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ABSTRACT: We investigate the mapping of conformal correlators and of their anomalies
from configuration to momentum space for general dimensions, focusing on the anomalous
correlators TOO, TV'V — involving the energy-momentum tensor (") with a vector (V') or
a scalar operator (O) — and the 3-graviton vertex TTT. We compute the TOO, TVV and
TTT one-loop vertex functions in dimensional regularization for free field theories involving
conformal scalar, fermion and vector fields. Since there are only one or two independent
tensor structures solving all the conformal Ward identities for the TOO or TVV vertex
functions respectively, and three independent tensor structures for the TT'T vertex, and
the coefficients of these tensors are known for free fields, it is possible to identify the
corresponding tensors in momentum space from the computation of the correlators for free
fields. This works in general d dimensions for TOO and TV'V correlators, but only in 4
dimensions for TT"T", since vector fields are conformal only in d = 4. In this way the general
solution of the Ward identities including anomalous ones for these correlators in (Euclidean)
position space, found by Osborn and Petkou is mapped to the ordinary diagrammatic one
in momentum space. We give simplified expressions of all these correlators in configuration
space which are explicitly Fourier integrable and provide a diagrammatic interpretation of
all the contact terms arising when two or more of the points coincide. We discuss how
the anomalies arise in each approach. We then outline a general algorithm for mapping
correlators from position to momentum space, and illustrate its application in the case of
the VVV and TOO vertices. The method implements an intermediate regularization —
similar to differential regularization — for the identification of the integrands in momentum
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space, and one extra regulator. The relation between the ordinary Feynman expansion and
the logarithmic one generated by this approach are briefly discussed.
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lies in Field and String Theories
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1 Introduction

The analysis of correlation functions in d-dimensional quantum field theory possessing con-
formal invariance has found widespread interest over the years (see [19] for an overview).
Given the infinite dimensional character of the conformal algebra in 2-dimensions, con-
formal field theories (CFT’s) in 2-dimensions have received the most attention, although
4-dimensional conformal theories have also been studied (see for instance [31, 32]). In d
dimensional CFT’s the structure of generic conformal correlators is not entirely fixed just
by conformal symmetry, but for 2- and 3-point functions the situation is rather special and
these can be significantly constrained, up to a small number of constants.

In several recent works [3, 4, 21] certain correlation functions describing the interaction
between a gauge theory and gravity with massless fields in the internal loop and related
therefore to the axial and trace anomalies in these theories have been analyzed. The
interesting property that such anomalous amplitudes contain massless poles in 2-particle
intermediate states has been exposed in these investigations. In particular this has been
demonstrated in the TVV amplitude in massless QED and QCD, characterized by the
insertion of the energy momentum tensor (T) on 2-point functions of vector gauge currents
(V). This amplitude gives the leading order contribution to the interaction between a gauge
theory and gravity, mediated by the trace anomaly.

The complete evaluation of this amplitude in the Standard Model [12] confirms the
conclusion of [21], namely the presence of an effective massless scalar “dilaton-like” degree
of freedom in intermediate 2-particle states intimately connected with the trace anomaly, in
the sense that the non-zero residue of the pole is necessarily proportional to the coefficient of
the anomaly. The perturbative results of [3, 4, 21] are also in agreement with the anomaly-
induced gravitational effective action in 4 dimensions whose non-local form was found
in [30], and whose local covariant form necessarily implies effective massless scalar degree(s)



of freedom [24-26]. This is the 4-dimensional analog of the anomaly-induced action in 2-
dimensional CFT’s coupled to a background metric generated by the 2-dimensional trace
anomaly and related to the central term in the infinite dimensional Virasoro algebra [28].
The anomaly-induced scalar in the 2-dimensional case is the Liouville mode of non-critical
string theory on the 2-dimensional world sheet of the string.

In even dimensions greater than 2 it is important to recognize that the anomaly-
induced effective action discussed in [24-26, 30] is determined only up to Weyl invariant
terms. The full quantum effective action is not determined by the trace anomaly alone,
and hence only when certain anomalous contributions to the TVV or other amplitudes
are isolated from their non-anomalous parts should any comparison with the anomaly-
induced effective action be made. The non-anomalous components are dependent upon
additional Weyl invariant terms in the quantum effective action and thus even in the
CFT limit need not agree with the anomaly-induced action, without contradicting its
validity for determining the anomalous terms [24]. On the other hand these additional Weyl
invariant terms for simple amplitudes such as TV V can be determined in principle by the
Ward identities of SO(d, 2) conformal invariance, together with those of gauge invariance
for the vector currents. Other triangle amplitudes in 4 dimensions such as the graviton-
fermion-antifermion vertex function, for which similar considerations should apply have
been investigated primarily for phenomenological reasons [14], although this amplitude is
anomaly-free.

From the CFT side some important information is available [10, 18, 27]. These results
concern the TOO — with O denoting a generic scalar — T'VV and TT7T vertices, which
are determined by applying the conformal Ward identities in Euclidean position space.
Some of the vertices, such as the TTT, for d = 4 are shown in the analysis of [18, 27] to be
expressible in terms of three linearly independent tensor structures. Imposing the conformal
Ward identities and identifying these tensor structures directly in momentum space turns
out the be technically quite involved. The main goal of the present work is to initiate
a systematic study enabling comparison of general results of 4-dimensional CFT’s based
on position space analysis such as [18, 27] with explicit realizations of anomalous 3-point
vertices in free field theory, most commonly expressed in momentum space. Recent results
of studies of three- and four- point functions in d = 3 in the context of the ADS,/CFT3
correspondence are contained in [9, 23, 29].

For general d dimensions and, specifically, in d = 4, rather than trying to identify these
tensor structures directly in momentum space, which is quite cumbersome, it is much sim-
pler to calculate explicitly the TTT correlator for specific free-field theories of scalars,
spinors, and vectors in one-loop Lagrangian perturbation theory, thereby identifying the
three linearly independent tensor structures a posteriori with the general CFT analysis
of [18, 27]. A similar method works for the TVV, VVV and TOO vertices for any dimen-
sion, while in the TT"T" case the contribution coming from the exchange of a spin 1 field in
the loop diagrams is conformally invariant only in d = 4.

While the imposition of the conformal Ward identities is technically simpler in position
space, the appearance of massless poles associated with anomalies is very much obscured.
Indeed conformal anomalies necessarily arise quite differently in momentum space and in



Euclidean position space, where the only possibility for anomalous terms lies in appearance
of ultralocal divergences proportional to delta functions or derivatives thereof at cooinci-
dent spatial points. Thus a very careful regularization procedure is required to determine
these anomalous ultralocal contributions which are absent for any finite point separation.
The special strategy followed in determining these anomalous ultralocal contributions in
position space, developed in [27], merits some comments for its peculiarity. In [18, 27]
the Ward identities are solved in each case by combining a homogeneous solution — ob-
tained for separate (non-coincident) points of the correlator — with inhomogenous terms,
identified via a regularization of the same correlator in the coincidence limit and with
the inclusion of contact terms. The contact terms proportional to delta functions and
derivatives thereof determine the anomalies. Such a separation, based on homogeneous
and inhomogeneous terms in the Ward identities cannot be easily carried out in momen-
tum space. Moreover in the approach of [21] the origin of the conformal anomaly as an
infrared effect (rather than a result of any UV regularization procedure) following from
the imposition of all non-anomalous Ward identities and the spectral representation of the
amplitude was emphasized. In this approach massless anomaly poles at k*> = 0 play an
essential role. At first glance this appears to be quite different than the ultralocal delta
function terms obtained in the position space approach of [18; 27]. Thus the relationship
of the several approaches requires some clarification, and this is a principal motivation
for the present work. The eventual agreement of the two approaches may seem less sur-
prising if it is remembered that cooincident point singularities in Euclidean position space
become light cone singularities in Minkowski spacetime, and these lightcone singularities
are associated with the propagation of massless fields, which generally have long range
infrared effects.

Our work is composed of two main parts. In the first part, building on the results
of [18, 27], we compute the complete structure of the 3-point correlators in configuration
and in momentum space for a general CFT. In particular we generalize our previous
studies of the TV'V correlator, formally studied by us in 4 dimensions [3, 4, 21] in QED
and QCD, to d dimensions and for any CFT. We also study the TTT vertex and perform a
complete investigation of this correlator by the same approach. The analysis is performed in
perturbation theory and the result is secured by a successful test of all the Ward identities
satisfied by this vertex, outlining their derivation and their perturbative implementation,
and using a symbolic manipulation program written by us. Both for the TVV and TTT
cases our computations have been performed under the most general (off-shell) conditions,
but the remarkable complexity of the general result allows us to present here, in a compact
form, only the expression for the 2-particle on-shell case. We give particular emphasis to
the discussion of the connection between the general approach of [27] and the perturbative
picture. In particular, we give a diagrammatic interpretation of the various contact terms
introduced by Osborn and Petkou in order to solve the Ward identities for generic positions
of the points of the correlators. This allows to close a gap between the bootstrap method
of [27], our previous investigations of the TVV [3, 4, 21|, and the current study of the
TTT vertex. We show that the perturbative analysis in momentum space in dimensional
regularization is in complete agreement with their results.



It should be remarked that, in general, the momentum space formulation of the cor-
relators of a CFT remains largely unexplored, since in many cases there is no Lagrangian
description which may justify such an effort, and the spacetime formulation remains the
only significant one. The use of symmetry principles to infer the general solution to confor-
mal Ward identities from some specific correlation functions computed in momentum space
perturbation theory, allows to collect information about a conformal theory even when a
Lagrangian formulation of the same correlators is not readily found or may not exist at all.

This brings us to the second part of our work, contained in section 8, where we discuss
a general and very efficient procedure to map to momentum space any massless correlator,
not necessarily related to a Lagrangian description. This part is motivated by the at-
tempt of transforming to momentum space any massless correlator given in position space,
independently from whether this is Fourier integrable or not.

The investigation of these correlators in momentum space reveals, in general, some
specific facts, such as the presence of single and multi-logarithmic integrands which, in
general, can’t be re-expressed in terms of ordinary master integrals, typical of the Feyn-
man expansion. To address these points, one has to formulate an alternative and general
approach to perform the transforms, not directly linked to the free-field realization, since in
this case such representation, as we have just mentioned, may not exist.

The method that we propose combines a d-dimensional version of differential regular-
ization, similar to the approach suggested in [18, 27]. In our case we use the standard
technique of “pulling out” derivatives (via partial integration) in very singular correlators
in such a way to make them Fourier integrable, i.e. expressible as integrals in momentum
space which are well-defined for non-coincident points. This is combined with the method of
uniqueness [22], here generalized to tensor structures, in order to formulate a complete and
self-consistent procedure. As in [18, 27] we need an extra regulator (w), unrelated to the
dimensional regularization parameter (¢). Our approach is defined as a generic algorithm
which can handle rather straightforwardly any massless correlator written in configuration
space. The algorithm has been implemented in a symbolic manipulation program and can
handle correlators of any rank.

The aim of the method is to test the Fourier integrability of a given correlator, by
checking the cancellation of the singularities in the extra regulator directly in momentum
space, and to provide us with the direct expression of the transform. After a few non
trivial examples, we will show how to reproduce, by this method, some of the results of
the conformal correlators discussed in the first part, the VVV and the TOO being two
examples.

Given the large space and scope of this analysis, which is technically quite involved,
we will not attempt in this work to address the issue of the presence of anomaly poles in
the TTT correlator in analogy to what discussed in [3, 4, 21] for the TV'V case. Although
this is an important motivation for initiating this study, demonstrating the existence of
the pole(s) requires additional analysis which we do not attempt in this paper. We expect
to address this final point in a related work making use of the technical framework and
building upon the results of the present study.



I|Ba(I) x 2880 72| By(I) x 2880 72| B.(I) x 2880 72
S 3 -3 -1
F 9 -4 —6
1% 18 -31 —12

Table 1. Anomaly coefficients for a conformally coupled scalar, a Dirac Fermion and a vector
boson

2 Conformal correlators and the trace anomaly

2.1 Conventions and the trace anomaly equation

Before coming to a discussion of the main correlators investigated in our work we introduce
here our definitions and conventions which will be used throughout.
The basic trace anomaly equation for a conformal theory in d = 4 is [15, 16]

Gu () (T"(2) = Y np [ﬁa(f) F(2) + By(1) G(2) + Be(1) OR(2) + Ba(I) R*(2)

I:f?s7v

K
+vaF‘““’ Fi,(2) = Alz,9), (2.1)
whose coefficients S, By, B and B4 depend on the field content of the Lagrangian (fermion,
scalar, vector) and we have a multiplicity factor n; for each particle species.! Actually the
coefficient of R? must vanish identically

Ba=0 (2.2)

since a non-zero R? in this basis cannot be obtained from any effective action (local or
not) [2, 8, 24]. In addition, the value of (. is regularization dependent, corresponding
to the fact that it can be changed by the addition of an arbitrary local R? term in the
effective action. In particular, the values for 5. reported in table 1 hold in dimensional
regularization. Thus only B4, 8, and x correspond to true anomalies in trace of the stress
tensor. In dimensional regularization one finds

2

Be = —3 Ba - (2.3)

1
DRI
that we are going to consider extensively throughout the paper. A(z, g) contains the field-

In table 1 we list the values of the coefficients for the three theories of spin 0, 5, 1 mentioned,
strength of the background gauge field, F}j,, and the invariants built out of the Riemann
tensor, R%gys, as well as the Ricci tensor R,g and the scalar curvature R. G and F' in
eq. (2.1) are the Euler density and the square of the Weyl tensor respectively.

All our conventions are listend in appendix A.

