broken phase.

7. Unitarity analysis of the AB model in the broken phase

In the broken phase and in the presence of Yukawa couplings there are some modifications

that take place, since the s-channel exchange of the b axion is rotated on the two components

(the goldstone and physical axion χ) as shown later in figure 12. The introduction of

the Yukawa interaction and the presence of a symmetry breaking phase determines an

interaction of the axion with the fermions. Therefore, let’s consider the Yukawa lagrangean

LY = −λ1 ψLφψR − λ1 ψRφ∗ψL, (7.1)

which is needed to extract the coupling between the axi-Higgs and the fermions. We focus

on the term

LY (φ2) = −
λ1

2

[

ψ(1 + γ5)ψ
iφ2√

2
− ψ(1 − γ5)ψ

iφ2√
2

]

, (7.2)

having expanded around the Higgs vacuum. Performing a rotation to express the pseu-

doscalar Higgs phase φ2 in terms of the physical axion and the NG boson

φ2 = −
M1

MB
χB +

qBgBv

MB
GB ,

one extracts a χψψ coupling of the kind

LY (χB) =
λ1√

2

M1

MB
iψχBγ5ψ, (7.3)

and a coupling Gψψ for the goldstone mode

LY (GB) = −
λ1√

2

qBgBv

MB
iψ GBγ5ψ = 2gB

mf

MB
iψγ5ψGB . (7.4)
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Having fixed the Yukawa couplings of the model, we move to the analysis of the same

diagrams of the previous section in the broken phase. Preliminarily, we need to identify the

structure of the anomaly equation for the fermionic 3-point functions with their complete

mass dependence. In the case of massive fermions the anomalous Ward identities for an

AVV triangle are of the form

k1µ∆λµν(β, k1, k2) = a1(β)ελναβkα
1 kβ

2 ,

k2ν∆
λµν(β, k1, k2) = a1(β)ελµαβkα

2 kβ
1 ,

kλ∆λµν(β, k1, k2) = a3(β)εµναβkα
1 kβ

2 + 2mf∆µν , (7.5)

and in the case of AAA triangle ∆λµν
3 (β, k1, k2) = ∆λµν

3 (k1, k2), with Bose symmetry

providing a factor 1/3 for the distribution of the anomalies among the 3 vertices

k1µ∆λµν
3 (k1, k2) =

an

3
ελναβkα

1 kβ
2 + 2mf∆λν ,

k2ν∆λµν
3 (k1, k2) =

an

3
ελµαβkα

2 kβ
1 + 2mf∆λµ,

kλ∆λµν
3 (k1, k2) =

an

3
εµναβkα

1 kβ
2 + 2mf∆µν , (7.6)

where we have dropped the appropriate coupling constants common to both sides. The

amplitude ∆µν is given by

∆µν =

∫

d4q

(2π)4
Tr

[

γ5(q/ − k/ + mf )γνγ5(q/ − k/1 + mf )γµγ5(q/ + mf )
]

[q2 − m2
f ][(q − k)2 − m2

f ][(q − k1)2 − m2
f ]

+ exch. (7.7)

and can be expressed as a two-dimensional integral using the Feynman parameterization.

We find

∆µν = ϵαβµνkα
1 kβ

2 mf

(

1

2π2

)

I,

(7.8)

with I denoting the formal expression of the integral

I ≡
∫ 1

0
dx

∫ 1−x

0
dy

(1 − 2x − 2y)

∆(x, y,mf ,mχ,MB)
. (7.9)

We have dropped the charge dependence since we have normalized the charges to unity

and we have defined

∆(x, y,mf ,mχ,MB) = Σ2−D = m2
f−x y m2

χ+M2
B(x+y)2−xM2

B−yM2
B ≡ ∆(x, y). (7.10)

We can use this amplitude to compute the 1-loop decay of the axi-Higgs in this simple

model, shown in figure 10, which is given by

Mχ→BB = A + B

= i
λ1√

2

M1

MB

∆µν(k1, k2) + α1
4

M
CBB

= i
λ1√

2

M1

MB

∆µν(k1, k2) −
2gBv

MB

(

4

M

i

3!

1

4
an

M

M1

)

, (7.11)
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Figure 11: Decay cross section for χ → BB.
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Figure 12: Diagrams from the Green-Schwarz coupling after symmetry breaking.

where α1 is the coefficient that rotates the axion b on the axi-higgs particle χ. The related

cross section is shown in figure 11.

7.1 A-B model: BB → BB mediated by a B gauge boson in the broken phase

A second class of contributions that require a different distribution of the partial anomalies

are those involving BBB diagrams. They appear in the BB → BB amplitude, mediated

by the exchange of a B gauge boson of mass MB =
√

M2
1 + (2gBv)2. Notice that MB gets

its mass both from the Higgs and the Stückelberg sectors. The relevant diagrams for this

check are shown in figure 13. We have not included the exchange of the physical axion,

since this is not gauge-dependent. We are only after the gauge-dependent contributions.

Notice that the expansion is valid at 2-loop level and involves 2-loop diagrams built as

combinations of the original diagrams and of the 1-loop counterterms. There are some

comments that are due in order to appreciate the way the cancelations take place. If we

neglect the Yukawa couplings the diagrams (B), (C) and (D) are absent, since the goldstone

does not couple to a massless fermion. In this case, the axion b is rotated, as in the previous
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Figure 13: Cancelation of the gauge dependence after spontaneous symmetry breaking.

sections, into a goldstone mode GB and a physical axion χ (see figure 12). On the other

hand, if we include the Yukawa couplings then the entire set of diagrams is needed. From

diagram (E) we obtain the partial contribution

Eξ = 4 ×
(

4

M
α2CBB

)2

εµνρσkρ
1k

σ
2

(

i

k2 − ξBM2
B

)

εµ′ν′ρ′σ′

kρ′

1 kσ′

2 , (7.12)

where the overall factor of 4 in front is a symmetry factor, the coefficient α2 comes from the

rotation of the b axion over the goldstone boson (α2 = M1

MB
), and the coefficient CBB has

already been determined from the condition of gauge invariance of the anomalous effective

action before symmetry breaking. Similarly, from diagram (B) we get the term

Bξ = (gB)3∆µν(−k1,−k2)

(

2i
mf

MB

)

i

k2 − ξBM2
B

(

2i
mf

MB

)

(gB)3∆µ′ν′

(k1, k2), (7.13)

while diagram (C) gives

Cξ = 2 × (gB)3∆µν(−k1,−k2)

(

2 i
mf

MB

)

i

k2 − ξBM2
B

(

4

M
α2CBB εµ′ν′ρ′σ′

kρ′

1 kσ′

2

)

, (7.14)

having introduced also in this case a symmetry factor. Finally (D) gives

Dξ = 2 ×
(

4

M
α2CBBεµνρσkρ

1kσ
2

)

i

k2 − ξBM2
B

(

2 i
mf

MB

)

∆µ′ν′

(k1, k2)(gB)3. (7.15)

We will be using the anomaly equation in the massive fermion case, having distributed the

anomaly equally among the three B vertices

kλ∆λµν =
an

3
εµναβkα

1 kβ
2 + 2mf∆µν . (7.16)
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Separating in diagram (A) the gauge dependent part of the propagator of the boson B from

the rest we obtain

Aξ = ∆λµν −i

k2 − ξBM2
B

(

kλkλ′

M2
B

)

∆λ′µ′ν′

(7.17)

=
(an

3
εµναβkα

1 kβ
2 +2mf∆µν

)

(gB)3
i

k2−ξBM2
B

1

M2
B

(an

3
εµ′ν′α′β′

kα′

1 kβ′

2 +2mf∆µ′ν′

)

(gB)3

=
i

k2 − ξBM2
B

g 6
B

M2
B

[

(an

3

)2
εµναβεµ′ν′α′β′

kα
1 kβ

2 kα′

1 kβ′

2

+
an

3
εµναβkα

1 kβ
2 2mf∆µ′ν′

+ 2mf∆µν an

3
εµ′ν′α′β′

kα′

1 kβ′

2

+
(

2mf∆µν
)

(2mf∆µ′ν′

)
]

.

The first term in (7.17) is exactly canceled by the contribution from diagram (E). The last

contribution cancels by the contribution from diagram (B). Finally diagrams (C) and (D)

cancel against the second and third contributions from diagram (A).

8. The effective action in the Y-B model

We anticipate in this section some of the methods that will be used in [25] in the analysis of

a realistic model. In the previous model, in order to simplify the analysis, we have assumed

that the coupling of the B gauge boson was purely axial while A was purely vector-like.

Here we discuss a gauge structure which allows both gauge bosons to have combined vector

and axial-vector couplings. We will show that the external Ward identities of the model

involve a specific definition of the shift parameter in one of the triangle diagrams that

forces the axial-vector current to be conserved (a3(β) = 0). This result, new compared to

the case of the SM, shows the presence of an effective CS term in some amplitudes.

The lagrangean that we choose to exemplify this new situation is given by

L0 = |(∂µ + igY qY
u Yµ + igBqB

u Bµ)φu|2 + |(∂µ + igY qY
d Yµ + igBqB

d Bµ)φd|2 −
1

4
F 2

Y −
1

4
F 2

B

+
1

2
(∂µb + M1Bµ)2 − λu

(

|φu|2 −
vu

2

)2
− λd

(

|φd|
2 −

vd

2

)2
+ Lf + LY uk, (8.1)

where the Yukawa couplings are given by

LYuk = −λ1ψ1Lφuψ1R − λ1ψ1Rφ∗
uψ1L − λ2ψ2Lφdψ2R − λ2ψ2Rφ∗

dψ2L, (8.2)

with L and R denoting left- and right- handed fermions.

The fermion currents are

Lf = ψ1Liγµ
[

∂µ + igY qY
1LYµ + igBqB

1LBµ

]

ψ1L

+ψ1Riγµ
[

∂µ + igY qY
1RYµ + igBqB

1RBµ

]

ψ1R

+ψ2Liγµ
[

∂µ + igY qY
2LYµ + igBqB

2LBµ

]

ψ2L

+ψ2Riγµ
[

∂µ + igY qY
2RYµ + igBqB

2RBµ

]

ψ2R (8.3)
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so that, in general, without any particular charge assignment, both gauge bosons show

vector and axial-vector couplings. In this case we realize an anomaly-free charge assignment

for the hypercharge by requiring that qY
2L = −qY

1L, qY
2R = −qY

1R, which cancels the anomaly

for a YYY triangle since

∑

f=1,2

(qY
f )3 = (qY

1R)3−(qY
1L)3+(qY

2R)3−(qY
2L)3 = (qY

1R)3−(qY
1L)3−(qY

1R)3 +(qY
1L)3 = 0. (8.4)

This condition is similar to the vanishing of the (YYY) anomaly for the hypercharge in the

SM, and for this reason we will assume that it holds also in our simplified model.

Before symmetry breaking the B gauge boson has a goldstone coupling coming from

the Stückelberg mass term due to the presence of a Higgs field. The effective action for

this model is given by

Seff = San + SWZ, (8.5)

which reads

San =
1

3!
⟨T λµν

BBB(z, x, y)BλBµBν⟩ (8.6)

+
1

2!
⟨T λµν

BY Y (z, x, y)BλY µY ν⟩ +
1

2!
⟨T λµν

Y BB(z, x, y)Y λBµBν⟩

with

SWZ =
CY Y

M
⟨b F Y ∧ F Y ⟩ +

CBB

M
⟨b FB ∧ FB⟩ +

CBY

M
⟨b FB ∧ F Y ⟩ (8.7)

denoting the WZ counterterms. Only for the triangle BBB we have assumed an anomaly

symmetrically distributed, all the other anomalous diagrams having an AVV anomalous

structure, given in momentum space by

∆λµν
ijk =

i3

2

∑

f

[

qi
fqj

fqk
f

]

∫

d4p

(2π)4
Tr[γλγ5p/ γµ(p/ − k/1)γ

ν(p/ − k/)]

p2(p − k1)
2(p − k)2

+ {µ, k1 ↔ ν, k2},

(8.8)

with indices running over i, j, k =Y, B. The sum over the fermionic spectrum involves the

charge operators in the chiral basis

Dijk =
1

2

∑

f=1,2

[

qi
fqj

fqk
f

]

≡
1

2

∑

f

(

qi
fRqj

fRqk
fR − qi

fLqj
fLqk

fL

)

. (8.9)

Computing the Y-gauge variation for the effective one loop anomalous action under the

trasformations Yµ → Yµ + ∂µθY we obtain

δY San =
i

2!
a1(β1)

2

4
θY FB ∧ FY DBY Y +

i

2!
a3(β2)

1

4
θY FB ∧ FBDY BB , (8.10)

and, similarly, for B-gauge transformations Bµ → Bµ + ∂µθB we obtain

δBSan =
i

3!

an

3

3

4
θBFB ∧ FBDBBB +

i

2!
a3(β1)

1

4
θBFY ∧ FY DBY Y

+
i

2!
a1(β2)

2

4
θBFB ∧ FY DY BB , (8.11)
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Figure 14: Unitarity diagrams in the Y-B model.

so that to get rid of the anomalous contributions due to gauge variance we have to fix the

parameterization of the loop momenta with parameters

β1 = β1 = −
1

2
, β2 = β2 = +

1

2
. (8.12)

Notice that while β1 corresponds to a canonical choice (CVC condition), the second

amounts to a condition for a conserved axial-vector current, which can be interpreted

as a condition that forces a CS counterterm in the parameterization of the triangle ampli-

tude. Having imposed these conditions to cancel the anomalous variations for the Y gauge

boson, we can determine the WZ coefficients as

CBB =
M

M1

i

3!
an

1

4
DBBB ,

CY Y =
M

M1

i

2!
a3(β1)

1

4
DBY Y ,

CBY =
M

M1

i

2!
a1(β2)

2

4
DY BB . (8.13)

Having determined all the parameters in front of the counterterms we can test the unitarity

of the model. Consider the process Y Y → Y Y mediated by an B gauge boson depicted in

figure (14), one can easily check that the gauge dependence vanishes. In fact we obtain

Sξ = Aξ + Bξ

= ∆λµν(−k1,−k2)

[

−i

k2 − ξBM2
1

(

kλkλ′

M2
1

)]

∆λ′µ′ν′

(k1, k2)(DBY Y )2

+4

(

4

M
CY Y

)2

εµνρσkρ
1kσ

2

(

i

k2 − ξBM2
1

)

εµ′ν′ρ′σ′

kρ′

1 kσ′

2

=
−i

k2 − ξBM2
1

1

M2
1

(

−a3(β1)ε
µνρσkρ

1kσ
2

)

(

a3(β1)ε
µ′ν′ρ′σ′

kρ′

1 kσ′

2

)

(DBY Y )2

+4
16

M2

(

M

M1

i

2!
a3(β1)

1

4
DBY Y

)2

εµνρσkρ
1kσ

2

(

i

k2 − ξBM2
1

)

εµ′ν′ρ′σ′

kρ′

1 kσ′

2

= 0, (8.14)

where we have included the corresponding symmetry factors. There are some comments

that are in order. In the basis of the interaction eigenstates, characterized Y and B before

symmetry breaking, the CS counterterms can be absorbed into the diagrams, thereby
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Figure 15: The massive fermion sector with massive vector exchanges in the t-channel.

obtaining a re-distribution of the partial anomalies on each anomalous gauge interaction.

As we have already mentioned, the role of the CS terms is to render vector-like an axial

vector current at 1-loop level in an anomalous trilinear coupling. The anomaly is moved

from the Y vertex to the B vertex, and then canceled by a WZ counterterm. However,

after symmetry breaking, in which Y and B undergo mixing, the best way to treat these

anomalous interactions is to keep the CS term, rotated into the physical basis, separate

from the triangular contribution. This separation is scheme dependent, being the CS term

gauge variant. These theories are clearly characterized by direct interactions which are

absent in the SM which can be eventually tested in suitable processes at the LHC [25]

9. The fermion sector

Moving to analyze the gauge consistencly of the fermion sector, we summarize some of the

features of the organization of some typical fermionic amplitudes. These considerations,

naturally, can also be generalized to more complex cases. Our discussion is brief and we

omit details and work directly in the A-B model for simplicity. Applications of this analysis

can be found in [25].

We start from figure 15 that describes the t-channel exchange of A-gauge bosons.

We have explicitly shown the indices (λµν) over which we perform permutations. In the

absence of axial-vector interactions the gauge independence of diagrams of these types

is obtained just with the symmetrization of the A-lines, both in the massive and in the

massless fermion (mf ) case. When, instead, we allow for a B exchange in diagrams of the

same topology, the cases mf = 0 and mf ̸= 0 involve a different (see figure 16) organization

of the expansion. In the first case, the derivation of the gauge independence in this class of

diagrams is obtained again just by a permutation of the attachments of the gauge boson

lines. In the massive fermion case, instead, we need to add to this class of diagrams also the

corresponding goldstone exchanges together with their similar symmetrizations (figure 17).

As for the annihilation channel of two fermions (f), we illustrate in figures 18 and 19

the organization of the expansion to lowest orders for a process of the type f f̄ → AA

which is the analogous of qq̄ → γγ in this simple model. The presence of a goldstone

exchange takes place, obviously, only in the massive case. Finally, we have included the

set of gauge-invariant diagrams describing the exchange of A and B gauge bosons in the

t-channel and with an intermediate triangle anomaly diagram (BAA) (figures 20 and 21).
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A A

+ permutations

B

mf =  0

Figure 16: t-channel exchanges with vector and axial-vector interactions of massive gauge bosons.
Being the fermion massless, permutation of the exchanges is sufficient to generate a gauge invariant
result.

A A

+

B

perm. +

A

+ perm. B

mf

A

(A) (B)
GB

Figure 17: As in figure 16 but in the massive case and with a goldstone.

A

A
mf =  0

B

Figure 18: ff annihilation in the massless case.

A

A A

A

+

mfmf

B

(A)

GB

(B)

Figure 19: ff in the massive case.

In the massless fermion case gauge invariance is obtained simply by adding to the basic

diagram all the similar ones obtained by permuting the attachments of the gauge lines

(this involves both the lines at the top and at the bottom) and summing only over the

topologically independent configurations. In the massive case one needs to add to this set
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A
B

AA A

mf = 0

perm.+

Figure 20: Anomaly in the t-channel.

A
B

AA A

(A)

+

GB

A A A A

(B)

+ perm.

mf

Figure 21: The WZ counterterm for the restauration of gauge invariance.

of diagrams 2 additionals sets: those containing a goldstone exchange and those involving

a WZ interaction. The contributions of these additional diagrams have to be symmetrized

as well, by moving the attachments of the gauge boson/scalar lines.

10. The effective action in configuration space

Hidden inside the anomalous 3-point functions are some Chern-Simons interactions. Their

“extraction” can be done quite easily if we try to integrate out completely a given diagram

and look at the structure of the effective action that is so generated directly in configura-

tion space. The resulting action is non-local but contains a contact term that is present

independently from the type of external Ward identities that need to be imposed on the

external vertices. This contact term is a dimension-4 contribution that is identified with

a CS interaction, while the higher dimensional contributions have a non-trivial structure.

The variation of both the local and the non-local effective vertex is still a local operator,

proportional to F ∧F . The coefficient in front of the local CS interaction changes, depend-

ing on the external conditions imposed on the diagram (the external Ward identities). In

this sense, different vertices may carry different CS terms.

To illustrate this issue in a simple way, we proceed as follows. Consider the special

case in which the two lines µν are on shell, so that k2
1 = k2

2 = 0. This simplifies our

derivation, though a more general analysis can also be considered. We work in the specific

parameterization in which the vertex satisfies the vector Ward identity on the µν lines,

with the anomaly brought entirely on the λ line.
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In this case we have

A1(k1, k2) = k1 · k2A3(k1, k2)

A2(k1, k2) = −A1(k2, k1)

A5(k1, k2) = −A4(k2, k1)

A6(k1, k2) = −A3(k2, k1), (10.1)

and defining s = 2k1 · k2 = k2, the explicit expressions of A1 and A2 are summarized in

the form

A1(k
2) = −i

1

4π2
+ iC0(m

2
f , s) (10.2)

with C0 a given function of the ratio m2
f/s that we redefine as R(m2

f/s). The typical

expression of these functions can be found in the appendix. Here we assume that s > 4m2
f ,

but other regions can be reached by suitable analytic continuations. The important point

to be appreciated is the presence of a constant term in this invariant amplitude. Notice

that the remaining amplitudes do not share this property. If we denote as Tc the vertex in

configuration space, the contribution to the effective action becomes

⟨T λµν
c (z, x, y)Bλ(z)Aµ(x)Aν(y)⟩ =

1

4π2
⟨ϵµνρσBλAµF ρσ

A ⟩ (10.3)

+⟨R
(

−m2
f/!z)

)

[δ(x − z)δ(y − z)] Bλ(z)Aµ(x)Aν(y)⟩

where the 1/!z operator acts only on the distributions inside the squared brackets ([ ]). It

is not difficult to show that if we perform a gauge variations, say under B, of the vertex

written in this form, then the first term trivially gives the FA ∧FA contribution, while the

second (non-local) expression summarized in R, vanishes identically after an integration

by parts. For this one needs to use the Bianchi identities of the A, B gauge bosons.

A similar computation on A3, A4 etc, can be carried out, but this time these con-

tributions do not have a contact interaction as A1 and A2, but they are, exactly as the

R() term, purely non-local. Their gauge variations are also vanishing. When we impose

a parameterization of the triangle diagram that redistributes the anomaly in such a way

that some axial interactions are conserved or, for that reason, any other distribution of the

partial anomalies on the single vertices, than we are actually introducing into the theory

some specific CS interactions. We should think of these vertices as new effective vertices,

fixed by the Ward identities imposed on them. Their form is dictated by the conditions of

gauge invariance. These conditions may appear with an axion term if the corresponding

gauge boson, such as B in this case, is anomalous. Instead, if the gauge boson is not

paired to a shifting axion, such as for Y, or the hypercharge in a more general model,

then gauge invariance under Y is restaured by suitable CS terms. The discussion of the

phenomenological relevance of these vertices will be addressed in related work.