Eq. (2.1) plays the role of a generating functional for the anomalous Ward identities
of any underlying Lagrangian field theory. These conditions are not necessarily linked

'Equivalent and more popular notations are ¢ = 16723, and a = —16725.



to any Lagrangian, since the solution of these and of the other (non anomalous) Ward
identities — which typically define a certain correlator — are based on generic requirements
of conformal invariance. For our purposes, all these identities can be extracted from an
ordinary generating functional, defined in terms of a generic Lagrangian £ which offers
a convenient device to identify such relations. For this reason we introduce the ordinary
definition of the energy-momentum tensor

2 0S 2 6S
TH (2) = — = g"(2) ¢"P(2) —— ———, 2.4
(2) 77 sgm(a) Y (2) g"( )\/g»zégag(z) (2.4)
in terms of the quantum action S, so that its quantum average is
y 2 0w
(T"(2)) = (25)

B ﬁ‘;guu(z) ’

(with det g, (2) = g.) where W is the Euclidean generating functional of the theory?

W:Ji//p«be—s, (2.6)

where N a normalization factor and ® denotes all the quantum fields of the theory.
Inserting these definitions in (2.1) and multiplying both sides by /g we obtain

QQW(Z)% =./9:A(z,9). (2.7)

From (2.1) and (2.7) we can extract an identity for the anomaly for correlators involving
n insertions of energy momentum tensors, by taking n functional derivatives with respect
to the metric of both sides of (2.7) and setting g, = 6, at the end. In the same way, the
anomalous Ward identity for the TV'V can be obtained by functional differentiation of the
same equation respect to the background gauge fields. In perturbation theory, however,
imposing the conservation Ward identity for the energy-momentum tensor and of the Ward
identity for the vector currents — whenever these are present — is sufficient to obtain the
corresponding anomalous Ward identity. In the case of the TVV, for instance, this is
a common practice, since only one term (F**(z) F{,(2)) can appear in the anomaly.
Therefore the anomaly condition comes as a necessary consequence of the other Ward
identities and can be checked at the end of the computation to correspond to the one
derived from eq. (2.1). Things are far more involved for vertices with multiple insertions of
gravitons, such as the TTT vertex, and a successful test of the anomalous Ward identity
is crucial in order to secure the correctness of the result of the computation.

2.2 Definition of the correlators and Ward identities for the TVV and TOO
vertices

We provide the basic definition of the correlators that we are going to investigate, in analogy
to [27]. We start from the TV'V vertex and use the Euclidean convention. We recall

2 depends, in general, from the background metric guv (), the gauge fields A*(z) and scalar sources
J(z) In the equations below, only those dependences which are relevant for the case at hand will be explicitly
indicated.



that in this case the functional average of the gauge current V is obtained by functional
differentiation of the generating functional with respect to the background gauge field A7

1 oW
Vil(z)) = ——————. 2.8
V@) = =g (28)
To construct the TV V correlator we can first perform a functional derivative with respect
to the metric followed by the flat space-time limit (g, = 6,,) and then insert the vector

currents by taking derivatives with respect to the gauge field source A

) -, 52 2 ow
<Tu (x1)V (xz)Vbﬁ(x3)> = {5Ag(x2)5A%(x3) [\/gjldgw(xl)hé}flo

— <T“”(a:1)Vaa(x2)Vb5(m3)>A:0 * <CMVW($3)>A_O

5T/W($1) ac(a
+ <5A%(x3) vee( 2)>A:0 (2.9)

where T}, is the energy-momentum tensor calculated in the presence of the background
source AZ. The first term in the previous expression represents the insertion of the three
operators, while the last two are contact terms, with the topology of 2-point functions,
exploiting the linear dependence of the energy-momentum tensor from the source field A.

The construction of the TOO correlator is analogous. If the scalar operator O is
coupled to the source J we define

1 oW
V9 0J ()

and then the three point function is generated as

. B 52 2 )24%
(T (21)0(x2)O(x3)) = {5J(x2)5<]($3) L/E(Sgu,,(xl)}g:é}
= (T"[J)(21)O(22)O(x3)) j—o + <5J(x2)1‘1)0(x3)>JO

5T ) (1)
(Tt O(m2’>J:o‘ —

The third correlator that we will analyze will be the VV'V vertex, which is defined
by the third functional derivative of the generating functional with respect to the source
gauge field Af ()

(O(z)) = (2.10)

B W y=s
5142(1’1)5143(1’2)5142(333) A:O.

<V““(x1)Vb”(x2)VCp(x3)> - (2.12)

The VVV is anomaly free, as is the TVV for general (d # 4) dimensions. To derive
the non-anomalous Ward identities for general dimensions we assume that the generating
functional Wg, A] is invariant under diffeomorphisms

Wig, A] = W[g', A'], (2.13)



where ¢’ and A’ are transformed metric and gauge field under the general infinitesimal
coordinate transformation z# — ¥ = 2t + €#

0 = Vuer + Viey,  0A%L =V AL + AV ey . (2.14)

Diffeomerphism invariance and gauge invariance give the relation

Vi (TH) + VY AL (V) + V, (A7 (V) =0, (2.15)
Vu (V) + AL (V) =0, 2.16)

while naive scale invariance gives the traceless condition
g (TH) = 0. (2.17)

This last Ward identity is naive, due to the appearance of an anomaly at quantum level,
after renormalization of the correlator for d = 4. It is however the correct identity in the
TVV, TOO and TTT cases away from d = 4. In this respect, the functional differentiation
of (2.15) and (2.17) allows to derive ordinary Ward identities for the various correlators.
In the TV'V case we obtain the conservation equation

an <T“”(a;1)Vaa(a;2)Vb5(:v3)>
= 0, 8%aa2) (Vo @)V (w3)) + 9%, 6% wan) (VO (2)V P a0))

—5regn (5d(x12) <vau(x1)vbﬁ(x3)>) — §viam ((5d(x31)<V“a(x2)Vb“(a:1)>>
(2.18)

and vector current Ward identities
a2 <TW(x1)VW(x2)vbﬁ(:c3)> -0, op <TW(x1)VW(x2)vbﬁ(a:3)> —0, (2.19)
while the naive identity (2.17) gives the non-anomalous condition
Sy <TW(x1)VW(x2)vbﬁ(x3)> ~0 (2.20)
for d # 4.

2.3 Definitions for the TT'T amplitude

For the multi-graviton vertices, it is convenient to define the corresponding correlation func-
tion as the n-th functional variation with respect to the metric of the generating functional
W evaluated in the flat-space limit

(TR (3y) . THn () = |2 2 oW ]
vV Yz V2 0Gpn (1) - 0Gpnvm (Tn) G =8,
%%

— 9n

: (2.21)

Guvr=buv

59/“1/1 (71) .. '59unun (7)



so that it is explicitly symmetric with respect to the exchange of the metric tensors. As
we are going to deal with correlation functions evaluated in the flat-space limit all through
the paper we will omit to specify it from now on, so as to keep our notation easy. The
3-point function we are interested in studying is found by evaluating (2.21) for n = 3,

(T )T ) =8| - (200 o 0

69 (1) 0gpo (72) 69ap(T3)

+< 5%S 0S >+< 58S S >
6905(23)0gu (1) 0gpo(22) 69po (22)0Gp0 (71) 69ap(3)

528 0S 533
+ <59pa($2)59a5(1:3) 5guy(3;1)> B <5900(x2)59a5($3)5guy(x1) >} ,  (2.22)

where the angle brackets denote the vacuum expectation value. Notice that the last term
is identically zero in dimensional regularization, being proportional to a massless tadpole.

oS 5S 5S
<6guu(371) 5gpg(x2) 5ga6(aj3) > ’ (2.23)

has the diagrammatic representation of a triangle topology, while the contributions

The correlator

(otameintm) s
< 528 5S > (2.24)

09po (22)0gu (1) 09ap(23)

are interpreted in the perturbative analysis as the “k”, “q” and “p” bubble respectively,
also termed “T-bubbles” in [3].

In the perturbative realization of these expressions we will also establish a connection
between these contributions and the extra terms generated at the 2-point coincidence limit
of the general 3-point vertices discussed in [27]. For a 3-point vertex the dependence in
configuration space is labelled as (x1,x2, x3) with an incoming momentum (k) at z; and
two outgoing momenta ¢,p at zo and x3 respectively. These conventions are summarized
by the transforms

[ ety dta (T @) ()T ) ) el
(2m)* 69 (k = p — q) (TTPT7) (p,q), (2.25)
and
/ Ay dg (197 (22) T () ) €070 — (2m) 5@ (p — g) (T7T7) (9), (2.26)
for 3- and 2-point functions respectively.

2.4 General covariance Ward identities for the TTT

The requirement of general covariance for the generating functional ¥V immediately leads
to the master Ward identity for the conservation of the energy momentum tensor given



in (2.15) (of course we disregard background gauge fields here),

2 )
Vo <TMV($1)> = VV( W ) =Y, (227)
V921 69 (1)
and expanding the covariant derivative we can write it as
2 ow A\ ow ow ow )
5 -y (z) ——+T% (21) ———+ T, (z1) ——— ) =0,
[ ( Ogu(@1) ( 1)5g,w(x1) ( 1)59,%1/(«731) ( 1)5gm§(x1)
(2.28)

where the first of the three Christoffel symbols is generated by differentiation of 1/,/g5, in
the definition of 7}, together with

1
Iop(z1) = §9a7($1)5ﬁ Gary(1) (2.29)
or, equivalently, as
ow ow
2(0,~———— +T" (z ) =0. 2.30
< 5‘9#1/(1‘1) ( 1)6gm/(l‘1) ( )

By taking one and two functional derivatives of (2.30) with respect to gps(x2) and g, (x2)
and gog(x3) respectively, one gets, in curved space-time,

52W ST, (z1) oW §2W }
410, F T8 (2 —0 92.31
{ 597 (@203 @) | 090 (72) Sgm@r) T L ) S g () (2:31)
. [ 5 W STy (1) §2W STl (1) 52w
" 690p(23)09p0 (2)09u (21)  0gps(22) 09ap(3)0gm (21)  09as(®3) 090 (22)0gk (23)
52TH, (a1) SW W

+ T (1) ] =0, (2.32)

6gpo' (552)5904/8 (l‘3) 69#1} (-Tl) 5.9,00' (‘T2)5gaﬁ (552)59/.@1, (1'1)

where 6(x1,z2) = (21 — z2) and so on.

As we are interested in the flat space-time limit, we must evaluate 2.31 and (2.32) by
letting the Christoffel symbols go to zero. Another simplification is obtained by noticing
that the Green’s functions

08 N___w
<6g,w<x1>>‘ 3gu (1) (2.33)
and
5%S
<5g,uu<371)(5ga5($3)> (2.34)

are proportional to massless tadpoles, so that we can ignore them in the following expression

52W _< 6S 68 >_< 928 >_< 5S 68 >
090 (23)09u(2)  \ 09w (21) 0gap(23) 09ap(3)0gum (21) / 59#!/(331)5%6(55(32)35).

So the Ward identity for the 2-point function in flat coordinate space-time is immediately
seen to be
Oy (TH (x1)T*° (22)) = 0, (2.36)
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where, due to the vanishing of (2.34), we have set

0S oS
T (21T (20)) = 4 2.37
(1 @)1 (w2 = 4 (5ot (237

Obviously, its form in momentum space, exploiting (2.26), is
Py (THT77) (p) = 0. (2.38)

The terms surviving in (2.32) are those in the first line. In order to make them explicit, we
evaluate the functional derivative of the Christoffel symbols using (A.3), (A.8) and (A.9),
finding

(5Fﬁu($1) 1
L = M| — g7 Oy po Ok PI Oy |0 5 ) 2.39
5gpg(x2) 2 |: S ky + 5w + 5"k :| (1‘1 1‘2) ( )

where the s tensor is defined by eq. (A.9) in the appendix. Plugging this into (2.32) and
using (2.37), the second term becomes
51“,@”,,@1) (52W
59p0(x2) 5gaﬁ($3)5gﬁu(x1)

- [W <T”"(m1)T°‘ﬁ(x3)> 8, + 517 <TVp<m1)Taﬁ(x3)> a,
- <Tp"(x1)T°‘B(:c3)> aﬂ] 5(z1,72). (2.40)

A completely analogous relation holds for the exchanged term (gag(23) <> gpo(22)).
Finally, we can recast the Ward identity (2.32) in the form

Oy (T (1) TP (3) TP () ) =
[<T”"(:C1)T“5 <m3)> OO (a1, 2) + <Taﬂ(x1)Tp0(x2)> 018 (1, xg)}
o (et aa)) + 80 (10T |t
- [5#@ (T2 ()T (2) ) + 84 (170 (1) TP () } 8,0(x1, 73) (2.41)

having used the definitions (2.21) and (2.22).
Fourier-transforming according to (2.25) and (2.26), we get the Ward identity in mo-
mentum space that we need, i.e.

by (T TP ) (p,q) = p* (TT97) () + ¢ (T T°%) (p)
898 () (@) 60 (177 ()
—q [5“0 <T”PTC“/3 > (p) + 61 <TWT°'5 > (p)] . (242)

Similar Ward identities can be obtained when we contract with the momenta of the other
lines. These are going to be essential in order to test the correctness of the computation
once we turn to perturbation theory.
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2.5 The anomalous Ward identities for the TTT

The anomalous Ward identities for the 3-graviton vertex is obtained after a lengthy compu-
tation, performing two functional variations of (2.7) and taking the flat-space limit, thereby
obtaining

O (THTPTF ) (p, q) = 447 (p, g) — 2 (TPT97) (p) = 2 (TP T ) (q)
=4 [Ba < [F]°%""(p, q) - % [Vga R (p, Q)> +85 [G]* (p, Q)}

2 <T°‘f3Tp"> (p) — 2 <TPUT05> (), (2.43)

where A*PP7(p, q) is generated by the anomaly. We remark, if not obvious, that all the
contractions with the metric tensor in the flat spacetime limit (,,,) should be understood
as being 4-dimensional. This is the case for all the anomaly equations. The various
contributions to the trace anomaly are given in terms of the functional derivatives of
quadratic invariants in appendix C. Analogous anomalous Ward identities can be obtained
by tracing the other two pairs of indices.