11. Summary and conclusions

We have analyzed in some detail unitarity issues that emerge in the context of anomalous

abelian models when the anomaly cancelation mechanism involves a Wess Zumino term,
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CS interactions and traceless conditions on some of the generators. We have investigated

the features of these types of theories both in their exact and in their broken phases, and

we have used s-channel unitarity as a simple strategy to achieve this. We have illustrated

in a simple model (the “A-B model”) how the axion (b) is decomposed into a physical

field (χ) and a goldstone field (GB) (eq. 4.6), and how the cancelation of the gauge depen-

dences in the S-matrix involves either b or GB , in the Stückelberg or the Higgs-Stückelberg

phase respectively. In the Stückelberg phase the axion is a Goldstone mode. The physical

component of the field, χ, appears after spontaneous symmetry breaking, and becomes

massive via a combination of both the Stückelberg and the Higgs mechanism. Its mass

can be driven to be light if the Peccei-Quinn breaking contributions in the scalar potential

(eq. 4.15) appear with small parameters (b1,λ1,λ2) compared to the Higgs vev (eq. 4.20).

Then we have performed a unitarity analysis of this model first in the Stückelberg phase

and then in the Higgs-Stückelberg phase, summarized in the set of diagrams collected in

figure 6 and figure 7 respectively. A similar analysis has been presented in sections 6 and 7,

and is summarized in figures 8 and 9 respectively. In the broken phase, the most demand-

ing pattern of cancelation is the one involving several anomalous interactions (BBB), and

the analysis is summarized in figure (13). The amplitude for the decay of the axi-Higgs in

this model has been given in (7.7). We have also shown (section 5.1) that in the simple

models discussed in this work, Chern-Simons interactions can be absorbed into the triangle

diagrams by a re-definition of the momentum parameterization, if one rewrites a given am-

plitude in the basis of the interaction eigenstates. Isolation of the Chern-Simons terms may

however help in the computation of 3-linear gauge interactions in realistic extensions of the

SM and can be kept separate from the fermionic triangles. Their presence is the indication

that the theory requires external Ward identities to be correctly defined at 1-loop. Our

results will be generalized and applied to the analysis of effective string models derived

from the orientifold construction which are discussed in related work.
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A. The triangle diagrams and their ambiguities

We have collected in this and in the following appendices some of the more technical

material which is summarized in the main sections. We present also a rather general

analysis of the main features of anomalous diagrams, some of which are not available in
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the similar literature on the Standard Model, for instance due to the different pattern of

cancelations of the anomalies required in our case study.

The consistency of these models, in fact, requires specific realizations of the vector

Ward identity for gauge trasformations involving the vector currents, which implies a spe-

cific parameterization of the fermionic triangle diagrams. While the analysis of these tri-

angles is well known in the massless fermion case, for massive fermions it is slightly more

involved. We have gathered here some results concerning these diagrams.

The typical AVV diagram with two vectors and one axial-vector current (see figure 1)

is described in this work using a specific parameterization of the loop momenta given by

∆λµν
AVV

= ∆λµν = i3
∫

d4q

(2π)4
Tr

[

γµ(q/ + m)γλγ5(q/ − k/ + m)γν(q/ − k/1 + m)
]

(q2 − m2)[(q − k1)2 − m2][(q − k)2 − m2]
+ exch.

(A.1)

Similarly, for the AAA diagram we will use the parameterization

∆λµν
AAA

= ∆λµν
3 = i3

∫

d4q

(2π)4
Tr

[

γµγ5(q/ + m)γλγ5(q/ − k/ + m)γνγ5(q/ − k/1 + m)
]

(q2 − m2)[(q − k1)2 − m2][(q − k)2 − m2]
+ exch.

(A.2)

In both cases we have included both the direct and the exchanged contributions 2.

In our notation ∆
λµν

denotes a single diagram while we will use the symbol ∆ to

denote the Bose symmetric expression

∆λµν = ∆
λµν

(k1, k2) + exchange of {(k1, µ), (k2, ν)}. (A.3)

To be noticed that the exchanged diagram is equally described by a diagram equal to the

first diagram but with a reversed fermion flow. Reversing the fermion flow is sufficient to

guarantee Bose symmetry of the two V lines. Similarly, for an AAA diagram, the exchange

of any two A lines is sufficient to render the entire diagram completely symmetric under

cyclic permutations of the three AAA lines.

Let’s now consider the AVV contribution and work out some preliminaries. It is a

simple exercise to show that the parameterization that we have used above indeed violates

the vector Ward identity (WI) on the µν vector lines giving

k1µ∆λµν(k1, k2) = a1ϵ
λναβkα

1 kβ
2

k2ν∆
λµν(k1, k2) = a2ϵ

λµαβkα
2 kβ

1

kλ∆λµν(k1, k2) = a3ϵ
µναβkα

1 kβ
2 , (A.4)

where

a1 = −
i

8π2
a2 = −

i

8π2
a3 = −

i

4π2
. (A.5)

Notice that a1 = a2, as expected from the Bose symmetry of the two V lines. It is also

well known that the total anomaly a1 + a2 + a3 ≡ an is regularization scheme independent

(an = − i
2π2 ). We do not impose any WI on the V lines, conditions which would bring

the anomaly only to the axial vertex, as done for the SM case, but we will determine

2Our conventions differ from [33] by an overall (-1) since our currents are defined as jB
µ = −qBgBψγµψ
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consistently the value of the three anomalies at a later stage from the requirement of gauge

invariance of the effective action, with the inclusion of the axion terms. To render our

discussion self-contained, and define our notations, we briefly review the issue of the shift

dependence of these diagrams.

We recall that a shift of the momentum in the integrand (p → p + a) where a is the

most general momentum written in terms of the two independent external momenta of the

triangle diagram (a = α(k1 + k2) + β(k1 − k2)) induces on ∆ changes that appear only

through a dependence on one of the two parameters characterizing a, that is

∆λµν(β, k1, k2) = ∆λµν(k1, k2) −
i

4π2
βϵλµνσ (k1σ − k2σ) . (A.6)

We have introduced the notation ∆λµν(β, k1, k2) to denote the shifted 3-point function,

while ∆λµν(k1, k2) denotes the original one, with a vanishing shift. In our parameterization,

the choice β = −1
2 corresponds to conservation of the vector current and brings the anomaly

to the axial vertex

k1µ∆λµν(a, k1, k2) = 0,

k2ν∆λµν(a, k1, k2) = 0,

kλ∆λµν(a, k1, k2) = −
i

2π2
εµναβkα

1 kβ
2 (A.7)

with an = a1 + a2 + a3 = − i
2π2 still equal to the total anomaly. Therefore, starting

from generic values of (a1 = a2, a3), for instance from the values deduced from the basic

parameterization (A.5), an additional shift with parameter β′ gives

∆λµν(β′, k1, k2) = ∆λµν(β, k1, k2) −
iβ′

4π2
ελµνσ(k1 − k2)σ (A.8)

and will change the Ward identities into the form

k1µ∆λµν(β′, k1, k2) =

(

a1 −
iβ′

4π2

)

ελναβkα
1 kβ

2 ,

k2ν∆λµν(β′, k1, k2) =

(

a2 −
iβ′

4π2

)

ελµαβkα
2 kβ

1 ,

kλ∆λµν(β′, k1, k2) =

(

a3 +
iβ′

2π2

)

εµναβkα
1 kβ

2 , (A.9)

where a2 = a1. There is an intrinsic ambiguity in the definition of the amplitude, which can

be removed by imposing CVC on the vector vertices, as done, for instance, in Rosenberg’s

original paper [15] and discussed in an appendix. We remark once more that, in our case,

this condition is not automatically required. The distribution of the anomaly may, in

general, be different and we are defining, in this way, new effective parameterizations of

the 3-point anomalous vertices.

It is therefore convenient to introduce a notation that makes explicit this dependence

and for this reason we define

a1(β) = a2(β) = −
i

8π2
−

i

4π2
β

a3(β) = −
i

4π2
+

i

2π2
β, (A.10)
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A

A

A

V

V A

V A

V

V VA

= + +1 / 3 1 / 31 / 3

Figure 22: Distribution of the axial anomaly for the AAA diagram.

with

a1(β) + a2(β) + a3(β) = an = −
i

2π2
. (A.11)

Notice that the additional β-dependent contribution amounts to a Chern-Simons interac-

tion (see the appendices). Clearly, this contribution can be moved around at will and is

related to the presence of two divergent terms in the general triangle diagram that need to

be fixed appropriately using the underlying Bose symmetries of the 3-point functions.

The regularization of the AAA vertex, instead, has to respect the complete Bose

symmetry of the diagram and this can be achieved with the symmetric expression

∆λµν
3 (k1, k2) =

1

3
[∆λµν(k1, k2) + ∆µνλ(k2,−k) + ∆νλµ(−k, k1)]. (A.12)

It is an easy exercise to show that this symmetric choice is independent from the momentum

shift

∆λµν
3 (β, k1, k2) = ∆λµν

3 (k1, k2) (A.13)

and that the anomaly is equally distributed among the 3 vertices, a1 = a2 = a3 = an/3,

as shown in figure 22. We conclude this section with some comments regarding the kind

of invariant amplitudes appearing in the definition of ∆ which help to clarify the role of

the CS terms in the parameterization of these diagrams in momentum space. For ∆
(AVV)
λµν ,

expressed using Rosenberg’s parametrization, one obtains

∆λµν = â1ϵ[k1, µ, ν,λ] + â2ϵ[k2, µ, ν,λ] + â3ϵ[k1, k2, µ,λ]k1
ν

+â4ϵ[k1, k2, µ,λ]kν
2 + â5ϵ[k1, k2, ν,λ]kµ

1 + â6ϵ[k1, k2, ν,λ]kµ
2 , (A.14)

originally given in [15], with λ being the axial-vector vertex. By power-counting, 2 invariant

amplitudes are divergent, a1 and a2, while the ai with i ≥ 3 are finite3.