3 Inverse mappings: the correlators VVV, TOO and TVV in position
space using the Feynman expansion

Having by now defined all the fundamental (anomalous and regular) Ward identities which
allow to test the consistency of all the correlator which we are interested in, we now turn
to provide the expression of these correlators in position space using their realization in
free field theory.

We remind that an important result of [27] is the identification of the solution of the
Ward identities in terms of a set of constants and of certain linearly independent tensor
structures in (Euclidean) position space. Since these same tensor structures must occur in
direct computations of the same vertex functions in free field theories in momentum space,
we can use the one-loop computations of the vertex functions in momentum space to infer
what those tensor structures must be, and find the exact correspondence between CFT
amplitudes in position space and momentum space a posteriori, provided that we have
enough linearly independent vertex functions for different free theories to determine the
linear combinations uniquely. We call this procedure an “inverse mapping”, as it allows to
re-express the correlators of [27] in such a form that their Fourier integrability is explicit.
This result is obtained by pulling out derivatives of the corresponding diagrams in such
a way that integrability becomes trivial. More details on this procedure is contained in
section 8.

We start with the VV'V vertex function. The two types of diagrams contributing to
the general conformal expression of the VVV in any dimensions are shown in figure (3).
In [27] the VVV, as all the other correlators, are fixed by general CFT requirements. It
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Figure 1. The fermion and the scalar sectors contributing to the conformal VVV vertex in any
dimension.

takes the form [27]

fabc
Vi (a1) V2 (22)Vi(23) ) = (@ —2b) Xo3,, X31, X12
(v o)) = G e X iz
1 1 1
—b [2 Xogpu Lup(23) + —5 X1 Lup(ws1) + —5 X2, I;w(i’fm)} } ; (3.1)
L3 31 Lo

where ¢ are the structure constants of the gauge group, I w () is the inversion operator
defined as

it
" (x) = " — 2 > (3.2)
and
Tij =T; — Ty, Xij:—inExf;k—&ék, i,j,k:1,2,3. (33)
Tik  Tik

The correlator is Fourier integrable, although this is not immediately evident from (3.1).
The simplest way to prove this point consists in showing that (3.1) can be reproduced in
d-dimensions by the combination of the scalar and the fermion sectors of a free field the-
ory. For this purpose we use two realizations of the vector current V', using scalar and
fermion fields

Vi = "0, — 0u0"t%9, Vi =ty (3.4)

The diagrammatic expansion of this correlator consists of two triangle diagrams, the
direct and the exchanged, both in the scalar and fermion sectors. Using the Feynman rules
in coordinate space we obtain, after some manipulations

(Vi) Vi @)Vi(es)) =

fermion
cf fabc o af 1
(- ap e RO s Ty &
<V;(IE1)V:($2)V;($3)>scalar -
Cs fabc (612 + 831) (823 + 812) (831 + 823) 1 (3.6)
(d—2)2 \"" 3 v v P p (x%Q)d/2—1(xgg)d/2—1(x§1)d/2—1 :
where
1
Apavgpy = 71T vamwyp7,m] (3.7)
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and cy, ¢, are normalization constants whose numerical values are irrelevant here. Written
in these forms, the two expressions are manifestly integrable. Tracing over the v matrices
and applying the derivatives over all the denominators, we generate the result of [27] by
taking a linear combination of these two sectors

fabc
V“(ml)VVb(xg)Vc(xg) = (atal, —i—btby ) (3.8)
< w 2 > wvp pvp (x%Q)dﬂ—l(x%S)d/Q—l<$§1>d/2—1
where
1
a 12 31 23 12\ (931 23 b
tuvp = m (8u + au ) (av +0, ) (ap +8p ) - gtww (3.9)
1

1 = — e A s 05905507, (3.10)

uvp (d—2)
The equivalence between this expression and eq. (3.1) can be verified explicitly.

3.1 The TOO case

The next correlator that we are going to investigate extensively is the TOQO. The structure
of this function in coordinate space — for non coincident points — is given by [27]

¢ Bl (Xas), (3.11)

(T (1) O(x2) O(23)) = (@22 (a2, )1 /% (2, )42 v

where a is a constant, 1 the dimension of the scalar field O and where

) X . oo 1
= £ h}w(X):XNX,,fE(SW.

In the short-distance limits of its external points this vertex is singular and needs regular-
ization. In [27] the authors, in their direct solutions of the Ward identites, introduce some
extra terms which are given by

R N 1
|:A,uu(3312) - Auu(-TlZ) + A;,LI/(:E?)].) - A/U/(£3].)i| W ) (312)
23
where
a (sus, 1 - a (0,0, 1 n—d+1
A (s) = 3d< ;‘2 - d%) o Aw(s) = ( d”_ SR sdéwad(s)> .
(3.13)

These are contact terms. In the expression above S; denotes the volume of the d-dimensional
sphere, Sy = 272 /T(d/2). The delta function term in A reflects the arbitrariness typical
of any regularization scheme, and its coefficient is chosen to satisfy the Ward identities.
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3.1.1 Manifest integrability of the CFT result and comparisons with free field
theory

Expanding the previous expression and bringing it in the derivative form we obtain

(T (1) O(z2) O(23)) =

a d—2 1

(91203 + 91203 + — (02 + 63,1,)}

(d— 2)2{ : g d R (agy) 4 (a2 (g, )4/

2 .2 2 .2 2 \2 § y —d 1 5d 5d

+a 2125/223 +2a:31x;/;32 1(x§3)d/2 Mo * SO (xm);_ (&a1) ;o (3.14)

(212) %2 (x55)1~ 42 (25,)42 d dn (z53)"
where, from now on, we set 8&2 = ax?zu and 8,1“2/ = aﬂﬁ?zu 32?21,.

Notice that the first term of the second line proportional to d,, is not manifestly
integrable. As we have already mentioned, one can use identities such as x2, + 235 — 235 =
22192 - £13 in order to rewrite it in the form

2 .2 2 .2 2 )2
19 Ty3 + 3 Ty3 — (L33) _ 2 912931n 1

(€3,) Y/ (233)Y/2 (23)2  (d =221 7 (afy) ¥ 1 (aF)) Y2~ (adg)n— 42+

(3.15)

which shows its integrability when n < d — 1.

In order to test the consistency of the result (3.11) obtained from the application of the
conformal Ward identities for the TOO, we can consider a particular scalar free field theory.
We suppose for instance that the scalar operator O is given by O = ¢? with dimensions
n = d — 2, whose energy-momentum tensor 7' is given by
1d-—2

1
Ty = 0up v — 3 0w O 0“0 + —

11 [5Wa2 — 0, a,,] ¢? (3.16)

which is conserved and traceless in d dimensions.
Using the Feynman rules in coordinate space together with the expression of a scalar
propagator we obtain the T'¢?¢? correlation function

(Tyu(21) 8% (22) 9% (w3) ) =

2a(d — 1) 12 931 12 531 12 31 d—2 12 31 12 531
a(d—22 0,70, + 08,70, — 6,,0°" -0 =1 0y — 0, + 0,70,
1
812831 5 5 82 82 _ 2812 . 831
+0,70," + 0 (01 + 051 ) (@2,) 31 (2, )43 1 (2, )42
d—1 6d($12) + 5d $31)
R e (3.17)

The equivalence of this expression with the solution given in (3.11) can be explicitly checked
by performing the derivative of (3.17) and expanding the result. We remark that (3.17)
is clearly integrable and does not require any intermediate regularization. The first term
in the previous expression comes from the triangle topology diagram while the last two,
proportional to the delta functions, are contact terms with two-point topology.
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3.2 The TVV case: integrability and free field theory realization

To identify the diagrammatic structure of the TVV correlator we can proceed with an
inverse mapping. In fact, we know from [27] that such solution is characterized by 2
constants when the 3 external coordinates (z1,z2,x3) are separated. This homogeneous
solution has to be modified by the additions of extra contact terms (A — A) terms which
have the topology of 2-point functions.

The homogeneous solution is then modified further by the addition of a 1/e counterterm
— in dimensional regularization — to regulate its ultraviolet behaviour. This regularization
procedure is crucial to obtaining the anomalous contribution. We will come to a discussion
of this point once we move completely to momentum space. Before that let us provide a
diagrammatic interpretation of the various contributions to this correlators, except for the
contribution coming from the counterterm, using the information that in any dimension
this can be constructed as a linear combination of two independent sectors, the fermion
and the scalar. Therefore we get

I 6T (1) !
a b _ a b |24 b
(T (1) Ve (22) Vi (w3) ) = ij (<Tw<x1>va (e2)Vh(as)) |+ <Mw(m)vg (5)
0T (1) !
Ve 3.18
(S ), )
where the sum is over the fermion (f) and scalar (s) sectors. In a diagrammatic expansion,
all the terms above have a diagrammatic interpretation, which will turn useful in order to
derive an integrable expression of this vertex.

Using the Feynman rules in configuration space one can obtain the following parame-
terization of the T'V'V vertex for fermions within the loop,

u f ¢ 5 .
(Tu(@)Vi@) Vi) = d(d—ay8 Awen Bepaosx (97" +0y1) 005,05
1

EATERI AL IENTEE

X 3.19)

where A, 004 is defined in eq. (3.7) and A0 in appendix D. This contribution alone is
not sufficient to satisfy all the inhomogeneous Ward identities and we must consider also
the contributions coming from the contact terms. In the framework of the analysis of [27],
in which the correlation functions are obtained exploiting the symmetries without any
reference to their perturbative structure, this is less evident. In fact in [27] the arbitrariness
in the regularization procedure is exploited in order to impose the Ward identities by
hand. This is achieved by introducing the differentially regulated expressions proportional
to A — A, which will be given below. These terms exactly correspond to the contributions
proportional to 2-point functions discussed above, as we are going to show in a moment.
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The two contact terms identified by the diagrammatic expansion are given by

0T (x1) v \T €8 oy e L,
(i 40) = i e 0 s s e
(3.20)
6Tuu (:El) a ! o C 5ab d (2) p 1 o 1
(A5 8009, = T S A e s e
(3.21)
with
A,Efu)aﬁpo‘ = 0a9800p + 00080 0vp + 00 0pp0u0 + dapdppdue — dar0pudps — dapdprdps
—2 5#” (5ap(550 + 5@055p - (5a5(5pg) . (3.22)
In the scalar sector the T'V'V correlation function can be recast in the manifestly integrable
form as
s 2(d—1)
a b _ . sab 12 931 12931 _ 12 531
<T,w(x1)Va (o) (x3)>A:0 = ey |+ OO 80" 0
d—2
“5d- D) ( — Oy — O, + 0200 + 02001 + 0y (07, + 05y — 20'% - 9%) )] X

1
N C PN AL

This contribution originates only from the triangle diagram. This term corresponds to
the expression given in [27] (for non coincident points) for the same correlator. The only
differences are in the 0%, and 93, terms which are proportional to 4, which vanish in the
non-coincident point limit and are given by

x (032 + 02°) (93! + 03°) (3.23)

6 2 2 12 23 31 23 1
_d(d _ 2)25#“' (812 + a31) (6@ + 8a ) (8[3 + 85 ) (x%Q)d/Z—l(x%3>d/2—1(x§1)d/2—1
2c6° 23 (931 23 5d(1’12) 23 (912 23 5(1(1’31)
= 7d(d — 2) Sd(s;w ax (aﬂ + 55 ) (xgg)dmfl(x%l)d/?*l + 85 (aa + aoz ) (x%z)d/g,l(xg?))d/g,l
(3.24)

They have the topology of 2-point functions. These terms, together with those arising from
the triangle diagrams, correspond exactly to those identified as A— A [27], which have been
introduced in order to satisfy the Ward identities (contact terms)

0Ty (1) T co®(d—1) , 4
<6Aaa(x2>vﬁ (%3) Ao - d(d . 2)2 ‘S'd(S (SU]_Q) X
X (07 + 3 0ua + (0% + 02" )0pa — 6 (020 + O31)) X
1
23 31
<O ) g )
0T (21) 0 T co®d—-1), 4
<6Abﬁ<:c3>va (“)>Ao = (a0 ()

% (03 + 0,7)0,5 + (0" + 07)dus — 60 (05° + OF)) x

1
623 812 )
R EATE AT

(3.26)
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This expression is in complete agreement with the solution given in [27], to which we refer
for further details

5ab
(232)42 (231) Y2 (233)

a 7 Lo (223)
—5% [Awap(ﬂfm) - Awap(xm)] (:Zggﬁ

a n I5a (723
-0 b |:A;WUB($31) - Auugﬂ($3l):| (l’%;)d_z’

which is expressed in terms of tensor structures whose coefficients, denoted as a, b, c and e

<TNV(x1)Vo?(x2>V,BI)(x3)> - d/2—1 Iao’(x12) Iﬁp(x?)l) t/.l,upa'(X23)

(3.27)

in [27], satisfy two constraint equation, and of contact terms A and A which are given in [27].
For this reason, only 2 independent constants are left free to parameterize any conformal
correlator of this type in d dimensions. In the notation of [27] e = 0 and hence b = 0,
so that there is only one independent structure. A final comment concerns the issues of
renormalization. These expressions are unrenormalized. The issue of renormalization will
be addressed by discussing in parallel the position and the momentum space approaches,
that we will do starting from the next section. For this reason we turn to specific realizations
of theories containing scalars and fermions — which are conformal in any dimension —
and vectors, which are conformal for d = 4.

4 The TTT amplitude

4.1 The correlator

Now we are ready to turn to the analysis of the 3-graviton vertex. The general structure
of the < TTT > correlator in momentum space is [27]

1

TH (x1) TP (x2) TO‘B(OC3)> = o e tul'/p/glaﬁ(XH)
< EATEIENUEIENUE
4.1)
I,ul/,aﬁ(s) — I“p(s)IVU(S)GTpU’aB , s=x—vy (4.2)
where 1 1
eqheB 5 (orsvP Wcsm)—g s s (4.3)

is the projector onto the space of symmetric traceless tensors.