Instead, for the direct plus the exchanged diagrams we use the expression

∆λµν + ∆λνµ = (â1 − â2)ϵ[k1, µ, ν,λ] + (a2 − a1)ϵ[k2, µ, ν,λ] (A.15)

+(â3 − â6)ϵ[k1, k2, µ,λ]k1
ν + (â4 − â5)ϵ[k1, k2, µ,λ]kν

2

+(â5 − â4)ϵ[k1, k2, ν,λ]kµ
1 + (â6 − â3)ϵ[k1, k2, ν,λ]kµ

2

= a1ϵ[k1, µ, ν,λ] + a2ϵ[k2, µ, ν,λ] + a3ϵ[k1, k2, µ,λ]k1
ν

+a4ϵ[k1, k2, µ,λ]k2
ν + a5ϵ[k1, k2, ν,λ]kµ

1 + a6ϵ[k1, k2, ν,λ]kµ
2

3We will be using the notation ϵ[a, b, µ, ν] ≡ ϵαβµνaαbβ to denote the structures in the expansion of the

anomalous triangle diagrams
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where clearly a2 = −a1, a3 = −a6 and a4 = −a5. The CS contributions are those propor-

tional to the two terms linear in the external momenta. We recall that in Rosenberg, these

linear terms are re-expressed in terms of the remaining ones by imposing the vector Ward

identities on the V-lines. As already explained, we will instead assume, in our case, that

the distribution of the anomaly among the 3 vertices of all the anomalous diagrams of the

theory respects the requirement of Bose symmetry, with no additional constraint. A discus-

sion of some technical points concerning the regularization of this and other diagrams both

in 4 dimensions and in other schemes, such as Dimensional Regularization (DR) can be

found below. For instance, one can find there the proof of the identical vanishing of ∆VVV

worked out in both schemes. In this last case this result is obtained after removing the so

called hat-momenta of the t’Hooft-Veltman scheme on the external lines. In this scheme

this is possible since one can choose the external momenta to lay on a four-dimensional

subspace (see [26] for a discussion of these methods). We remark also that it is also quite

useful to be able to switch from momentum space to configuration space with ease, and

for this purpose we introduce the Fourier transforms of (3.9) and (3.10) in the anomaly

equations, obtaining their expressions in configuration space

∂

∂xµ
T λµν
AVV

(x, y, z) = ia1(β)ϵλναβ ∂

∂xα

∂

∂yβ

(

δ4(x − z)δ4(y − z)
)

,

∂

∂yν
T λµν
AVV

(x, y, z) = ia2(β)ϵλµαβ ∂

∂yα

∂

∂xβ

(

δ4(x − z)δ4(y − z)
)

,

∂

∂zλ
T λµν
AVV

(x, y, z) = ia3(β)ϵµναβ ∂

∂xα

∂

∂yβ

(

δ4(x − z)δ4(y − z)
)

, (A.16)

with a1, a2 and a3 as in (A.10), for the AVV case and

∂

∂xµ
T λµν
AAA

(x, y, z) = i
an

3
ϵλναβ ∂

∂xα

∂

∂yβ

(

δ4(x − z)δ4(y − z)
)

,

∂

∂yν
T λµν
AAA

(x, y, z) = i
an

3
ϵλµαβ ∂

∂yα

∂

∂xβ

(

δ4(x − z)δ4(y − z)
)

,

∂

∂zλ
T λµν
AAA

(x, y, z) = i
an

3
ϵµναβ ∂

∂xα

∂

∂yβ

(

δ4(x − z)δ4(y − z)
)

, (A.17)

for the AAA case. Notice that in this last case we have distributed the anomaly equally

among the three vertices. These relations will be needed when we derive the anomalous

variation of the effective action directly in configuration space.

B. Chern Simons cancelations

Having isolated the CS contributions, as shown in figure 6, the cancelation of the gauge
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dependence can be obtained combining all these terms so to obtain4

Sξ = ∆λµν(−k1,−k2)

[

−i

k2 − ξBM2
1

kλkλ′

M2
1

]

∆λ′µ′ν′

(k1, k2)

+4 ×
(

4

M
CAA

)2

ϵµνρσk1ρk2σ

[

i

k2 − ξBM2
1

]

ϵµ′ν′ρ′σ′

k1ρ′k2σ′

+4 × (id1ϵ
µνλσ(k1 − k2)σ)

[

−i

k2 − ξBM2
1

kλkλ′

M2
1

]

(−id1ϵ
µ′ν′λ′σ′

(k1 − k2)σ′)

+2 × ∆λµν(−k1,−k2)

[

−i

k2 − ξBM2
1

kλkλ′

M2
1

]

(−id1ϵ
µ′ν′λ′σ′

(k1 − k2)σ′)

+2 × (id1ϵ
µνλσ(k1 − k2)σ)

[

−i

k2 − ξBM2
1

kλkλ′

M2
1

]

∆λ′µ′ν′

(k1, k2), (B.1)

and using the relevant Ward identities these simply so to obtain

Sξ = (−a3(β)ϵµνρσk1ρk2σ)

[

−i

k2 − ξBM2
1

1

M2
1

]

(a3(β)ϵµ′ν′ρ′σ′

k1ρ′k2σ′)

+4 ×
16

M2

[

(

−
d1

2
+

i

2
a3(β)

1

4

)2 M2

M2
1

]

ϵµνρσk1ρk2σ

[

i

k2 − ξBM2
1

]

ϵµ′ν′ρ′σ′

k1ρ′k2σ′

+4 × d2
1

[

−i

k2 − ξBM2
1

1

M2
1

]

4ϵµνρσk1ρk2σϵµ′ν′ρ′σ′

k1ρ′k2σ′

+2 × (−a3(β)ϵµνρσk1ρk2σ)

[

−i

k2 − ξBM2
1

1

M2
1

]

(+id12ϵ
µ′ν′λ′σ′

kλ′

1 kσ′

2 )

+2 × (−id12ϵ
µνλσkλ

1 kσ
2 )

[

−i

k2 − ξBM2
1

1

M2
1

]

(a3(β)ϵµ′ν′ρ′σ′

k1ρ′k2σ′)

= 0. (B.2)

Having shown the cancelation of the gauge-dependent terms, the gauge independent con-

tribution becomes

S0 = ∆λµν(−k1,−k2)

[

−i

k2 − M2
1

(

gλλ′

−
kλkλ′

M2
1

)]

∆λ′µ′ν′

(k1, k2)

+4 × (id1ϵ
µνλσ(k1 − k2)σ)

[

−i

k2 − M2
1

(

gλλ′

−
kλkλ′

M2
1

)]

(−id1ϵ
µ′ν′λ′σ′

(k1 − k2)σ′)

+2 × ∆λµν(−k1,−k2)

[

−i

k2 − M2
1

(

gλλ′

−
kλkλ′

M2
1

)]

(−id1ϵ
µ′ν′λ′σ′

(k1 − k2)σ′)

+2 × (id1ϵ
µνλσ(k1 − k2)σ)

[

−i

k2 − M2
1

(

gλλ′

−
kλkλ′

M2
1

)]

∆λ′µ′ν′

(k1, k2). (B.3)

4The symmetry factor of each configuration is easily identified ias the first factor in each separate

contribution.
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At this point we need to express the triangle diagrams in terms of their shifting parameter

β using the shift-relations

∆λµν(β, k1, k2) = ∆λµν(k1, k2) −
i

4π2
βϵλµνσ(k1 − k2)σ , (B.4)

∆λµν(β,−k1,−k2) = ∆λµν(−k1,−k2) +
i

4π2
βϵλµνσ(k1 − k2)σ, (B.5)

and with the substitution d1 = −ia1(β)/2 we obtain

S0 =

(

∆λµν(−k1,−k2) +
i

4π2
βϵλµνσ(k1 − k2)σ

)

P λλ′

0 × (B.6)

×
(

∆λ′µ′ν′

(k1, k2) −
i

4π2
βϵλ′µ′ν′σ′

(k1 − k2)σ′

)

+4 ×
(

1

2
a1(β)ϵµνλσ(k1 − k2)σ

)

P λλ′

0

(

−
1

2
a1(β)ϵµ′ν′λ′σ′

(k1 − k2)σ′

)

+2 ×
(

∆λµν(−k1,−k2)+
i

4π2
βϵλµνσ(k1−k2)σ

)

P λλ′

0

(

−
1

2
a1(β)ϵµ′ν′λ′σ′

(k1−k2)σ′

)

+2 ×
(

1

2
a1(β)ϵµνλσ(k1 − k2)σ

)

P λλ′

0

(

∆λ′µ′ν′

(k1, k2) −
i

4π2
βϵλ′µ′ν′σ′

(k1 − k2)σ′

)

.

Introducing the explicit expression for a1(β), it is an easy exercise to show the equiva-

lence between S0 and diagram A of figure 6, with a choice of the shifting parameter that

corresponds to the CVC condition (β = −1/2)

S0 ≡
(

∆λµν(−k1,−k2) −
i

8π2
ϵλµνσ(k1 − k2)σ

)

P λλ′

0 × (B.7)

×
(

∆λ′µ′ν′

(k1, k2) +
i

8π2
βϵλ′µ′ν′σ′

(k1 − k2)σ′

)

.

B.1 Cancelation of gauge dependences in the broken Higgs phase

In this case we have (see figure 7)

Sξ = Aξ + Bξ + Cξ + Dξ + Eξ + Fξ + Gξ + Hξ

= ∆λµν(−k1,−k2)

[

−i

k2 − ξBM2
B

kλkλ′

M2
B

]

∆λ′µ′ν′

(k1, k2)

+4 ×
(

4

M
α2CAA

)2

ϵµνρσk1ρk2σ

[

i

k2 − ξBM2
B

]

ϵµ′ν′ρ′σ′

k1ρ′k2σ′

+4 × (id1ϵ
µνλσ(k1 − k2)σ)

[

−i

k2 − ξBM2
B

kλkλ′

M2
B

]

(−id1ϵ
µ′ν′λ′σ′

(k1 − k2)σ′)

+2 × ∆λµν(−k1,−k2)

[

−i

k2 − ξBM2
B

kλkλ′

M2
B

]

(−id1ϵ
µ′ν′λ′σ′

(k1 − k2)σ′)

+2 × (id1ϵ
µνλσ(k1 − k2)σ)

[

−i

k2 − ξBM2
B

kλkλ′

M2
B

]

∆λ′µ′ν′

(k1, k2)
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Figure 23: Relevant diagrams for the unitarity check before symmetry breaking.

+2 × ∆µν(−k1,−k2)

(

2i
mf

MB

)[

i

k2 − ξBM2
B

](

4

M
α2CAAϵµ′ν′ρ′σ′

k1ρ′k2σ′

)

+∆µν(−k1,−k2)

(

2i
mf

MB

)[

i

k2 − ξBM2
B

](

2i
mf

MB

)

∆µ′ν′

(k1, k2)

+2 ×
(

4

M
α2CAAϵµνρσk1ρk2σ

)[

i

k2 − ξBM2
B

](

2i
mf

MB

)

∆µν(k1, k2) (B.8)

The vanishing of this expression cna be checked as in the previous case, using the massive

version of the anomalous Ward identities in the triangular graphs involving ∆.

B.2 Cancelations in the A-B Model: BB → BB mediated by a B gauge boson

Let’s now discuss the exchange of a B gauge boson in the s-channel before spontaneous

symmetry breaking. The relevant diagrams are shown in figure 23. We remark, obviously,

that each diagram has to be inserted with the correct multiplicity factor in order to obtain

the cancelation of the unphysical poles.