We perform the computation of the 3-graviton vertex 71T in free field theory, for d =
4, in all its 3 relevant sectors, the conformally coupled scalar, the fermion and the vector,
since in this case the general solution of the Ward identities, for any CFT, is parameterized
by 3 independent constants. This corresponds to the most general anomalous solution. For
d # 4 the spin-1 sector is not conformally invariant and we can’t build the general expression
just by superposing the scalar and the fermion sectors. However, the combination of the
scalar and the fermion sectors corresponds to an anomaly-free special solution also for
generic d [18].
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Figure 2. One loop expansion of the 3-graviton vertex. Shown here are the general topologies, i.e.
the triangle and the self-energy type (T-bubble) contributions for the fermion case. The general
correlator for any CFT in d = 4 can be obtained by adding to these diagrams similar ones where
the fermion is replaced by a scalar and a photon in the loops. Ghost corrections follow the same
topologies.

As we have already mentioned above, the correctness of our results has been checked
first by a complete test of all the Ward identities for each case, which is already a nontrivial
test to pass, given the large complexity of the computations. At the same time we will
show that the counterterm introduced in [18, 27] in position space, which is extracted
from the general expression of the trace anomaly when d = 4, coincides with that required
in momentum space using dimensional regularization. The connection between the two
methods will be discussed thoroughly.

4.2 Inverse mapping for the TTT amplitude

As done before for the (VVV), (TOO) and (TVV) correlators, here we check the result (4.1)
building explicitly the correlator from the diagrammatic expansion in free field theory. This
allows to come up with an expression for this vertex which is manifestly integrable. We will
be using the Feynman rules obtained from the Lagrangian descriptions for scalars, fermions
and spin 1 in configuration space, given in section 5. We start testing the non-coincident
case, for which we can omit the contact terms. This corresponds to the “bulk” contribution
to the correlator, which involves only the triangle topology. We give the d-dimensional
expression for the scalar and the fermion cases, while — as already remarked — we have
to limit our analysis to d = 4 for the spin-1 vector. Moreover, in the vector case the gauge-
fixing and ghost parts of the amplitude have to cancel since the vertex is obviously gauge
invariant. This has been explicitly verified in the computation in momentum space (see
section 6.4). So, in performing our inverse mapping, we include in the interactions vertices
only the Maxwell V contributions, omitting ghosts and gauge-fixing terms. We have

o8 ) oS 5 S v (. al2 - 031 o [+ 023 - 012 af (- 931 - 023

<6gm,(x1) 5gpg($2)5ga5(:v3)> :C’TTTV;M(Z(? ,—i0 )V{fw(za ,—107°) Vs (107, =i 0%)
« 1

(23,) 7721 () 772 (a3 7721

(4.4)
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< sS 38 3S >F_
89 (21) 0gpo (¥2) 6gas(23)

Clrp(~ )(Tr[ 012, =0 )i - 912VET (1022, —id )iy - 0PVED (1071, —i0 )iy - 0]

+Te[VyE (0%, —i0')iy - 0 ngw(zaQB —i0*)iy- 9" V;Z¢(2812,—i823)i7~812]>

1
R )P @) (45)

< 3S 38 3S >V
89y (1) 09po(72) 39ap(w3)

1)3 st( 812 agl)vpagg< 323 812) aﬁxw( 831,71'5'23) « 5WE55><5Cw ) (4.6)

\%4
CTTT (7 TAA TAA TAA

35 T35 T3

Notice that this last term enters only for d = 4. Here and in the following, the dependences
of the vertices on the coordinates are obtained by replacing the momenta of (5) with
appropriate derivatives respect to the external position variables. For instance

Vios(D,q) = Vi, (,§) = Vi, (19", —i0%) (4.7)
with
p— 02 Gg— —i0% (4.8)
Explicitly
y . 1 , o
Vg (0%, —i9%) = = 5 (1012a) (=i 0x35) C* 7

+x <5W (i O1a — i Oo3)? — (101 — i QL) (10 — mgg) . (4.9)

The replacements of p,q and [, by the operatorial expressions p,§ and [ in 2.3-2.5 are
specific for each vertex. In appendix E we provide some more details on this procedure.
Notice that we have chosen the coupling parameter for the scalar field in d dimensions at
the corresponding conformal value y = (d — 2)/4(d — 1).

Expanding the derivatives contained in each vertex, the expression given in (4.1) is
recovered by setting

8 9d/2+1 1
Cirr = TS (d—2p Cirr = =2 Ctrr = 5 (4.10)

We compute next the contributions with the topology of 2-point functions, which are needed
to account for the behavior of the vertex in the short distance limit. In coordinate space
we can write them in a manifestly integrable form by pulling out derivatives in the same
way as for the triangle diagram. We replace the momenta with derivatives with respect to
the corresponding coordinates acting on propagators, obtaining very compact expressions
for the vertex. We offer a few more details on this computation in appendix E, quoting
here the result. In the scalar case we have

628 oS o CQ po 23 12 pvaf 12 - 023 023 - 0231
<agw<x1>agaﬂ<x3> 59pa(x2)> Virgg(107, —107) Vipgy (107, —107,107 —197)
5(d)(x31)

" (@2,)A72 1 (23,) 72
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028 oS s Cf) aB /.31 - 023 vaf/: 923 93l 923 | :Ql2
<6guu(x1)69pa(x2) 5ga5(x3)> = = Vpg(107, —10%) Vprgg (107, —i9%, =0 +19°7)

y 5(d)(x12)
(235) /2= (25, )4/21
5’8 ) s C}S< pv (s al2 . a3ly1,aBpo- a3l - al2 - al2 - 23
<5ga,3(333)5gpa(332) 59W(x1>> 77VT¢¢(28 ,—10 )VTT¢¢(Z<9 ,—10°°,10° —i0%)
5(d)($23)

(4.11)

NCALCEA
Notice that in the three contributions above, the p,q, and [ dependence of the vertices
correspond to mappings into p, ¢ and [ which are specific for each T-bubble. Similarly, in
the fermion sector we obtain

< RS 3S >F B
5guu($1)5gaﬂ(x3) 69,00(1‘2)
~CE 6 (w31) tr [v;f;gﬁ(z‘ 0", —i9%) i 0V (107, —i9'%)ir - 0%]
1

X Y
@B P () 72

(4.12)

and similar expressions for the k— and p-bubles. Finally, for the spin-1 vector field we
obtain

< 528 58 >V_
59“1/(%1)5904[8(1'3) 5gpcr(x2)
Cg (d) 7avpaBX (: al2 - 923\ Y7poTw 2 923 - 12 O¢r Oy
75 (231) Vipplaa “(00°°, =i 07°) VA (107, —i0°7) ——5—, (4.13)

L12 123
and similarly for the other bubble-type contributions.

Notice that this expression is affected by terms proportional to derivatives of § func-
tions. We refer to appendix E for more details on the specific structures of these terms in
momentum space, where we illustrate this point in a simple case. The complete structure
of the T'T'T" vertex in position space is obtained by combining the triangle and the “K”,“P”
and “Q”-bubble topologies in the form

. . ) B 5S 58S 5s \!
<T (1) TP (x2) T B($3)> = I;’V8 [_ <6g,w(:t1) 5gop(x3) 5ga6(1‘2)>

. < 528 5S >I+< 528 0S >I
5g,uu(331) 5901,3(353) 5gp0(x2) 5.9#1/(-%'1) 5gpa(x2) 5gaﬁ(x3)

528 5s \!
" <5ga,e(xs)5gpa(wz) 5gﬂu(w1)> } '
(4.14)

This expression is in agreement with the form of the energy-momentum tensor three point
function given in [27]. The integrability of this result is manifest, due to the (d/2 — 1)
exponent of each propagator in position space, which corresponds, generically, to a 1/I?
behavior in momentum space. The vector terms, which exist in d = 4 are, obviously,
Fourier integrable.
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5 Moving to momentum space using Lagrangian realizations

At this point we use again the free field theory representation of these correlators to study
their expression in momentum space. This will allow us to perform a direct comparison
between position space and momentum space approaches for correlators affected by the
trace anomaly. We start by investigating the perturbative structure of these theories and
derive the corresponding vertices.

The actions for the scalar and the fermion field are respectively

Sscalar = é /d4$ \/§ |:guy v,u¢ VU¢ —X R ¢2:| ) (51)
Sfermion = % /d4$ V Vap |:77[) ’Ya (DP w) - (DP @Z) ’Ya ¢:| ’ (52)

where x is the parameter corresponding to the “improvement term”, that we have chosen
to be 1/6 in the diagrammatic calculation so to deal with the classically conformal invariant
theory. V4” is the vielbein and V' (= ,/g) its determinant, needed in such a way to embed
the fermion in the curved background, with its covariant derivative D,, as

1
Dy =0+ Ty =0u+5 SP VTV, Vi (5.3)

The £°? are the generators of the Lorentz group in the case of a spin 1/2-field.
The action S for the photon field is given by

Sphoton = SM + ng + Sgh ) (54)

where the three contributions are the Maxwell action, the gauge fixing contribution and
the ghost action

Sy = % /d4x VIFPF.z, (5.5)
1

S = 3¢ / B G (Vad®)? (5.6)

Syn = —/d4x\/§8°‘68ac. (5.7)

We will be using Euclidean conventions for the generating functional, given by
1 _
W= /DAM DeDeeSelAuneel (5.8)

We will omit the “E” subscript from now on, as already done in (2.6), to keep our nota-
tion easy.
The energy-momentum tensor is defined in (2.4), which becomes, in the fermionic case,
0S

1
T/“/ — _V VO(/L W . (59)
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Figure 3. List of the vertices used in the Lagrangian mapping of the conformal correlators

This tensor is not symmetric in general, but its antisymmetric parts do not contribute to
our calculations, so that, for our purposes, we can adopt the symmetric definition

def 1 ) )
py = Qe L
™= — (V e Vs %)S (5.10)

as well. The energy-momentum tensors for the scalar and the fermion are

v 1 1
Ticatar = V'OV 6 — 59" 9" Vad Vo + x [gWD ~ VIV g R~ RW} &
(5.11)
, 1 o ) . -
Tff)rm = Z gHP Voo + g P VaM - 29” Vap:| [¢7 (DP ¢) - (DP w) Y ¢], (512)

while the energy-momentum tensor for the photon field is given by the sum of three terms
Thep =Tar + 17 + T, (5.13)

with

1
TJ\IjIV = Frepv Zgw/};szFaB 7 (5.14)

v 1 v v v o 1
Top = G {A“V (Vo AP) + AVVH(V ,AP) — g [APN (VA7) + 2(v,,AP)Q]} , (5.15)
Th = g0 cd,c — 9'ed c — 0"cdve. (5.16)

The computation of the vertices can be done by taking (at most) two functional derivatives
of the action with respect to the metric, since the vacuum expectation values of the third
order derivatives correspond to massless tadpoles, which are zero in dimensional regular-
ization. Given the complexity of the result and to avoid any error, we have checked that all
the expressions obtained for the 1-loop vertices satisfy the corresponding Ward identities
derived in the previous sections. They are given in figure 3 and their explicit expressions
have been collected in appendix D.
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5.1 The interpretation of the counterterms: the TT case

In this section we begin a discussion of the structure of anomalous correlators in mo-
mentum space, starting, for simplicity, from the 7T case in the conformal limit. In the
non-conformal case this correlator has been investigated in [5, 6] in the worldline approach.

This is a warm-up case before the more involved analysis of the 3-point functions that
we will discuss afterwards. As we are going to see, the interpretation of the anomaly
and of its origin, in the process of renormalization, can be different in position and in
momentum space. In fact, the anomaly can be attributed either to the specific structure
of the counterterm in dimensional regularization, which violates conformal invariance in d
dimensions, while being traceless in d = 4 or, alternatively, to the renormalized amplitude
in d=4. In this second case the anomaly emerges as a feature of the d = 4 renormalized
amplitude and, specifically, of its 4-dimensional trace.

In the T'T' case conformal symmetry fixes this correlator up to constant, and one
can proceed with the Fourier transform without resorting to a specific free field theory
realization. Using the inversion matrix in Euclidean space, we define the conformal energy-
momentum tensor two-point function as

<T,uu($) Taﬁ(y)> _ %IMV@/@)(S) , (517)

where Z#"*P(s) was defined in (4.2) and (4.3).
In order to move in the framework of differential regularization, we pull out some
derivatives and rewrite our correlator as

<TW($) Taﬁ(0)> " 4(d— 2)021:1(d +1) Al :32;*4 ’ (5.18)
where
Admes = 2 (6107 1 oG] - @O, with &M =g — 5D
(5.19)
9, ADuad _ S A pvaB _ (5.20)

For reasons that will be discussed in section 8, this form of the T'T" correlator is Fourier-
integrable, although it is characterized by a UV divergence as x — y. To move to momen-
tum space we can split the 1/(22)%2 term into the product of two 1/(x2)%?~1 factors and
apply straightforwardly the fundamental transform (c.f. eq. (8.1)), obtaining

<T’“’ Taﬁ> (p) = / d%z <T’“’(a:)T°‘B(O)> e P

= Cr d,. ,—ip-z A (d)pra 1 1
-~ 4(d—2)2d(d+1) / dwe A (22)d/2-1 (g2)d/2-1
2m)?C(d/2 = 1)’ Cr \ (4) was / 4 1
= AR —_—. 21
4(d — 2)2d(d + 1) (p) [ d 2(1+ p)? (5.21)
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We have also defined

0" (p) = 6" p* — p"p” (5.22)
ADmep) 1 (00 €7 +64(5) 0 (0)) - 11 0 ()07 ) (5:2)

as the momentum space counterparts of the two operators previously introduced. In our
notations A @8 ig obtained from the expression above by setting d = 4. The tensor
indices, however, are still running from 0 to d — 1.