In this case, from Bose-symmetry, the anomaly is equally distributed among the 3

vertices, a1 = a2 = a3 = an/3, as we have discussed above. We recall that from the

variations δBLan and δBLb the relevant terms are

1

3!
δB⟨T λµν

BBBBλ(z)Bµ(x)Bν(y)⟩ =
ig 3

B

3!
an⟨θB

FB ∧ FB

4
⟩

δB⟨
CBB

M
bFB ∧ FB⟩ = −CBB

M1

M
⟨θBFB ∧ FB⟩ from δBb = −M1θB ,

(B.9)

so that from the condition of anomaly cancelation we obtain

−CBB
M1

M
+

ig 3
B

3!

1

4
an = 0 ⇐⇒ CBB =

ig 3
B

3!

1

4
an

M

M1
, (B.10)

which fixes the appropriate value of the coefficient of the WZ term. One can easily show the

correspondence between a Green-Schwarz term
CBB
M b FB∧FB and a vertex 4

CBB
M εµνρσkρ

1k
σ
2

in momentum representation, a derivation of which can be found in an appendix.

Taking into account only the gauge-dependent parts of the two diagrams, we have that

the diagram with the exchange of the gauge boson B can be written as

Aξ = ∆λµ ν(−k1,−k2)

[

− i

k2 − ξBM2
1

(

kλ kλ′

M2
1

)]

∆λ′ µ′ ν′

(k1, k2) (B.11)
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and the diagram with the exchange of the axion b is

Bξ = 4 ×
(

4

M
CBB

)2

εµνρσkρ
1kσ

2

(

i

k2 − ξBM2
1

)

εµ′ν′ρ′σ′

kρ′

1 kσ′

2 . (B.12)

Using the anomaly equations for the AAA vertex we can evaluate the first diagram

Aξ =
− i

k2 − ξBM2
1

1

M2
1

(

kλ∆λµν
)(

kλ′

∆λ′µ′ν′

)

=
− i

k2 − ξBM2
1

1

M2
1

(

−( gB)3
an

3
εµναβkα

1 kβ
2

) (

( gB)3
an

3
εµ′ν′α′β′

kα′

1 kβ′

2

)

=
i

k2 − ξBM2
1

1

M2
1

(an

3
g 3
B

)2
εµναβ εµ′ν′α′β′

kα
1 kβ

2 kα′

1 kβ′

2 , (B.13)

while the axion exchange diagram gives

Bξ = 4 ×
(

4CBB

M

)2 (

i

k2 − ξBM2
1

)

εµναβ εµ′ν′α′β′

kα
1 kβ

2 kα′

1 kβ′

2

=
64 C 2

BB

M2

i

k2 − ξBM2
1

εµναβ εµ′ν′α′β′

kα
1 kβ

2 kα′

1 kβ′

2 . (B.14)

Adding the contributions from the two diagrams we obtain

Aξ + Bξ = 0 ⇐⇒
1

M2
1

(an

3
g 3
B

)2
+

64 C 2
BB

M2
= 0, (B.15)

in fact substituting the proper value for the coefficient CBB we obtain an identity

1

M2
1

a2
n

9
g 6
B +

64

M2

[

ig 3
B

3!

1

4
an

M

M1

]2

=
1

M2
1

a2
n

9
g 6
B −

64

M2
1

1

64

a2
n

9
g 6
B = 0. (B.16)

This pattern of cancelations holds for a massless fermion (mf = 0).

B.3 Gauge cancelations in the self-energy diagrams

In this case, following figure 9, we isolate the following gauge-dependent amplitudes

Aξ0 = ∆λµν(−k1,−k2)

[

−i

k2 − ξBM2
B

(

kλkλ′

M2
B

)]

∆λ′µ′ν′

(k1, k2)P νν′

o , (B.17)

Bξ0 = 4 ×
(

4

M
α2CAA

)2

ϵµνρσk1ρk2σ
i

k2 − ξBM2
B

ϵµ′ν′ρ′σ′

k1ρ′k2σ′ P νν′

o ,

Cξ0 = ∆µν(−k1,−k2)

(

2i
mf

MB

)

i

k2 − ξBM2
B

(

2i
mf

MB

)

∆µ′ν′

(k1, k2)P
νν′

o ,

Dξ0 = 2 ×
(

4

M
α2CAAϵµνρσk1ρk2σ

)

i

k2 − ξBM2
B

(

2i
mf

MB

)

∆µ′ν′

(k1, k2)P
νν′

o ,

Eξ0 = 2 × ∆µν(−k1,−k2)

(

2i
mf

MB

)

i

k2 − ξBM2
B

(

4

M
α2CAAϵµ′ν′ρ′σ′

k1ρ′k2σ′

)

P νν′

o ,
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Figure 24: The tetragon contribution.

so that using the anomaly equations for the triangles

kλ′

∆λ′µ′ν′

(k1, k2) = a3(β)ϵµ′ν′ρ′σ′

k1ρ′k2σ′ + 2mf∆µ′ν′

,

kλ∆λµν(−k1,−k2) = −a3(β)ϵµνρσk1ρk2σ − 2mf∆µν ,

and substituting the appropriate value for the WZ-coefficient, with the rotation coefficient

of the axion b to the goldstone boson given by α2 = M1/MB , one obtains quite straight-

forwardly that the condition of gauge independence is satisfied

Aξ0 + Bξ0 + Cξ0 + Dξ0 + Eξ0 = 0. (B.18)

C. Ward identities on the tetragon

As we have seen in the previous sections, the shift dependence from the anomaly on each

vertex, parameterized by β,β1,β2, drops in the actual computation of the unitarity con-

ditions on the s-channel amplitudes, which clearly signals the irrelevance of these shifts in

the actual computation, as far as the Bose symmetry of the corresponding amplitudes that

assign the anomaly on each vertex consistently, are respected. It is well known that all the

contribution of the anomaly in correlators with more external legs is taken care of by the

correct anomaly cancelation in 3-point function. It is instructive to illustrate, for generic

shifts, chosen so to respect the symmetries of the higher point functions, how a similar

patterns holds. This takes place since anomalous Ward identities for higher order corre-

lators are expressed in terms of standard triangle anomalies. This analysis and a similar

analysis of other diagrams of this type, which we have included in an appendix, is useful

for the investigation of some rare Z decays (such as Z to 3 photons) which takes place with

an on-shell Z boson.

Then let’s consider the tetragon diagram BAAA shown in figure (24), where B, be-

ing characterized by an axial-vector coupling, generates an anomaly in the related Ward

identity. We have the fermionic trace

∆λµνρ(k1, k2, k3) = ∆
λµνρ

(k1, k2, k3) + perm. (C.1)
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k1 k2
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p
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k1+ k2 k2 +  k3

(A) (B)

Figure 25: Distribution of the moments in the external lines in a Ward identity.

where perm. means permutations of {(k1, µ), (k2, ν), (k3, ρ)}. One contribution to the axial

Ward identity comes for instance from

kλTr

[

γλγ5 1

p/ − k/
γρ 1

p/ − k/1 − k/2

γν 1

p/ − k/1

γµ 1

p/

]

= Tr

[

k/ γ5 1

p/ − k/
γρ 1

p/ − k/1 − k/2

γν 1

p/ − k/1

γµ 1

p/

]

= −Tr

[

γ5 1

p/
γρ 1

p/ − k/1 − k/2

γν 1

p/ − k/1

γµ

]

+Tr

[

γ5 1

p/ − k/
γρ 1

p/ − k/1 − k/2

γν 1

p/ − k/1

γµ

]

, (C.2)

which has been rearranged in terms of triangle anomalies using

1

p/
k/ γ5 1

p/ − k/
= γ5 1

p/ − k/
− γ5 1

p/
. (C.3)

Relation (C.2) is diagrammatically shown in figure 25. Explicitly these diagrammatic

equations become

kλ∆
λµνρ

= −∆
ρµν

(k1, k2) + ∆
µνρ

(β1, k2, k3),

kλ∆
λµρν

= −∆
νµρ

(k1, k3) + ∆
µρν

(β2, k3, k2),

kλ∆
λνρµ

= −∆
µνρ

(k2, k3) + ∆
νρµ

(β3, k3, k1),

kλ∆
λνµρ

= −∆
ρνµ

(k2, k1) + ∆
νµρ

(β4, k1, k3),

kλ∆
λρµν

= −∆
νρµ

(k3, k1) + ∆
ρµν

(β5, k1, k2),

kλ∆
λρνµ

= −∆
µρν

(k3, k2) + ∆
ρνµ

(β6, k2, k1), (C.4)

where the usual (direct) triangle diagram is given for instance by

∆
µνρ

=

∫

d4p

(2π)4
Tr

[

γµγ5 1

p/ − k/
γρ 1

p/ − k/1 − k/2

γν 1

p/ − k/1

]

. (C.5)

Adding all the contributions we have

kλ∆λµνρ(k1, k2, k3) = − [∆ρµν(k1, k2) + ∆νµρ(k1, k3) + ∆µνρ(k2, k3)]

+ [∆ρµν(β5,β6, k1, k2) + ∆νµρ(β3,β4, k1, k3) + ∆µνρ(β1,β2, k2, k3)] .

(C.6)
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Figure 26: The tetragon diagram in non abelian case.

At this point, to show the validity of the Ward identity independently of the chosen value

of the CS shifts, we recall that under some shifts

∆µνρ(β1,β2, k2, k3) = ∆µνρ(k2, k3) −
i(β1 + β2)

4π2
εµνρσ(kσ

2 − kσ
3 )

∆νµρ(β3,β4, k2, k3) = ∆νµρ(k1, k3) −
i(β3 + β4)

4π2
ενµρσ(kσ

1 − kσ
3 )

∆ρµν(β5,β6, k1, k2) = ∆ρµν(k1, k2) −
i(β5 + β6)

4π2
ερµνσ(kσ

1 − kσ
2 ), (C.7)

and redefining the shifts by setting

β5 + β6 = β1 β1 + β2 = β3 β3 + β4 = β2 (C.8)

we obtain

kλ∆λµνρ(k1, k2, k3) = −
iβ1

4π2
ερµνσ(kσ

1 −kσ
2 )−

iβ2

4π2
ενµρσ(kσ

1 −kσ
3 )−

iβ3

4π2
εµνρσ(kσ

2 −kσ
3 ). (C.9)

Finally, using the Bose symmetry on the r.h.s. (indices µ, ν, ρ) of the original diagram we

obtain

β1 = β2 = β3, (C.10)

which is the correct Ward identity: kλ∆λµνρ = 0. We have shown that the correct choice

of the CS shifts in tetragon diagrams, fixed by the requirements of Bose symmetries of the

corresponding amplitude and of the underlying 3-point functions, gives the correct Ward

identities for these correlators. This is not unexpected, since the anomaly appears only at

the level of 3-point functions, but shows how one can work in full generality with these

amplitudes and determine their correct structure. It is also interesting to underline the

modifications that take place once this study is extended to the non-abelian case. In this

case (shown in figure 26) one obtains the same result already shown for the axial abelian

Ward identity, but modified by color factors. We obtain

Tr({T a, T b}T c) [−∆ρµν + ∆ρµν(β)] + Tr({T c, T b}T a) [−∆µνρ + ∆µνρ(β)]

+Tr({T a, T c}T b) [−∆νµρ + ∆νµρ(β)]

= dabc [−∆ρµν + ∆ρµν(β)] + dcba [−∆µνρ + ∆µνρ(β)]

+dacb [−∆νµρ + ∆νµρ(β)], (C.11)
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and we have used the definition of the symmetric d-tensor

dabc = Tr(
{

T a, T b
}

T c). (C.12)

Simple manipulations give a result which is proportional to the result of the abelian case

dabc([−∆ρµν + ∆ρµν(β)] + [−∆µνρ + ∆µνρ(β)] + [−∆νµρ + ∆νµρ(β)]). (C.13)

The vanishing of the shift-dependence is related to the Bose symmetry under exchange of

the indices

{(a, µ, k1), (b, ν, k2), (c, ρ, k3)}.