Notice that in d dimensions the T'T" correlator is anomaly-free (i.e. traceless)

Sy <TW Ta5> (p) = dag <TW Taf3> (p) = 0. (5.24)

As we move to d = 4 the correlator in momentum space has a UV singularity, coming from
the 2-point integral

1 1 [T(1—¢/2))>T(e/2) 1
Bo(Pz) 2 ! 2(+p)? - I'(2—¢) (7 p2)e/2
2 u?
== +2+1In <p2> + O(e), (5.25)

where ¢ = 4 — d and we have introduced the quantity % = % — v — Inw, typical of the
modified minimal subtraction (M .S) scheme. If we work in position space, renormalization
is enforced by adding a local (i.e. ~ 8(z—v)) counterterm of the form ¢; /& AWHeB §(;—y)).
The regulated correlator in d = 4 is then defined as

Cl «

CT A (d) pra; 1 4) pvafB cd
@ apaasn X gt AV ) (5:20)

(T (@) T*%(0)) = §

Notice that the counterterm is traceless for d = 4 (i.e. contracting the indices with a 4-
dimensional metric) but not in general dimensions. Therefore, if we split the d-dimensional
metric (5%)) as a direct sum (@) of a 4-dimensional (9., = 55%,)) and of a (d—4)-dimensional

metrics acting on the subspaces My and My_4 (i.e. My = My @ My_4) we obtain
d) A (DpvaB _ s(4) A (Hpvap d—4) A (Dpvap _ g(d—4) A (4)puvas
5£W)A( Jpvaf _ 5;(W)A( Iz +6,Ew JA@ v _ 5;81/ ) A@)r (5.27)
and using the relation
§G) Amrad — o (5.28)
we find that the d-dimensional trace of A® is O(e)

5 AW e _ —§ o8 . (5.29)

If we now use the relation 5WA(d) reB — () it is clear that the trace of renormalized T'T
correlator gives the correct anomaly. In particular, the trace operation cancels the 1/e pole
of the counterterm

5}(;111 <T‘“’/($) Ta5(0)> = i(;l(;li/f@ A@) prap 5d(x — )
€
= %1 [—1 + %(’y +1In W)} 068 §4(x — y) (5.30)
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which is finite as ¢ — 0 and reproduces the expected anomaly. The selection of the
counterterm is in agreement with the anomalous Ward identity of the 2-point function
in momentum space. This can be checked directly from eq. (2.1), by computing its first
functional derivative around flat space, which leaves [JR as the only contribution to the
TT anomaly

o) (177 () = 26, [OR) ™ (9) = 2 e p* 07 (1) (5.31)

Below we will be omitting the subscript (4) when referring to a 4-dimensional kronecker
duv, unless it is strictly necessary for clarity.

In the expression above, we have introduced the notation [DR] op (p) to indicate the
Fourier-transformed functional derivative of the box ([J) of the scalar curvature evaluated
in the limit of flat spacetime. The last two equations allow us to fix the final structure of
the fully renormalized correlator in the form

<T“” Taﬁ>ren (p) = <T’“’ Ta5> (p)+6 % AW pras ()

bare
= (oo () -4l amesy), (532)

bare
where we have used in the last step eq. (2.3).

In position space, as clear from (5.30), the anomaly can be attributed to the countert-
erm. This approach allows to write down the solution of the Ward identities as an anomaly
free solution (for x # y) superimposed to the inhomogenous terms, exactly as stated in
eq. (5.26). This procedure is general, and can be applied to any correlator.

It is instructive, for comparison, to comment on the same approach in dimensional
regularization working in momentum space. One can start from a field theory realization
of the same (unrenormalized) correlator obtaining

<T“” 70 > (p) = {; [0 (p) 6% (p) + ©"°(p) ©*(p)] — é@“”(p) ChE (p)} C1(p)
J% O (p) ©*F(p) Ca(p)
= AWmeb(p) ¢y (p) + %@W(P) 0% (p) Ca(p), (5.33)

where the form factors are given, in the cases of a conformally coupled scalar, a Dirac
fermion and a photon, by

16 + 15 Bo(p?) 1
Ci(p) = ——— Ca(p) =, (5.34)
conf.scalar 14400 72 conf.scalar 1440 72
2+ 5By(p?) 1
Ci(p) =",  Cup) =—r—, (5.35)
Dir.fermion 800 72 Dir.fermion 240 72
—11 + 10 By(p?) 1
Ci(p) = ;o Cap) =—=. (5.36)
photon 800 7T2 photon 120 71'2

Notice that the singularity of eq. (5.33) is contained in the expressions of Cy(p) due to
the presence of the scalar 2-point function By which needs to be renormalized. The constant
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terms in these coefficients are due to the mass-independent renormalization of the correla-
tor, here performed in dimensional regularization, which, for each separate case, conformal
scalar, fermion and photon, can be absorbed into a redefined renormalization scale p. The
two structures in the last line of (5.33) separately respect the energy-momentum conser-
vation Ward identity for the 2-point function 2.38, but only the first one, A4 afeo (p), is
traceless in d = 4, while tracing the second we obtain the anomalous relation

S O () 07 (p) = p? 0°(p). (5.37)

The singular contribution in eq. (5.33) can be eliminated by the ordinary renormalization
procedure, leaving a result that is finite and whose trace can be taken directly in 4 dimen-
stons. In this approach the anomaly can be attributed to the regularization procedure and
not directly to the counterterm, which is traceless (compare (5.27) for d = 4), while it is
the finite part of the correlator, going like Ca(p), to be anomalous.

The complete TT correlation function and its positive spectral functions were calcu-
lated in both the tensor and scalar sectors for a scalar field of arbitrary mass and curvature
coupling ¢ in 4-dimensions in [1]. In the case of general mass and £, conformal invariance
does not hold and the second tensor structure in (5.33) is always present. By taking & = 1/6
and the limit of zero mass, one can also see from the spectral function approach in [1] how
the trace anomaly appears.

As in the case of the chiral anomaly, a dispersive analysis shows that the spectral
density of an anomalous correlator is affected, under certain circumstances, by typical
contributions which amount to anomaly poles. Anomaly poles emerge from a collinear
configuration of a certain amplitude interpreted as a real space-time (on-shell) process.
Similar poles have been found in the 7T case in 2-dimensions [7]. In higher dimensions
because of the kinematics explained in [11] one must go at least to triangle amplitudes at
least as complicated as TV'V or TTT in order to find these pole terms.

We have stressed this point to emphasize that the approach followed in position space,
which consists in the addition of a contact counterterm to regulate the anomaly, is not
in contradiction with the ordinary diagrammatic picture. It simply doesn’t give the com-
plete kinematical understanding of the origin of the anomaly, which the spectral function
dispersive approach attributes to the existence of a collinear region in the (anomalous)
diagrams of the perturbative expansion. In the following, we will try to match these two
quite different descriptions by discussing more complex correlators.

6 The counterterm for the TVV in position and in momentum space

We now turn to the question of the renormalization of TV'V correlator in d = 4 dimensions.
This can be performed either 1) by solving the renormalized Ward identities in position
space or 2) by a perturbative computation in momentum space of all the diagrams in
dimensional regularization. The two methods are obviously quite different and the goal of
this section is to test their correspondence, given the results of [27].

As already emphasized in section (5.1), the renormalized 3-point functions have to sat-
isfy the requirement of general covariance as well as renormalized anomalous Ward identi-
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ties. The solution of these identities can be directly found by rewriting them in momentum
space. For the (T'VV) case, the requirement of general covariance is also supplememented
with gauge current conservation. If we denote our counterterm by D,,,05(p, q), the algebraic
conditions satisfied by the counterterm are given by

(p + Q)'LL D,uua,@(p» Q) = qv @aﬂ(p) - 51/,8 q# @ua(p) + pu @aﬂ(Q) —dva pﬂ @,M/B(Q) s
pa Duuaﬁ(p7 Q) = q/B D,uuaﬁ(pv Q) = 07 (6'1)
with ©,3(p) being the counterterm for the vector-vector 2-point function. In fact, the

equations above are just the divergent parts of the general covariance and gauge invariance
Ward identities for our three point function,

(+0)" (T Vea V) (.0) = a (Va V') (0) = s g (V. V') (p) +
s (V2 V8) (@) = buap” (V2 V'5) (a).
“ <Tw V% Vb6> (p,q) = ¢’ <T,W Ve, ng> (p,q) =0. (6.2)

To see how they arise, we introduce the counterterms for the two correlators at hand,
modulo two constants

(1907%) 0 = (), 00+ s,
(T VaV%)  (r.0) = (T Vo V) (.0)+ - Crvv Duas(pa). (63)

Replacing them in (6.2) and equating the coefficients of the 1/e terms we immediately
obtain (6.1) and the condition Cyy = Cpyy. These constraints are sufficient to state that
the counterterm is

D,U,Voc,B(pa (]) = 6045 (pu qv + Q,przx) +p-q (5u[3 dpa + 5ua 51/5)
_(5511 Dy + 5Bupu) da — (6ua Qv + 0w (Ju)pﬂ - 5;w (p ) qéaﬁ — Gua pﬂ) . (6'4)

A consistency condition on this tensor, which is easily seen to be satisfied, is that the trace
anomaly constraint in d dimensions,

M Dyvap(,q) = (4—d) (p- 9003 — Gaps) = €(P - qdap — 4a Pp) (6.5)

reproduces the anomaly.

It is instructive to see how the same operation can be performed diagrammatically. For
this purpose we just recall that the general form of the TVV amplitude can be expanded
in a basis of 13 tensor structures " (p, q) defined in [21]

Twas(p,q ZF 0% 0%) tap(p:q) (6.6)

where we have defined the tensors

p,q) = (p-q) 6 — ¢*p?,

w(p,q) =p* 6+ (p- Q) p* " — #p* P’ —p*q“ 4",

u®? (
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which are Bose symmetric,

u*?(p, q) = u’*(g,p), (6.9)
w?(p,q) = w**(q,p). (6.10)
Gauge invariance is respected due to the conditions
Pau*’(p,q) = ggu’(p,q) =0, (6.11)
Pa w*(p,q) = ggw*’(p,q) = 0. (6.12)

A complete perturbative analysis shows that the only tensor structure which is affected
by the renormalization procedure is 13, which coincides with the D, g counterterm in-
troduced above. As discussed in [21] for QED and in [3, 4] for QED and QCD by direct
computations, renormalization of the T'V'V vertex affects only this tensor structure. Given
the complexity of the computations and the wide difference between the general CFT ap-
proach and the ordinary diagrammatic one, this agreement is obviously nontrivial. As in
the TT case, the anomaly is generated by the (d — 4)-dimensional part of the trace, which
simplifies with the 1/(d —4) factor in front of the counterterm. In particular, all our previ-
ous comments concerning the renomalization of the T"I" case remain valid also here, since
in our approach the anomaly is computed after subtracting the infinities, by taking the 4-
dimensional trace of the renormalized TV'V vertex. In particular, one can check that of the
13 structures ¢; only ¢; has a non-vanishing trace, while the remaining ones are traceless.
As discussed in [21] for the fermion case, ¢; carries all the information about the anomaly
and its corresponding form factor (F}) contains an anomaly pole. The extraction of this
additional information about the TV'V correlator indeed requires a complete analysis of
the same in momentum space.

6.1 TVV on-shell in d =4 and the anomaly poles

As we have mentioned, the complete TV'V correlator can be obtained in any dimension as
a superposition of a scalar and of a fermion sectors. Obviously, this result holds for any
CFT, and the explicit evaluation that we provide is completely general. In the off-shell
case the fermion loop has been analyzed in [3, 21]. Explicit resuls for this sector can be
found in [3]. In this section we extend the computation to the scalar sector, focusing on
the on-shell case for the two external vectors, since the expressions in the general case are
far lengthier.

In the on-shell case the 13 structures ¢! simplify drastically. We use three structures A',
A? and D, with D being the counterterm discussed above, to describe the parameterization
of this vertex. In terms of the momenta of the two outgoing gauge bosons (p,q), with
p?=¢*>=0and p-q=k%/2 we have

T (P, o' = - Q)f/SA/ﬂmﬁ(p, Q)+ Fs(p- Q>f/SA;2waﬁ (p.q) + F5*(p- Q)f/SDlwa,B (p,q)
(6.13)
with
Appap = (20 q6" — K uP (p,q) (6.14)

A2 s = —2u(p,q) 2p - q " + 200" " + ¢ ¢") —4(p" ¢" +¢"p")) . (6.15)
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Figure 4. The fermion/scalar sectors in the TVV vertex.

with form factors given by

F'(p-q) = 6 m, (6.16)
Fst(p-q)” = 5 5767:21)_(], (6.17)
Fab(p.q)f = —5% S5 | 12B0(2p - 4,0,0) + 11, (6.18)
for the fermion sector and
Fit(pq) = 60— (6.19)
14472 p - q
F*(p-q)° = —6% 5767:22“1, (6.20)
F$p-q)° = —5% =3 [6B0(2p+¢,0,0) + 7}, (6.21)

for the scalar sector. Notice that both the scalar (s) and the fermion (f) sectors have
anomaly poles. The anomaly is attributed to the tensor structure A; which has a nonzero
trace. As we have clarified above, the anomaly is not attributed to D (i.e. t13), which is the
counterterm found in position space, but to the tensor structure Ay, after renormalization.
The remaining structures As and D are, in fact, traceless in 4-dimensions. This structure
coincides with the form factor ¢; of [21], which has a nonzero trace. As remarked before,
the dynamical origin of the trace anomaly has necessarily to be found in momentum space.

6.2 TVV in d dimension

These results can be generalized, with some extra effort, to d dimensions. By our inverse
mapping procedure the result of the computation in this case remains valid for any confor-
mal theory, since the two sectors, scalar and fermion, are sufficient to describe the general
solution of the Ward identities. The result can be given in a form which is quite similar to
those in (6.13). We obtain

T 500 s = £ 0)CY, 050 0) + f5°(p - @) Dyvas(p: )
00 @)s = s1°(p - OCsas(P, @) + 557 (0 - ©) Duvas (P, q) - (6.22)
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The form factors are found to be
(. q) = 149 d—4
PP oy g d(d - 1)(d - 2)
26% d(d—3)+4
ab . —
2 (P9 =~ da— DA =2)

7-‘-280(217 q, 07 0)

7-‘—280(2]9 q, 07 O) )

457 d—4

ab 2

. pr— 2 .

st'(p-q) enildd—1)d—2p q" Bo(2p - ¢,0,0),

ab 2 §ab 1 )

89 (p ' Q) = - ™ 80(2]9 : Q7070)> (623)

@2mdd(d—1)

where the tensors in the basis are given by

C o0 @) = (P~ ¢0ap — 00 p5) (d(Dupy + 6 ) + (d — 4) (D v + 34 Pr)
—2(d—2)p-qéuw) ,
vas(0:0) = (P 400 — dapp) (Pp v + qubv — P Q)
Dyvap (D, @) = 0ap (Pu v + 4upy) + P q (08 va + dpa 0up)
— (0 Pu + 081 Pv) da — (Spa @v + Saw Q) PB — O (P 40 — da Pp) -
(6.24)

Notice that in this case all the structures (C, D) are traceless since there is no anomaly.
As a final observation, we remark that in the on-shell case, the only topology that survives
in the expansion of this correlator corresponds to a master integral of type By which
corresponds to a massless 2-point function. The other master integral which also heavily
appears in the perturbative expansion, Cy, which corresponds to the scalar triangle diagram,
drops out in the on-shell limit.

6.3 Renormalization of the TTT

In this section we address the problem of the renormalization of the 3-graviton vertex and
compare the standard Lagrangian approach with the deductive method of [27], which is
developed for the analysis in d dimensions. Since our interest, for this vertex, is sharply
focused on the d = 4 case, we need to clarify a few points. Notice that one of the two
counterterms that appear at Lagrangian level, G, is a total divergence in 4 but not in d
dimensions. In particular, G generates a counterterm which is effectively a projector on
the extra (d — 4)-dimensional space and as such, gives a contribution which needs to be
included in order to perform a correct renormalization of the vertex. This has been verified
by an explicit computation in dimensional regularization.
We recall that in perturbation theory the one loop counterterm Lagrangian is

Senmtee = =7 30 1 [ do3(DF+5G). (6.25)

I=fsV

We have used the 4-dimensional realization of F'

1
F=R°R,p,5 —2RRos5 + 3 R? (6.26)
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which is obtained from (A.6) with d — 4. G, obviously does not contribute to every
correlator. For instance, in the case of the TT, the counterterm is obtained by functional
differentiation twice of Scounter, but one can easily check (see eq. (B.12)) that the second
variation of G vanishes in the flat limit. Hence, the only counterterm is given by

52
4
5ga6 (xl)égpa (ATQ

D??Bpa(x17 1‘2) =

) / dw /g F . (6.27)
Its form in momentum space is given by
D (p) = 4 AW eBeo () (6.28)
and we recover the renormalized 2-point function in (5.32) just with its inclusion, i.e.
(10 797)  (p) = {10777 () ~ 2 D3 ). (6.29)

In the case of the 3-graviton vertex the counterterm action (6.25) generates the vertices

1 rvpoo rvpoo
- (@;D@ip *(z,2,9) + By DE” 5<z,x,y>>, (6.30)
where
prpoaf & d
DRP7Y (1, 29, 23) = 8 /dw F, 6.31
F ( b 3) 5gyu($1)59po($2)59a6($3) \/§ ( )
53

D (2,2, y) =

d
° 690 (%1)3Gp0 (22)0g0p(23) / d*w/gG . (6.32)

(6.32) and (6.31) are obtained by functionally deriving three times the general functional
I(a,b,c) = / d*z /g (a R Rapeq + bR Ryp + ¢ R?) (6.33)
with respect to the metric for appropriate a,b and ¢, i.e.

a=1, b=-2, c=

=W

a=1, b=—-4, c=

Some of the computations are, for convenience, reproduced in appendix B.
It is known that Dgf’o‘ﬁ ??(p, q) is found to vanish identically in four dimensions. In
fact, its explicit form is

DY (p, q) = —240(BHoereedit o puearsioi g o 6 8) g gspepy,  (6.34)

where EHov52PBOX {5 o projector onto completely antisymmetric tensors with five indices,
so that it would yield zero in four dimensions, reflecting the fact that the integral of the
Euler density is a topological invariant in such dimensions. We have explicitly checked by
an explicit computation that, given the structure of the counterterm Lagrangian in (6.25),
one needs necessarily to include the contribution from the G part of the functional, in
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the form given by D¢, in order to remove all the divergences. This choice brings us to a
counterterm contribution which regulates T"T"I" which is slightly different from the approach
followed in [27]. The two approaches, in fact, differ by a finite renormalization, since in
our case we reproduce the entire anomaly, including the local contribution (8. # 0). The
fully renormalized 3-point correlator in momentum space can be written down as

1
<T””T poTeP > (p,Q)=<T “”Tp"T“B>b (pra)—=

are

<ﬁa D% (p, q)+ By DI (p, Q)>

(6.35)
and the goal is to proceed with an identification both of Dr and Dg from the diagrammatic

ren

expansion in momentum space. The cancellation of all of the ultraviolet poles, for suitable
expressions of Dr and D¢, has been thoroughly checked from our explicit results. As we
have already discussed in the previous cases, after renormalization, we can take the trace
of (6.35) (in four dimensions) and obtain the entire trace anomaly.

In parallel, it is instructive to see how one can derive the analogue of (6.35), using our
expression of F', which is 4-dimensional, but following the same approach of [27], i.e. by
using the Ward identities. In this case we are bound to introduce the generic counterterms
to the TTT vertex
(Trreees) 9= (e’ >ba (@ Q)J% <CF DEP? (p, q)+Cr DI P (p, q)) ,

ren r
(6.36)
written in terms of arbitrary coefficients Cr and Cg. Notice that, for convenience, we
have formulated (6.36) in momentum space, but the 1/e corrections are supported only at
the coincidence point (z1 = xe = x3), for appropriate Dr and D¢, as one could check by
performing a transform of this expression.

With the addition of the new contact terms which guarantee the regularization of the
correlator, the new renormalized vertex must satisfy (2.41) and two similar identities which
follow exchanging indices and momenta properly.

One can check that Dg”aﬁ P?(p,q) is transverse, as (6.34) shows clearly,

k, DEPP7(p.g) =0, paD& " (p,q) =0 g, D" (p,q) =0, (6.37)

so that by inserting the expressions (6.29) and (6.36) into these Ward identities and tak-
ing (6.37) into account, one obtains three conditions on the F-contribution to the coun-
terterm, the first being

Cr ky DE7 (p,q) = —4 Ba{q“A(‘” P78 (p) + pt AW @Pee ()

—q st A4 voaB (p) + SHo A4 vpal (p)] — [5uaA(4) VBpo(q) + A4 Vapa(q)} } 7
(6.38)

and the other two coming from a permutation of the indices and of the momenta. They
are seen to be satisfied if Cp = —f,.
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o

Figure 5. TTT and its counterterms generated with the choice of the square of the Weyl (F)
tensor in 4 dimensions and the Euler density (G

e

Figure 6. The contributions to the renormalized TTT vertex from the square of the Weyl tensor
in d-dimensions (F¢) and the Euler density (G).

Exactly the same argument can be applied to the three anomalous trace identities in
d = 4 + € dimensions in order to fix Cq. Notice that, in this approach, the anomaly is
reproduced by taking the traces of D‘}”aﬁ (p,q) and Dg”o‘ﬁ (p, q) in d dimensions, obtaining

8 DA77 (p,q) = —4e <[F] P (p, q) — %[\/?D R]* (p, C_I))

8 (A(4) aﬁpa(m +AM® aﬁpa(q))

Sur D (p.q) = —4¢ [G]* (p.q). (6.39)
According to the previously established notation, [F ] abpo (p,q) and [G] abpo (p,q) are the
Fourier-transformed second functional derivatives of the squared Weyl tensor and the Euler

density respectively. Requiring (2.43) to be satisfied by the renormalized 2 and 3-point
correlators we get

S < — Ba D (p,q) + Ce D (p, Q)> =

de

Ba ([F] P (p,q) — %[\/?D R)*77(p, q))
+6, G177 (o, q)] —8 (A(“) B (p) + AW “ﬁp"(q)) , (6.40)

and other two similar equations, obtained by shuffling indices and momenta as for the
general covariance Ward identites.

In this way the conditions (6.29), (6.39), (6.39) and (2.3) allow us to obtain the rela-
tion Cg = —f, as expected. We have verified by direct computation for scalar, fermion
and vector fields that the approach followed in ref. [27] of solving the Ward identities by
adding contact terms to the homogenous expression of vertex (obtained for separate points)
matches precisely the renormalization procedure above in momentum space.
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¢ q ¢ F Frin

Figure 7. The relation between the counterterm generated by F¢ and the same obtained from F.
The difference is a finite renormalization (Fy;,) generated by the \/§R2 term in the counterterm
Lagrangian, which generates the local contirbution to the trace anomaly.

Notice that in [27] the choice of F' is slightly different from ours, since the authors
essentially define a counterterm which at a Lagrangian level would be of the form

Scounter = _1 /d4l‘\/§ (Ba Fd + Bb G) (641)

€
based on the d-dimensional expression of the squared of the Weyl tensor (F?). Such a
choice does not generate a local anomaly contribution proportional to JR as d — 4. In
fact the authors choose to work with 5. = 0 from the beginning, since the inclusion of the
local anomaly contribution amounts just to a finite renormalization with respect to (6.41).
Notice that in d dimensions, if we take the trace of the functional derivative in (B.12) for
a=1b=—-4/(d—2), ¢ =2/((d — 1)(d — 2)), which are the d-dimensional coefficients
appearing in F'¢, one can explicitly check that the contribution proportional to (R in the
anomalous trace cancels. For this purpose we can expand the integrand of (6.41) around
d=4 (in e =4 —d) up to O(e), obtaining that the counterterm action can be separated in
a pole plus a finite part, i.e.

5

Scounter = Scounter + Sﬁn.ren. = Ocounter T 5(1 /d4$ \/Z] <Ra/8 Raﬂ - E Rz) + O<€) : (6'42)

Recalling the definition (2.5) and using (B.12), we see that the contribution of this finite
part to the vev of the energy-momentum tensor is

G (T ) ven. = —BOR. (6.43)

Comparing this with (2.1), we see that this extra contribution will cancel the local
anomaly.

So this approach is equivalent, for what concerns the anomaly, to supplying the action
of the theory with the finite renormalization usually met in the literature, i.e.

Si) sen. = —% / d'z /g R?, (6.44)

which is known to cancel the local anomaly, due to the similar relation

2 68%1’1 ren.

) — - _Bc DR, 645
g,U \/g 59;1,1/ ( )

which holds in d = 4 as well.
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6.4 The renormalized on-shell 3-graviton vertex in 4 dimensions

In all of the three cases examined, the vertex F“"o‘ﬂpa(p, q) can be expanded on a basis
made up of thirteen tensors, if we go on shell on the two outgoing gravitons, which amounts
to contract the amplitude with polarization tensors which are transverse and traceless

e5.(p), (€)', =0, ples, =0, (6.46)

where the superscript denotes the helicity state.
It is easy to see that the contraction of the amplitude with the polarization tensors
with the properties (6.46) for the two outgoing gravitons is equivalent to the replacements

P> =0, ¢>—=0, p*—0, p6—>0, g =0, ¢ —0, (6.47)

so that we will give the amplitude in terms of tensors which are non-vanishing after this
limit is taken.
The expansion of our Green’s function for a theory with ng scalars, np fermions and

ny vector bosons can be written in general as

13
= > Y Q) (p,q),
=1

nr=ng,ng,nv

s=k=(p+q’=2p-q. (6.48)

(T 7T (p,0)

On—Shell

The form factors for the three theories at hand are listed in table 2, modulo the three

overall factors, in the first row. The 13 tensors ¢! vafp “(p,q) are listed below. They are
given by
PP (p,q) = (p"p” + ¢q”) PP ¢
P (pq) = (p'q” + p"q") pPp° % q°
7 (p,q) = (P + ¢"q”) (p7¢° 5% + p7 ¢ 6% + pg®5°7 + pPg®P7)
£ (p,q) = pp” (4”06 + ¢"4"5™ + q°¢"5™ + q°¢"6™)

_|_qa B (p"p7 6" + P! pPSHT + prpT 6 P 4 phpPs)
P (p,q) = (g + ") <p” (¢°0% + ¢°6°7) + p (¢™6°" + qﬂ””))

tgl/aﬁpa( B8

p.q) = "p’p7q%q
$raBes (g, ) = pPp? (4678 4 5MP V) + qgP (510577 + 517 6P
_% <p,upp(5a051/,8 + 5,6’0(51/(1) +pupp(5aa5u,8 + 5,6’05,ua)

+pt'p? ((5“”5”5 + 5ﬂ05”0‘) +p"p° ((5”5“’3 + 5/3”6“0‘)
+qtg® (5505Vp + 55;)51/0) +¢V¢" (550(5#/) + 56/)5#0)