This result is clearly expected, since the gauge current of B is abelian and behaves as a

gauge-singlet current under the gauge interaction of A, the latter having been promoted

to a non-abelian current.

D. DR-HVBM

In this appendix we fill out some of the details the computation of the direct plus ex-

changed diagrams in Dimensional Regularization using the HVBM scheme for a partially

anticommuting γ5 [35]. There are various results presented in the previous literature on

the computation of these diagrams, most of them using a momentum shift without actually

enforcing a regularization, shift that brings the anomaly contribution to the axial-vector

vertex of the triangle diagram, keeping the vector Ward identities satisfied, which takes

to Rosenberg’s parameterization (A.14). We fill this gap by showing how the regulariza-

tion works using an arbitrary tensor structure T λµν rather than scalar amplitudes. We

also keep the mass of the fermion arbitrary, so to obtain a general result concerning the

mass dependence of the corrections to the anomaly contributions. We remind that mo-

mentum shift are allowed in DR-HVBM, once the integration measure is extended from

4 to n = 4 − ϵ dimensions and the Feynman parametrization can be used to reduce the

integrals into symmetric forms. Symmetric integration can then be used exactly as in the

standard DR case, but with some attention on how to treat the Lorenz indices in the two

subspaces of dimensions 4 and n − 4, introduced by the regularization. These points are

illustrated below.

In the following we will use the notation Ixy to denote the parametric integration after

performing the loop integral

Ixy [. . .] ≡ 2

∫ 1

0

∫ 1−x

0
dy [. . .] . (D.1)

There are various ways to implement γ5 in D-dimensions, but the prescription that

works best and is not so difficult to implement is the t’Hooft-Veltman-Breitenlohner-Maison

(simply denoted as HVBM) prescription. In the HVBM prescription γ5 is only partially

anticommuting. The gamma algebra in this case is split into n = 4 + (n − 4), and the

indices of the matrices are split accordingly: µ = (µ̃, µ̂). There are now two subspaces,
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and the indices carrying a˜are the four dimensional ones. The 4-dimensional part of the

algebra is the same as usual, but now
[

γµ̂, γ5

]

+
= 0, (D.2)

where the commutators have been replaced by anticommutators. It is important to clarify

some points regarding the use of symmetric integration. We recall that in DR the use of

symmetric integration gives

∫

dnq
qα̂, qα̃

(q2 − ∆)L
= 0, (D.3)

and
∫

dnq
qµ̂qν̂

(q2 − ∆)L
= gµ̂ν̂

∫

dnq
q2/n

(q2 − ∆)L
,

∫

dnq
qµ̃qν̃

(q2 − ∆)L
= gµ̃ν̃

∫

dnq
q2/n

(q2 − ∆)L
. (D.4)

Integrals involving mixed indices are set to vanish. We now summarize other properties of

this regularization. We denote by

gµν , g̃µν , ĝµν (D.5)

the n, n-4 and 4 dimensional parts of the metric tensor. An equivalent notation is to set

ĝµν = gµ̂ν̂ and g̃µν = gµ̃ν̃ , γµ̂ = γ̂µ, etc. The contraction rules are

gµ
µ = n, gµλgλ

ν = gµν , ĝµ
µ = n − 4, g̃µ

µ = 4, g̃µλĝλν = 0. (D.6)

Other properties of this regularization follow quite easily. For instance, from

γ̃µ = γσ g̃σµ, γ̂µ = γλĝλµ, (D.7)

using (D.6) it follows straightforwardly that

γ̃µγa1
γa2

. . . γaD
γ̂µ = 0,

γµγa1
γa2

. . . γaD
γ̂µ = γ̂µγa1

γa2
. . . γaD

γ̂µ. (D.8)

The definition of γ5 involves an antisimmetrization over the basic gamma matrices

γ5 ≡
i

4!
ϵµνρσγµγνγργσ. (D.9)

The definition is equivalent to the standard one γ5 = iγ0γ1γ2γ3. The ϵ tensor is a 4

dimensional projector that selects only the˜indices of a contraction,

ϵµνρσγµγνγργσ = ϵµ̃ν̃ρ̃σ̃γµ̃γν̃γρ̃γσ̃. (D.10)
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It is then easy to show that with this definition

{γ5, γ̃
µ} = 0, [γ5, γ̂

µ] = 0. (D.11)

These two relations can be summarized in the statement

{γ5, γµ} = 2γ̂µγ5. (D.12)

We compute the traces and remove the hat-momenta of the two external vector currents.

We illustrate some steps of the computation. We denote by I[. . .] a typical momentum

integral that appears in the computation

I[. . .] ≡
∫

dnq

(2π)n
[. . .]

(q2 − ∆)3
, (D.13)

setting n = 4 − ϵ, for instance we get

I [ϵ[k1, k2, µ, ν]] q̂λ = 0,

I [ϵ[k2,λ, µ, ν]] q̂ · q̂ = ϵ[k2,λ, µ, ν](n − 4)I2,

I [ϵ[k2, q, µ, ν]] q̂λ = 0,

I [ϵ[k1, q, µ, ν]] q̃λ = ϵ[k1,λ, µ, ν]I2,

I [ϵ[k2, q, µ, ν]] qλ = ϵ[k2,λ, µ, ν]I2. (D.14)

Denoting by D and E the direct and the exchanged diagram (before the integration over

the Feynman parameters x,y), we obtain

D + E = −iIxy [a1c1 + a2c2 + a3c3 + a4c4 + a5c5] , (D.15)

where

c1 = −4iI2[n(−2 + x + y) + 2(2 + x + y)]

+4iI1[m
2
f (−2 + x + y) + sx(1 − x + xy − y + y2)],

c2 = −c1,

c3 = 8iI1x(x − y − 1)(k1λ + k2λ),

c4 = 8iI1(x + y − 1)(yk1µ − xk2µ),

c5 = 8iI1(x + y − 1)(xk1ν − yk2ν),

a1 = ϵ[k1,λ, µ, ν],

a2 = ϵ[k2,λ, µ, ν],

a3 = ϵ[k1, k2, µ, ν],

a4 = ϵ[k1, k2,λ, ν],

a5 = ϵ[k1, k2,λ, µ], (D.16)
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and introducing the dimensionally regulated expressions of I1 and I2 and expanding in ϵ

we obtain

c1 =
1

ϵ

3x + 3y − 2

4π2

+

x(x + y − 1)(2y − 1)s + (3x + 3y − 2)
(

sxy − m2
f

)

log

(

m2
f−sxy

µ2

)

8π2
(

m2
f − sxy

) ,

c3 = −
x(x − y − 1)

4π2(sxy − m2
f )

(k1λ + k2λ) ,

c4 =
(x + y − 1)(k2µx − k1µy)

4π2
(

sxy − m2
f

) ,

c5 = −
(x + y − 1)(k1νx − k2νy)

4π2
(

sxy − m2
f

) , (D.17)

where µ is the renormalization scale in the MS scheme with µ2 = µ2eγ/(4π) and γ is the

Euler-Mascheroni constant. The pole singularity is related to tensor structures which have

a lower mass dependence on k1 and k2 (a1 and a2) which involve loop integrations with an

additional powers of q and are, therefore, UV divergent. However, the pole contributions

vanish after integration over the Feynman parameter, since

Ixy [3x + 3y − 2] = 0. (D.18)

Performing the integration over the Feynman parameters we obtain the result reported

below in eq. (D.28).

D.1 The vanishing of a massive AAV/VVV

The vanishing of AAV in DR in the general case (with non-vanishing fermion masses)

can be established by a direct computation, beside using C-invariance (Furry’s theorem).

The vanishing of this diagram is due to the specific form of all the Feynman parameters

which multiply every covariant structure in the corresponding tensor amplitude. Denoting

by Xλµν any of these generic structures, the parametric integral is of the form

∆λµν
AAV = Xλµν

∫ 1

0
dx

∫ 1−x

0
dy

f(x, y)

∆(x, y)
+ . . . (D.19)

with f(x, y) antisymmetric in x, y and ∆(x, y) symmetric, giving a vanishing result. For

VVV the result is analogous.

D.2 AVV and shifts

If we decide to use a shift parameterization of the diagrams then the two values of the

amplitudes a1 and a2, are arbitrary. This point has been discussed in the previous sections,

although here we need to discuss with further detail and include in our analysis fermion

mass effects as well. However, the use of Dimensional regularization is such to determine
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an equal distribution of the anomaly among diagrams of the form AAA, no matter which

pamaterization of the momentum we choose in the graph. Therefore, in this case, if a

current is conserved, there is no need to add CS interactions or, equivalently, perform a

shift in order to remove the anomaly from vertices which are vector-like.

The first significant parameterization of the anomalus diagram can be found in Rosen-

berg’s paper, later used by Adler in his work on the axial anomaly. The shift is fixed by

requiring CVC, which is practical matter rather than a fundamental issue. We will show

that this method can be mappend into the DR-HVBM result using the Schouten identity.

We start from Rosenberg’s parameterization

T λµν = A1ϵ[k1, µ, ν,λ] + A2ϵ[k2, µ, ν,λ] + A3ϵ[k1, k2, µ,λ]k1
ν + A4ϵ[k1, k2, µ,λ]kν

2

+A5ϵ[k1, k2, ν,λ]kµ
1 + A6ϵ[k1, k2, ν,λ]kµ

2 (D.20)

given in [15]. By power-counting, 2 invariant amplitudes are divergent, A1 and A2, while

the Ai with i ≥ 3 are finite5. In general A1 and A2 are given by parametric integrals

which are divergent and there are two free parameters in these integrals, amounting to

momentum shifts, that can be chosen to render A1 and A2 finite. It is possible to redefine

the momentum shifts so that the divergences are removed, and this can be obtained by

imposing the defining Ward identities (conservation of the two vector currents) in the

diagrams

k1µT λµν = k2νT
λµν = 0. (D.21)

This gives A1 = s/2 A3 and A2 = s/2 A6. The expressions of the invariant amplitudes Ai

are given in Rosenberg as implicit parametric integrals. They can be arranged in the form

A1 = −
i

4π2
+ iC0(m

2
f , s)

A2 =
i

4π2
− iC0(m

2
f , s)

A3 = −
i

2sπ2
+

2i

s
C0(m

2
f , s)

A4 =
i

sπ2
− if(m2

f , s)

A5 = −A4

A6 = −A3 (D.22)

where we have isolated the mass-independent contributions, which will appear in the

anomaly, from the mass corrections dependent on the fermion mass (mf ), and we have

5We will be using the notation ϵ[a, b, µ, ν] ≡ ϵαβµνaαbβ to denote the structures in the expansion of the

anomalous triangle diagrams

– 50 –



J
H
E
P
0
7
(
2
0
0
7
)
0
0
8

defined

C0(m
2
f , s) =

Li2

(

2

1−
q

1−4m2
f /s

)

m2
f

2sπ2
+

Li2

(

2

1+
q

1−4m2
f /s

)

m2
f

2sπ2
, (D.23)

f(m2
f , s) =

√

1 − 4m2
f/s tanh−1

(

1
q

1−4m2
f /s

)

sπ2
. (D.24)

Eqs. (D.24) and (D.24) have been obtained integrating the parametric expressions of Rosen-

berg.