_|_q,uqﬁ (5040'5Vp + 5ocp(smr) + quqﬁ (5a05up + 5ap5u0)>

7 (p,q) = (p"p” + 'q”) (52755 4 5o° 557
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S F 1
i Q7 (s) Q; (s) Q7 (s)
1 1 1 1 1 72
1 “720x2 X 25 24072 = s 115272 X Bs
1 1 1 1 1 64
2 “ 7202 X s 24072~ 3s 115272 X 5s
g __1 . T+30Bo(s) 1 13-30By(s) 1 82-120Bo(s)
720 72 120 240 72 60 115272 25
4 1y 245Bo(s) 1 7—70 By (s) 1 2 (4824130 Bo(s))
720 72 10 240 72 120 1152 72 25
1 1 1 —1410 Bo(s) 1 79-+50 Bo (s)
5 202 X 6 24072 8 5272 ° 5
6 1 23+20 By (s) 1 33+70 By (s) 1 104 (2245 By (s))
720 72 20 240 72 60 115272 25
71 s(6+15B0(s) | _ 1 3s(24+5Bo(s) |___1 _ . s(=11+105o(s))
720 72 20 240 72 10 1152 72 80
8| __1 s(474+30Bo(s)) | 1 35(94+10B8o(s)) 1 s(245Bo(s))
720 72 80 240 72 10 1152 72 10
9 15 (245 Bo(s)) 1 7s(1-10Bo(s)) | 1 « 8 (4874130 By(s))
720 72 10 240 72 180 1152 72 50
10 1 5 (9410 By (s)) 1 5(1374430Bo(s)) | 1 5(883—230Bo(s))
720 72 20 240 72 130 1152 72 50
11 =1« s(T+5Bo(s)) | 1 75 (9410 Bo(s)) 1 s (4674130 Bo(s))
720 72 20 240 72 240 1152 72 25
19l _1 s (121490 Bo(s)) | 1 5(97+130 By (s)) 1 25 (299435 Bo(s))
720 72 240 240 72 240 1152 72 25
13 1 552 (342 Bo(s)) 1 552 (9410 Bo(s)) _ s2(13=Bo(s))
720 72 32 240 72 96 115272

Table 2. Form factors for the vertex I***#77(p,q) in the on-shell limit.

tgua,@po(p’ C]) _ pp <qy(5a05ﬂu + 50{1/550) + ql’((‘)‘aff(‘)‘ﬁ# + 5&;16,(30))

+p7 <q“(5ap<5ﬂ” +6065P) + ¢¥ (570571 + §°16°P)

+q“

+q¢°

pu((gb’a(gw + 5BP5VJ) + pV((gﬁU(gup + 5609#0))

<pu(5cw(sup + 5(1/)51/0) + pV((SCYU(SHP + 5ap5/uf)

t;f[)l/()zﬁ/)tf(p7 Q) — pp <qa(5ﬁz/5ua + 56#&/0) + qﬂ((sazz(;,ua + 5a,u,5ua))

+p° (qa((gb’v(gup + 5Bu5l/p) + qﬂ((;av(gup + 5au5l/p)>

—p.q <5ap(5ﬂv5lw + 5Blt(gva) + 5ow(5/305up + 55;)5#0)

+0°H(6776¥ 4 57P6¥7) + 67 (67 61 + W(W’))

P (p,q) = (pYg" + phg”) (6705 + §°P§5)

th5 "7 (p.q) = " <p” (470°7 +q°677) +p7 (¢"0°° + ¢*0° p))

5 ) = 9 (5775 4 5°765),
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The correlator is affected by ultraviolet divergences coming from the two-point integrals
Bo(s) (see eq. (5.25)). This is true in the off-shell case too, as all the other contributions
to the scalar coefficients of its tensor expansion are made up of the three invariants p?, ¢
and p - q plus the scalar 3-point integral

1 1
= — [ a4 = 2 si=p?, i=1,2, (64
C0(5781752) 12 / 12 (l +p1)2 (l +p2)2 ’ S (pl +P2) S b, 1 ) 4y (6 9)

which is finite for d = 4. In the M S scheme the renormalized two-point integral is defined as

2

BYS(p?) =2+ In (’;2) : (6.50)

which simply replaces the unrenormalized expression By(p?) (5.25) given in table 2, after
using the renormalization procedure discussed above. We have checked that by taking the
trace of these 13 tensors one reproduces the Weyl, Euler and local contributions to the
trace anomaly satisfied by the vertex which in this on-shell case are given by

s (T )| = a{ ([ 0.0~ S[VEO R .0)

On—Shell

+8, [G]*7 (p, q)} (6.51)

On—=Shell

Sas <T““TO‘5T’“’> (», q)

— 4 {@1 <[F] M (ke q) — 2[@ R|" (—k, q))

On—Shell

(6.52)

5 (G (k) - 5 (T ()}
On—=Shell

8per <T‘”’T"5T’“’> . q)

= afpu (7" ko) - S VIO R (k1))

On—Shell
1
+6y [G]" (—k,p) — = <TWT°“B> <k>} (6.53)
2 On—Shell
with
[F]*7%7 (p, q) = 20p°¢*¢" —p-q <P”q5 5 — pPq’ 57 — p7q*PP — p? qaéﬂo)
On—Shell
+(p-q)° (50‘"55” + 50%5") (6.54)
(G157 (p, q) = 20p°¢*¢" —p-q <p”q55°“” — pPgP 5T — p7q*6Pr — p’)qaéﬁ")
On—Shell

+(p-q)? (5“"55" + 5“"55"> (6.55)

[VIOR)* (p, q)

1
= Sp-q <p"q55a’) +p°¢75°7 + p7q*6"" + ppq%ﬁ")
On—=Shell
3
—5(p q)? (g“"éﬁ" - 5“”55"> : (6.56)

The on-shell limits of the two point functions appearing in the r.h.s. of (6.52) and (6.53)
are obtained from (5.33) replacing p — k and using (6.47) in (5.22).
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7 The T¢?¢? and VV'V correlators in momentum space

A similar analysis allows to obtain the expression in momentum space of the T¢?¢?, dis-
cussed before in position space. We give the complete d-dimensional off-shell expression.
It can be decomposed into four independent tensor structures

9.0 2 2
L7 (p.q) = Fi(p,q) (pupy - Z%) + Fi(q,p) <ququ — qdé,w>

2p-q 1
+F>(p,q) <p#qy + pugy — d%) + F3(p, q)géyy (7.1)

where the first three tensors are traceless while the last one has a non-vanishing trace.
The three form factors are given by

2

Fi(p,q) = (2710(1 2 2)(;(]2 ) {(d —p-a(p-q+¢*)p+a)°Bo((p + 9)*)
~Bo(p?) {pQ((d ~p-¢*+2p-q¢® +¢*) + (d—2)p-*2p g+ QQ)]
~Bala®)| (3= 5)p- 4+ 1)~ (0= 35 = (0= 1p- ) + (a2 |
+p-a+a*)p+a)*(d—2)p- ¢ +p*¢*)Co(p?, (p+ a)%, q2)} :
Fy(p.q) = (2717)d 2 2)(;’;2 ) {Bo(p2) {(d —1)p*p-¢*+(d—-2)p-¢’ +p°¢p- q]
+Bo(q%) [(d ~1)¢’p-¢* +(d=2)p- ¢’ +p*¢p- q}
—p-qBo((p+9)*) [(d —p-q(p® +¢*) + (d = 2)p*¢* + dp- qz}
LS 2)2 ._qi +p2q200(p27 (r+9)?* ¢ [(d = Dp-a@® +¢*) + (d = 2)p*¢* +dp- qz} } :
Fy(p.0) = Gy (Boo®) + Bola?)) (7.2

Finally, we present here the expression of the conformal contributions to the VVV with
two external legs on mass-shell. This limit is achieved contracting with the two polarization
vectors (eq(p),ep(q)) and sending the invariants p?, ¢* to zero. The fermion sector, for

instance gives

DU 0.0) = om0 = 8)has(p— 0 +20d 21 Bt — )
—i;;(p - Q)Apﬁqa}WQ By(2p - q,0,0), (7.3)
while the scalar sector gives
Logn " (p.q) = = : i {5a5(p — @)+ (d = 2) (65790 — arpp)
(2m)d (d —2)(d —1)
+;lp_é(p - Q)APBQa}ﬂ'Q Bo(2p - ¢,0,0). (7.4)
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8 Handling any massless correlator: a direct approach in d dimensions

In the previous sections we have tried to compare perturbative results in free field theory
with general ones coming from the requirement of conformal symmetry imposed on certain
correlators. We have also seen that in this case, working backward from the explicit field
theory representation of the lowest order realization of these correlators, one can match the
general solutions given by conformal field theory. This is the case of the VVV TVV and
TOO correlators in general dimensions, while for the T'T'T" the 4-dimensional solution of
the Ward identities is completely matched by a combination of scalar, vector and fermion
sectors. As we consider the same 3-graviton vertex in d-dimensions, the vector contribution
is not conformally invariant, and therefore the combination of the scalar and the fermion
sectors does not match the most general d-dimensional solution. This raises the issue if
there is, in general, a free field theory that can reproduce a given CFT correlator, and there
is no simple answer. The goal of CFT, in fact, is to bootstrap certain correlation functions
bypassing, if necessary, a Lagrangian formulation.

In fact, one of the main features of the standard CF'T approach in the identification of
the correlators of a given conformal field theory is to work in position space with no refer-
ence to a Lagrangian. The finiteness of the Fourier transform is the necessary requirement
in order to proceed with the identification, if this turns out to exist, of the corresponding
field theory, since this can always be defined in momentum space.

Checking the finiteness (in momentum space) of a general solution given in position
space are not obvious steps, since a correlator in position space such as the TT7T, once
expanded, contains several hundreds of terms, most of them characterized by a divergent
Fourier expression in momentum space. For this reason we are going here to illustrate
a very general algorithm that allows to compute correlators of such a complexity using
a direct approach. Our analysis will be formulated in general but illustrated with few
examples only up to correlators of rank-4. We will be choosing, as a test of our approach,
some of the correlators defined in the previous sections and for obvious reasons. These, in
fact, as we have seen, can be deduced from a Lagrangian formulation and therefore their
expressions in momentum space are well defined. Obviously, we need some intermediate
regularization of the integrands (in position space) of these correlators in order to proceed
with the definition of the Fourier transform of each individual term. This is obtained by
introducting a power-like regulator (w) which is the analogous of the e regulator of ordinary
dimensional regularization but, for the rest, completely unrelated to it.

The algorithm implements a sequence of integration by parts before proceeding with
the identification of the w-regulated transforms. As a consistency condition, the correlators
that we investigate have finite Fourier expressions, as expected, and we check the direct
cancellation of all their Fourier singularities, which appear as poles (double and single)
in 1/w.

The finite parts of the procedure, which correspond to the Fourier space integrands,
manifest specific logarithmic terms. These, in general, are a new feature of the momentum
space form of a given (position space) CFT correlator. They are expected to appear once
we rewrite any CFT correlation function from position to momentum space. Obviously,
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these log terms, in some cases, can be rewritten as ordinary (non-logarithmic) integrals, in
other cases not, and we can think of the log-integrals, in all these second cases, as of new
irreducible contributions.

In the correlators that we investigate, obviously, we know beforehand that they have
to be matched by free field theory. In this case, a brute force application of the algorithm
would produce log-integrals which are, therefore, reducible to ordinary (non logarithmic)
ones. When the w singularities cancel, which indicates that it is possible to recollect the
terms in position space (and using integration by parts) in such a way that the Fourier
expression is manifestly finite, the logarithmic terms are absent. The use of the previous
(Fourier integrable) vertices allows to test this approach showing its consistency.

The steps. As we have already mentioned in the previous sections, given any correla-
tor, we can formulate a general procedure which allows us to transform its expression to
momentum space, with the following steps:

1) expansion of the correlator into its single tensor components;

2) rewriting of each component in terms of some “R-substitutions”, that we will define
below;

3) application of the dimensional shift d — d — 2w which can be performed generically
in the expression resulting from point 2); and

4) implementation of the transform. The transform is implemented by eq. (8.1) for each
single difference z;; = x; — ;. For correlators of higher orders, say of rank n (n > 3),
the transform is used n times.

As we are going to describe below, this method and the regularization imposed by the
dimensional shift allows to test quite straighforwardly the integrability of any correlator,
a point already emphasized in [27] where this regularization has been first introduced.
The transform can be applied in several independent ways. These features share some
similarities with the so called “method of uniqueness” (see for instance [22]) used for
massless integrals in momentum or in configuration space.

8.1 Pulling out derivatives

One of the main steps that we will follow in the computation of the transform of the x-space
expression of the correlators consists in the rewriting of a given x-space tensor in terms of
derivatives of other terms. We call this rule a “derivative relation.” It allows one to reduce
the degree of singularity of a given tensor structure, when the variables are coincident, in
the spirit of differential regularization. Differently from the standard approach given by
differential regularization, which is 4-dimensional, we will be working in d dimensions. We
will be using the term “integrable” to refer to expressions for which the Fourier transform
exists and that are well defined in d-dimensions, although they may be singular in d=4.
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Derivative relations, combined with the basic transform

11 T(d/2—a) g ettt g, el
@2 ~ 10742 T(a) /d l (12)d/2—a Cla) /d l (12)d/2—a

Cla) = id/Q F(dg?a; %) (8.1)

allow one to perform a direct mapping of these correlators to momentum space. We proceed
with a few examples to show how the lowering of the singularity takes place.
We start from tensors of rank-1. At this rank we use the relation

o _ 1 5 1
(z2) — 2(a—1) " (a?)o!
= g [ (52

to extract the derivative, where in the last step we have used (8.1). Notice that by us-
ing (8.1) with & = d/2 — 1 one can immediately obtain the equation
1 47/2

D<x2)d/2—1 - TT(d/2-1) D) (83)

which otherwise needs Gauss’ theorem to be derived.
Scalar 2-point functions describing loops in x-space are next in difficulty. As an illus-
tration, consider the generalized 2-point function

1
[(z = y)?]*[(z —y)?]7

Using (8.1) separately for the 1/[(z — y)?]* and the 1/[(z — y)?]? factors, the Fourier
transform (F7) of this expression is found to be

1 _ d, gd e~ prtqy)
T [[(x y)ﬂ&[(my)?}ﬂ} = / Y =l — 2P
1
BRI

(8.4)

— (20)2C(a) C(B) / a4 (8.5)

Uniqueness allows to reformulate the transform by combining the powers of the propagators
into a single factor

! Cla+p)
T [W] = (2m)* (pzﬁ/m’ (8.6)
giving, for consistency, a functional relation for the integral in (8.5)
/ 49 1 _ Cla+p) 1
[212[(1+p)2]P ~ C(a)C(B) (p?)d/2—a—5
_ -d/2 F(d/2_Od)r(d/2—ﬁ)1"(a+6_d/2) 1
- L(a)T(B)I(d - a - B) (p2)ath—dj2’
(8.7)
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In the TT and TVV cases, x-space expressions such as z#1 ...z /(22)® up to rank-4 are
common, and the use of derivative relations — before proceeding with their final transform
to momentum space — can be done in several ways. Also in this case, as for the scalar
functions, uniqueness shows that the result does not depend on the way we combine the
factors at the denominators with the corresponding numerators.