The axial vector Ward identity is obtained from the contraction

(k1λ+k2λ) T λµν =

⎛

⎜

⎜

⎜

⎜

⎝

−
i

2π2
+

iLi2

(

2

1−
q

1−4m2
f /s

)

m2
f

sπ2
+

iLi2

(

2

1+
q

1−4m2
f /s

)

m2
f

sπ2

⎞

⎟

⎟

⎟

⎟

⎠

×

×ϵ[k1, k2, µ, ν]

=

(

−
i

2π2
+ 2 i C0(m

2
f , s)

)

× ϵ[k1, k2, µ, ν] (D.25)

where the first contribution is the correct value of the anomaly. The remaining term,

expressed in terms of dilogarithmic functions, is related to the scalar 3-point function, as

shown below.

D.3 DR-HVBM scheme

D.3.1 AVV case

In this case if we use DR we obtain

Tλµν = −iτ1

(

ϵ[k1,λ, µ, ν] − ϵ[k2,λ, µ, ν]
)

− iτ2 (k1λ + k2λ) ϵ[k1, k2, µ, ν]

−iτ3 (k1µ − k2µ) ϵ[k1, k2,λ, ν] − iτ3 (k1ν − k2ν) ϵ[k1, k2,λ, µ] (D.26)

τ1 = −
Li2

(

2

1−
q

1−4m2
f /s

)

m2
f

4sπ2
−

Li2

(

2

1+
q

1−4m2
f /s

)

m2
f

4sπ2

+
3

8π2
−

√

4m2
f/s − 1 tan−1

(

1
q

4m2
f /s−1

)

4π2
(D.27)

τ2 = −
Li2

(

2

1−
q

1−4m2
f /s

)

m2
f

2s2π2
−

Li2

(

2

1+
q

1−4m2
f /s

)

m2
f

2s2π2

+

√

4m2
f/s − 1 tan−1

(

1
q

4m2
f /s−1

)

2sπ2
−

1

4sπ2
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τ3 =

Li2

(

2

1−
q

1−4m2
f /s

)

m2
f

2s2π2
+

Li2

(

2

1+
q

1−4m2
f /s

)

m2
f

2s2π2

+

√

4m2
f/s − 1 tan−1

(

1
q

4m2
f /s−1

)

2sπ2
−

3

4sπ2
. (D.28)

The expressions above require a suitable analytic continuation in order to cover all the

kinematic range of the external invariant (virtuality) s. The position of the branch cut in

the physical region is at
√

s = 2m, corresponding to an s-channel cut, where the virtual

axial-vector line can produce two on-shell collinear massive fermions.

It is interesting to see how the vector and the axial-vector Ward identities are satisfied

for a generic fermion mass m. For the vector Ward identity we get

k1µT µνλ =
i

2
(τ3s + 2τ1) ϵ[k1, k2,λ, ν]

k2νT µνλ = −
i

2
(τ3s + 2τ1) ϵ[k1, k2,λ, ν]. (D.29)

One can check directly that the combination (τ3s + 2τ1) vanishes so that k1µT µνλ =

k2νT µνλ = 0.

The second and third term in (D.25) are related to the scalar 3-point function

C00(k
2, k2

1 , k
2
2 ,m

2
f ,m2

f ,m2
f ) =

∫

d4q
1

(

q2 − m2
f

)(

(q + k1)2 − m2
f

)(

(q + k1 + k2)2 − m2
f

)

C00(k
2, 0, 0,m2

f ,m2
f ,m2

f ) = −
1

k2

(

Li2

(

1

r1

)

+ Li2

(

1

r2

))

r1,2 =
1

2

⎡

⎣1 ±

√

1 − 4
m2

f

k2

⎤

⎦ (D.30)

giving the equivalent relation

(k1λ + k2λ) T λµν =

⎛

⎜

⎜

⎜

⎜

⎝

−
i

2π2
+

iLi2

(

2

1−
q

1−4m2
f /s

)

m2
f

sπ2
+

iLi2

(

2

1+
q

1−4m2
f /s

)

m2
f

sπ2

⎞

⎟

⎟

⎟

⎟

⎠

×

×ϵ[k1, k2, µ, ν]. (D.31)

Our result for T λµν can be easily matched to other parameterizations obtained by a shift of

the momentum in the loop integral performed in 4 dimensions. We recall that in this case

one needs to impose the defining Ward identities on the amplitude, rather than obtaining

them from a regularization, as in the case of the HVBM scheme. Before doing this, we

present the analytically continued expressions of (D.28) which are valid for
√

s > 2mf and

– 52 –



J
H
E
P
0
7
(
2
0
0
7
)
0
0
8

are given by

τ1 = −
1

2
C0(s,m

2
f ) +

3

8π2
−

1

4π2

√

1 − 4m2
f/s tanh−1

⎛

⎝

1
√

1 − 4m2
f/s

⎞

⎠

= −
1

2
C0(s,m

2
f ) +

3

8π2
−

s

4
f(m2

f , s),

τ2 = −
1

s
C0(s,m

2
f ) −

1

4sπ2
+

1

2sπ2

√

1 − 4m2
f/s tanh−1

⎛

⎝

1
√

1 − 4m2
f/s

⎞

⎠

= −
1

s
C0(s,m

2
f ) −

1

4sπ2
+

1

2
f(m2

f , s),

τ3 =
1

s
C0(s,m

2
f ) −

3

4sπ2
+

1

2sπ2

√

1 − 4m2
f/s tanh−1

⎛

⎝

1
√

1 − 4m2
f/s

⎞

⎠

=
1

s
C0(s,m

2
f ) −

3

4sπ2
+

1

2
f(m2

f , s). (D.32)

D.3.2 The AAA diagram

The second case that needs to be worked out in DR is that of a triangle diagram containing

3 axial vector currents. We use the HVBM scheme for γ5. The analysis is pretty similar

to the case of a single γ5. In this case we obtain

T λµν
3 = −i

(

Ixy[c1]ϵ[k1,λ, µ, ν] + Ixy[c2]ϵ[k2,λ, µ, ν] + Ixy[c3]ϵ[k1, k2, µ, ν]
(

kλ
1 + kλ

2

)

+Ixy[c
µ
4 ]ϵ[k1, k2,λ, ν] + Ixy[c

ν
5 ]ϵ[k1, k2,λ, µ]) (D.33)

where Ixy is the integration over the Feynman parameters. Also in this case the coefficients

c1 and c2 are divergent and are regulated in dimensional regularization. We obtain

c1 = 4i
(

I2(n − 6)(3x + 3y − 2) + I1
(

(−3x − 3y + 2)m2
f + sx

(

y2 − y + x(y − 1) + 1
)))

c2 = −c1 c3 = 8iI1x(x − y − 1)

c4 = −8iI1(x + y − 1)(xk2
µ − yk1

µ) c5 = 8iI1(x + y − 1)(xk1
ν − yk2

ν), (D.34)

which in DR become

c1 =
3x + 3y − 2

4π2ϵ
+

(3x + 3y − 2)
(

sxy − m2
f

)

log

(

m2
f−sxy

µ2

)

− sx(x + y − 1)(2y + 1)

8π2
(

m2
f − sxy

)

c3 =
x(x − y − 1)

4π2
(

m2
f − sxy

)

c4 = −
(x + y − 1)(k2

µx − k1
µy)

4π2
(

m2
f − sxy

)

c5 =
(x + y − 1)(k1

νx − k2
νy)

4π2
(

m2
f − sxy

) . (D.35)
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After integration over x and y the pole contribution vanishes. We obtain

T (3)
λµν = −i

(

τ (3)
1 (ϵ[k1,λ, µ, ν] − ϵ[k2,λ, µ, ν]) + τ (3)

2 (k1λ + k2λ) ϵ[k1, k2, µ, ν]

+τ (3)
3 (k1µ − k2µ) ϵ[k1, k2,λ, ν] + τ (3)

3 (k1ν − k2ν) ϵ[k1, k2,λ, µ]
)

(D.36)

τ (3)
1 =

3Li2

(

2

1−
q

1−4m2
f /s

)

m2
f

4sπ2
+

3Li2

(

2

1+
q

1−4m2
f /s

)

m2
f

4sπ2

+

(

64m4
f/s2 − 20m2

f/s + 1
)

tan−1

(

1
q

4m2
f /s−1

)

4π2
√

4m2
f/s − 1

−
4m2

f

sπ2
+

5

24π2
, (D.37)

τ (3)
2 = −

Li2

(

2

1−
q

1−4m2
f /s

)

m2
f

2s2π2
−

Li2

(

2

1+
q

1−4m2
f /s

)

m2
f

2s2π2

+

√

4m2
f/s − 1 tan−1

(

1
q

4m2
f /s−1

)

2sπ2
−

1

4sπ2
, (D.38)

τ (3)
3 =

Li2

(

2

1−
q

1−4m2
f /s

)

m2
f

2s2π2
+

Li2

(

2

1+
q

1−4m2
f /s

)

m2
f

2s2π2

+

√

4m2
f/s − 1 tan−1

(

1
q

4m2
f /s−1

)

2sπ2
−

3

4sπ2
. (D.39)

We present the analytically continued expressions of relations (D.37), (D.38), (D.39) valid

for
√

s > 2mf

τ (3)
1 =

3Li2

(

2

1−
q

1−4m2
f /s

)

m2
f

4sπ2
+

3Li2

(

2

1+
q

1−4m2
f /s

)

m2
f

4sπ2

−

(

64m4
f/s2 − 20m2

f/s + 1
)

tanh−1

(

1
q

1−4m2
f /s

)

4π2
√

1 − 4m2
f/s

−
4m2

f

sπ2
+

5

24π2
, (D.40)

τ (3)
2 = −

Li2

(

2

1−
q

1−4m2
f /s

)

m2
f

2s2π2
−

Li2

(

2

1+
q

1−4m2
f /s

)

m2
f

2s2π2

+

√

1 − 4m2
f/s tanh−1

(

1
q

1−4m2
f /s

)

2sπ2
−

1

4sπ2
, (D.41)
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τ (3)
3 =

Li2

(

2

1−
q

1−4m2
f /s

)

m2
f

2s2π2
+

Li2

(

2

1+
q

1−4m2
f /s

)

m2
f

2s2π2

+

√

1 − 4m2
f/s tanh−1

(

1
q

1−4m2
f /s

)

2sπ2
−

3

4sπ2
. (D.42)

In the massless case, the contribution to the Ward identity is given by

kλ
3 TAAA

λµν = −
i

6π2
ϵ[k1, k2, µ, ν]

kµ
1 TAAA

λµν = −
i

6π2
ϵ[k2, k3, ν,λ]

kν
2TAAA

λµν = −
i

6π2
ϵ[k3, k1,λ, µ] (D.43)

where we have chosen a symmetric distribution of (outgoing) momenta (k1, k2, k3) attached

to vertices (µ, ν,λ), with k3 = −k = −k1 − k2.

D.4 Equivalence of the shift-based (CVC) and of DR-HVBM schemes

The equivalence between the HVBM result and the one obtained using the defining Ward

identities (D.22) can be shown using the Schouten relation

kµ1

i ϵ[µ2, µ3, µ4, µ5] + kµ2

i ϵ[µ3, µ4, µ5, µ1] + kµ3

i ϵ[µ4, µ5, µ1, µ2]

+kµ4

i ϵ[µ5, µ1, µ2, µ3] + kµ5

i ϵ[µ1, µ2, µ3, µ4] = 0, (D.44)

that allows to remove the kλ
1,2 terms in terms of other contributions

kλ
1 ϵ[k1, k2, µ, ν] =

s

2
ϵ[k1, µ, ν,λ] − kµ

1 ϵ[k1, k2, ν,λ] + kν
1ϵ[k1, k2, µ,λ]

kλ
2 ϵ[k1, k2, µ, ν] = −

s

2
ϵ[k2, µ, ν,λ] − kµ

2 ϵ[k1, k2, ν,λ] + kν
2ϵ[k1, k2, µ,λ]. (D.45)

The result in the HBVM scheme then becomes

T λµν = −i
(

τ1 +
s

2
τ2

)

ϵ[k1, µ, ν,λ] − i
(

−τ1 −
s

2
τ2

)

ϵ[k2, µ, ν,λ]

−i (τ2 − τ3) ϵ[k1, k2, µ,λ]k1
ν − i (τ2 + τ3) ϵ[k1, k2, µ,λ]kν

2

−i (−τ2 − τ3) ϵ[k1, k2, ν,λ]kµ
1 − i (τ3 − τ2) ϵ[k1, k2, ν,λ]kµ

2 (D.46)

and it is easy to check using (D.22) and (D.32) that the invariant amplitudes given above

coincide with those given by Rosenberg. Therefore we have the correspondence

A1 = −i(τ1 +
s

2
τ2)

A2 = −i(−τ1 −
s

2
τ2)

A3 = −i(τ2 − τ3)

A4 = −i(τ2 + τ3)

A5 = −i(−τ2 − τ3)

A6 = −i(τ3 − τ2). (D.47)
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A similar correspondece holds between the Rosenberg parameterization of AAA and

the corresponding DR-HVBM result

A(3)
1 = −i(τ (3)

1 +
s

2
τ2)

A(3)
2 = −i(−τ (3)

1 −
s

2
τ (3)
2 )

A(3)
3 = −i(τ (3)

2 − τ (3)
3 )

A(3)
4 = −i(τ (3)

2 + τ (3)
3 )

A(3)
5 = −i(−τ (3)

2 − τ (3)
3 )

A(3)
6 = −i(τ (3)

3 − τ (3)
2 ). (D.48)

E. The Chern-Simons and the Wess Zumino vertices

The derivation of the vertex is CS straightforward and is given by

∫

dx dy dz T λµν
CS (z, x, y)Bλ(z)Aµ(x)Aν(y)

=

∫

dx dy dz

∫

dk1

(2π)4
dk2

(2π)4
e−ik1(x−z)−ik2(y−z) ελµνα (kα

1 − kα
2 )Bλ(z)Aµ(x)Aν(y)

=

∫

dx dy dz i

(

∂

∂xα
−

∂

∂yα

)(
∫

dk1

(2π)4
dk2

(2π)4
e−ik1(x−z)−ik2(y−z)

)

×

×Bλ(z)Aµ(x)Aν(y)ελµνα

= (−i)

∫

dx dy dz

∫

dk1 dk2

(2π)8
e−ik1(x−z)−ik2(y−z)Bλ(z) ×

×
(

∂

∂xα
Aµ(x)Aν(y) −

∂

∂yα
Aν(y)Aµ(x)

)

ελµνα

= (−i)

∫

dx dy dz δ(x − z)δ(y − z)Bλ(z)

(

∂

∂xα
Aµ(x)Aν(y) −

∂

∂yα
Aν(y)Aµ(x)

)

ελµνα

= i

∫

dxAλ(x)Bν(x)FA
ρσ(x)ελνρσ . (E.1)

Proceeding in a similar way we obtain the expression of the Wess-Zumino vertex

∫

d4x d4y d4z

∫

d4k1

(2π)4
d4k2

(2π)4
εµνρσkρ

1k
σ
2 e−ik1·(x−z)−ik2·(y−z) b(z)Bµ(x)Bν(y)

=

∫

d4x d4y d4z

∫

d4k1

(2π)4
d4k2

(2π)4
εµνρσ

(

1

−i

)

∂

∂xρ
e−ik1·(x−z) ×

×
(

1

−i

)

∂

∂yσ
e−ik2·(y−z) b(z)Bµ(x)Bν(y)

= (−1)

∫

d4x d4y d4z δ(4)(x − z)δ(4)(y − z) b(z)
∂Bµ

∂xρ
(x)

∂Bν

∂y σ
(y) εµνρσ

= −
1

4

∫

d4x b(x)FB
ρµ(x)FB

σν(x) εµνρσ =
1

4

∫

d4x bFB
ρµ FB

σν ερµσν (E.2)
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so that we find the following correspondence between Minkowsky space and momentum

space for the Green-Schwarz vertex

4εµνρσkρ
1kσ

2 ↔ bFB ∧ FB . (E.3)

F. Computation of the effective action

In this appendix we illustrate the derivation of the variation of the effective action for

typical anomalous contributions involving AVV and AAA diagrams. We consider the

case of the A-B model described in the first few sections. We recall that we have the

relations

δBµ = ∂µθB

δAµ = ∂µθA. (F.1)

We obtain

δBSBAA = δB

∫

d4x d4y d4z T λµν
AVV

(z, x, y)Bλ(z)Aµ(x)Aν(y)

= −
∫

d4x d4y d4z ∂zλT λµν
AVV

(z, x, y)Aµ(x)Aν(y) θB(z)

= −ia3(β)εµναβ
∫

d4x d4y d4z ∂xα∂yβ [δ(x − z) δ(y − z)]Aµ(x)Aν(y)θB(z)

= −ia3(β)εµναβ
∫

d4x ∂xαAµ(x) ∂xβAν(x) θB(x)

= i
a3(β)

4

∫

dx θB FA
αµFA

βνεαµβν , (F.2)

δASBAA = δA

∫

d4x d4y d4z T λµν
AVV

(z, x, y)Bλ(z)Aµ(x)Aν(y)

= −
∫

d4x d4y d4z ∂x µT λµν
AVV

(z, x, y)Bλ(z) θA(x)Aν(y)

−
∫

d4x d4y d4z ∂y νT λµν
AVV

(z, x, y)Bλ(z)Aµ(x) θA(y)

= ia1(β)ελναβ
∫

d4x d4y d4z ∂x α∂y β [δ(x − z) δ(y − z)]Bλ(z) θA(x)Aν(y)

= −ia1(β)ελναβ
∫

d4x ∂xαBλ(x) ∂xβAν(x) θA(x)

+ia1(β)ελµαβ
∫

d4x ∂xβ Bλ(x) ∂xα Aµ θA(x)

= i
a1(β)

4
2

∫

d4x θA FB
αλFA

βν εαλβν , (F.3)

G. Decay of a pseudoscalar: the triangle χBB

The computation is standard and the result is finite. There are no problems with the

handling of γ5 and so we can stay in 4 dimensions.
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We first compute the triangle diagram with the position of zero mass fermion mf = 0

∫

d4q

(2π)4
Tr

[

γ5(q/ − k/ )γν(q/ − k1/ )γµq/
]

q2(q − k)2(q − k1)2
+ exch. (G.1)

which trivially vanishes because of the γ-algebra. Then the relevant contribution to the

diagram comes to be proportional to the mass mf ̸= 0, as we are now going to show.

We set k = k1 + k2 and set on-shell the B-bosons: k2
1 = k2

2 = M2
B, so that k2 =

2M2
B + 2k1 · k2 = m2

χ

The diagram now becomes
∫

d4q

(2π)4
Tr

[

γ5(q/ − k/ + mf )γν(q/ − k1/ + mf )γµ(q/ + mf )
]

[

q2 − m2
f

] [

(q − k)2 − m2
f

] [

(q − k1)2 − m2
f

] (G.2)

Using a Feynman parameterization we obtain

= 2

∫ 1

0
dx

∫ 1−x

0

1
[

q2 − 2q[k2y + k1(1 − x)] + [ ym2
χ − m2

f + m2
B(1 − x − y) ]

]3

= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

[q2 − 2qΣ + D]3

= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

[(q − Σ)2 − (Σ2 − D) ]3

= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

[(q − Σ)2 − ∆ ]3
. (G.3)

We define

Σ = yk2 + k1(1 − x) (G.4)

and

D = ym2
χ − m2

f + M2
B(1 − x − y), (G.5)

for the direct diagram and the function

∆ = Σ2 − D = m2
f − x y m2

χ + m2
B(x + y)2 − xM2

B − ym2
B ≡ ∆(x, y,mf ,mχ,MB) (G.6)

and perform a shift of the loop momentum

q′ = q − Σ (G.7)

obtaining

2

∫ 1

0
dx

∫ 1−x

0
dy

∫

dDq

(2π)D
Tr[γ5(q/ +Σ/ −k/ +mf )γν(q/ +Σ/ −k1/ +mf )γµ(q/ +Σ/ +mf )]

[q2−∆]3

(G.8)

Using symmetric integration we can drop linear terms in q, together with qµqν = 1
Dq2gµν .

Adding the exchanged diagram and after a routine calculation we obtain the amplitude for

the decay

∆µν = ϵαβµνkα
1 kβ

2 mf

(

1

2π2

)

I(mf ,mχ,mB) (G.9)
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with

I =

∫ 1

0
dx

∫ 1−x

0
dy

1 − 2x − 2y

∆(x, y,mf ,mχ,mB)
. (G.10)
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C. Corianò, Electrodynamics in the presence of an axion, Mod. Phys. Lett. A 7 (1992) 1253
[hep-th/9204021].
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