To deal with tensor expressions in position space we introduce some notation. We
denote by

n P
R H1seesn (.T,Oé) (1‘2)0‘ ) (88)
the ratio between a generic tensor monomial in the vector x and a power of 22. We do
so to denote in a compact way the tensor structures that appear in the expansion of any
correlator. We call these expressions “R-terms”.

After some differential and algebraic manipulation we can easily derive the first four

R-terms as
1 _ 1 1

R H(x’a) - 2(@ — 1) au (:L»Q)a—l R

? = ! L 6;w 1
Ry(z,0) = 7 (a—2)(a—1) O Oy (22)0—2 *3 (o—1) @pT1

1 1

3 - —_—_—

Bowpl,0) = g e =1y % O O e
1
e D) [0 Ry + Sup Ry + 6, R ] (2,0 — 1),

1
16(c — 4) (o = 3) (o — 2)(ar — 1) (22)a—4
1
m [6;,LVR2pO' + (spo—RQNV + (SMpRZVU + 6V0'R2up
+6;wR2Vp + (SprZ/w] (33, o — 1)
B 1
Yoo —2)(a—-1)

R po (T, 0) = 0y 0, 0, 0y

+

(5,uu5pa + 5up5mf + 5/105140) (89)

1
(x2)0—2"
The use of R-terms allows to extract immediately the leading singularities of the correlators,
as we show below. One can use several different forms of R-substitutions for a given tensor
component and the procedure is in fact not unique. For example, a second rank tensor can
be rewritten in R-form in several ways

(x[@%i]?ff)” = Rl —y,d+1)
=R'y(x—y,d/2+1)R',(z — y,d/2)
= (x_ly)z R'y(z—y,d/2) R',(x —y,d/2). (8.10)

The derivative relations in the three cases shown above are obviously different, but the
transform is unique. One can also artificially rewrite the numerators at will by introducing
trivial identities in position space, without affecting the final expression of the mapping.
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We will be using this method in order to extract some of the logarithmic integrals gener-
ated by this procedure. Obviously, this is possible only if we guarantee an intermediate
regularization. We implement it by a dimensional shift of the exponents of the propaga-
tors. The regulator will allow to smooth out the singularity of the correlators around the

® is not

value a = d/2, which is the critical value beyond which a function such as 1/[z?]
integrable.

The structure of the singularities in x-space of the corresponding scalars and tensor
correlators can be identified using the basic transform. For instance, using (8.1) for o = d/2
one encounters a pole in the expression of the transform. For this reason we regulate
dimensionally in x-space such a singularity by shifting d — d — 2w. At the same time
we compensate with a regularization scale p to preserve the dimension of the redefined
correlator. A similar approach has been discussed in [17], in an attempt to relate differential
and dimensional regularization. In our case as in [27], however, w is an independent
regulator which serves to test integrability in momentum space, and for this reason is
combined with a fundamental transform which is given by

2w 2w il-x
L= G /ddl 6 (8.11)
[a? ]d/Q—w 4d/2—wd/2 F(d/2 _ w) [ZQ]W

that we can expand around w ~ 0 to obtain

2w ,n.d/2
[x;]Ld/ 2w T T(d/2) o (@) [i — 7 +logd+ w(d/z)]
1 o 12
~ (4m)?2T(d/2) /ddlel log (m) +O0w). (8.12)

The subtraction of this pole in d dimensions is obviously related to the need of redefining
correlators which are not integrable, in analogy with the approach followed in differential
regularization. The most popular example is 1/[22]?, which has no transform for d = 4,
but is rewritten in the derivative form as [20]

== OG(z?), (8.13)
where G(2?) is defined by
log 2 M?

with ¢ being a constant. This second approach can be easily generalized to d dimensions.
One can use derivative relations such as

1 1 1
[22]@ - 2(a — 1)(2a — d) - 2] 1 (8.15)

which is correct as far as a # d/2. For a = d/2 this relation misses the singularity at
x = 0, which is apparent from (8.3). For this reason, as far as a = d/2 — w eq. (8.15)
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remains valid and it can be used together with (8.3) and an expansion in w to give

B S !
[22]d/2—w — 2wd—2-2w [x2]d/2-1-w
- 1 1 n 2 0 1 B 1 log( )
T 4-2d\w  d—2) [22]#21 2(d-2) [22]4/>1
T2 /1 ) 1 log(1%2)
— S (d) . 0 I3V 1
Td/2) (w + d_2> 6'Y(x) =2 Ty (8.16)

The d-dimensional version of differential regularization (D f R) can be obtained by requiring
the subtraction of all the terms in (8.16) which are proportional to §%(x), giving

_ 1 log(p?a?)
DfR = 2(d—2)  (x2)d/2-1"

1
[22]4/2

(8.17)

This procedure clearly agrees with the traditional version of differential regularization in
d =4 [20]

1 1 _log(x?u?)

—=—-—-0—=-—. 8.18

x4 4 x2 (8.18)
Notice that this analysis shows that, according to (8.16), the logarithmic integral in (8.12)
is given by

- 12 2 (4)d/2 log(u?a?)
dj il-x R d | _ _ (d) A
/dle log(M2> (2m) [ v +logd +1(d/2) s 5 (x)+2(d72)F(d/2)D w2a
_ (amy log (%)
having redefined the regularization scale properly
2
log i? = log p? + v — log4 — (d/2) + —— . (8.20)

d—2

Notice that a regulated (but singular) correlator can be mapped in several ways into mo-
mentum space, with identical results. For instance, we can take 1/[z%]%2 and use on it
eq. (8.1) once

1 I'(w) el
d d d,. qdy ikl B
/dxe d/2%/d ze'* d/2w = i/ a2 F(d/2—w)/d rd®le 7
I'(w)
— g /2 7 8.21
s 2 (8:21)
twice
2w 2w
d M _ 1 I(d/2-1)I(1 + W) [ iy adr ikt H
/d r 222242 —1—w ~ 4d/2—wnd T T(dj2—1 - dzd'l d'ly ¢! (2421 i2] e

_ F'(w) uz“’
= 49 /2 Fdj2 o) (8.22)

(where in the last step (8.7) was used) or any number of times, obtaining the same
transform.
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As one can easily work out, the use of the dimensional regulator generates, after a
Laurent expansion in w, some logarithmic integrals in momentum space. As we shall show,
if the 1/w poles cancel, then these integrals can be avoided, in the sense that it will be
possible to rewrite the correlator in such a way that they are absent. This means that
in this case one has to go back and try to rewrite the correlator in such a way that it
takes a finite form already in position space. In this case the mapping of the correlators to
momentum space is similar to the usual Feynman expansion typical of perturbation theory.
The condition of Fourier transformability is in fact necessary in order to have, eventually,
a Lagrangian description of the correlator. On the other hand, if the same poles do not
cancel, then the logarithms are a significant aspect of the correlator which, for sure, can’t
be reproduced by a local field theory Lagrangian in any simple way, in particular not by a
free field theory. We have left to appendix F a few more examples on the correct handling
of these distributional identities.

8.2 Regularization of tensors

The regularization of other tensor contributions using this extension of differential regu-
larization can be handled in a similar and straightforward way. The use of the derivative
relations on the R-terms, that map the tensor structures into derivative of less singular
terms, combined at the last stage with the basic transform, allows to get full control of any
correlator and guarantee their consistent mappings into momentum space. We provide a
few examples to illustrate the procedure.

Consider for instance the tensor structure

t, = m (8.23)

whose R-form is, trivially,

d 1 1
t, = R! -y, =—+1)=—=0, ————+ 8.24

122 H(x y72+ ) d M[(x_y)g]d/g? ( )
where the derivative is intended with respect to £ — y. Now we send d — d — 2w in
the exponent of the denominator, since d/2 is a critical value for the integrability of the
exponent, introducing the proper mass scale. This allows us to use the basic transform (8.1),
getting

P 2w
e I'(w) / d; il-(z—y)
t = — d l w-(r—y . ‘2

We can expand in w obtaining

i 1 2 .
S S R T log 4 9 dj il (z—y)
£ (w) dzdﬂd/2r(d/2)[ <w+d v+ log 4+ ¢(d/ )) /dle L

) 2
+ / AU et @Y, Tog <L2>] +0(w)

o] (et

_ L I(d/2) log(ii*(z —y)%)
w d(d-2)

> 5(01)(!13 —y)+ 2(d — 2)7Td/2 [(z — y)2]d/271 )
(8.26)

dT(d/2) On

— 46 —



where in the last step we have used (8.19). Notice that the strength of the singularity
has increased from 6(z)/w to 0,0(x)/w, due to the higher power (d/2) of the denominator
in position space. It is clear that for finite correlators these singular contributions must
cancel. In general, the introduction of the regulator w allows to perform algorithmically
all the computations of any lengthy expression leaving its implementation to a symbolic
manipulation program. Obviously, for finite correlators this approach might look redun-
dant, but it can be extremely useful in order to check the cancellation of all the multiple
and single pole singularities in a very efficient way. We will present more examples of this
approach in the next sections.
A more involved example is given by

_ E=yulz—y)

e w20
to which corresponds the regulated expression
2w
_ =y —y)y
tw(w) = (PRI (8.28)
and a minimal R-form which is given by
d
tw(w) = p> R2,, <x Yyt 1- w> . (8.29)
Using the list of replacements given in (8.9), the derivative form of ¢,, is given by
2w 2w
I 1 o I
t = 0, 0,
N e 7 R ) Rl L e B R B (e
(8.30)
whose singularities are all contained in the second term, whose Fourier transform is given by
O ,uz“’ 1 O

FT + 0w (8.31)

d+2—2w [(x — )42~ | ~ w 24742 (d + 2)T(d/2)
where we have omitted the regular terms. The procedure therefore allows to identify

quite straightforwardly the leading singularities of any tensor in x-space, giving, in this

specific case
(v — y)u($ — Yy -~ l 5#1/
[(z —y)2]d/21me w24 7d/2 (d +2)T'(d/2)

We can repeat the procedure for correlators of higher rank. The singularities, after per-

(8.32)

forming all the substitutions, are proportional to the non-derivative terms isolated by the
repeated replacement of eq. (8.9).

8.3 Regularization of 3-point functions

In the case of 3-point functions the analysis of the corresponding singularities can be
extracted quite simply. Let’s consider, for instance, the identity
1 / d,. d  d
= | d*zd%yd®z
[(z —y)?]*[(z — 2)?] 2 (y — Z)Q]O‘J [(z —y)?]*2[(z — 2)%]*2[(y — 2)?]*e
d?l

> T(d)2 — o
-eorll (Femariag ) 802+ [ G g

(8.33)

e~ i(kztpatqy)

77|
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obtained using the fundamental transform (8.1), where all the physical momenta (k,p, q)
are treated as incoming. The convention for matching the momenta in (8.1) with the
couples of coordinate is

h+o—y, o z—x, I3+ y—=z, (8.34)

and the shift [ — [ — ¢ (which is always possible in a regularized expression) has been
performed at the end.

It is clear that the prefactor on the r.h.s. of this relation has poles for a; = d/2 + n,
with n > 0. At the same time the loop integral is asymptotically divergent if d = >, a,
where it develops a logarithmic singularity. In dimensional regularization such a singularity
corresponds to a single pole in € = d—3 . o;. One can be more specific by discussing further
examples of typical 3-point functions.

For instance, consider the tensor structure

ol = W=2alW=2)s—2)uly=2)
afuy = (@ — 4)2)9/2H+1 [(z — x)2]4/2-1 [(y — 2)2]4/2+1°

(8.35)

which appears in the T'VV correlator and can be reduced to its R-form in several ways.
We use a minimal substitution and have

1 1 d
Qo = (@ — 9)2)4/2+! [(z — 2)2] /21 R*apuw <y —H5 T 1) (8.36)

and application of the derivative reductions in (8.9) gives
o _ 1 1 1
T {d—6) (d—4) (d~2)d [(x — I [(w —2) 2
1 (5#,, (5a5 +5H04 (51,5 -I—(sug Ova
{00920 s 40 - 0

—‘r(d — 6) (5,W Oa 8ﬂ+5a5 8# 8y+5ua 0y a@+5,,5 8# Oa+0a 8M 85 +6M5 0, 6@)

1
[(y — 2)?]4/272 } '
(8.37)

Before moving to momentum space, a quick glance at this equation shows that its
transform does not exist. This appears obvious from the presence of the overall factor
1/([(x — y)?]%?+1) which needs regularization. The mapping can be performed using the
rules defined above, which give, for instance, for the coefficient of 6,,, dog+ 040 005 +9,8 dva,

Fr| -t e ]

T =2 [(o— Pl — P 1y 2
_(2m)35 D (k4p+q)  4H [(w—1) " p*
= -y im0 | M
B (5d(k+p—|-q) 471.3d/2 1 12 12 log (12/[62)
= iy w1 o | Mgt P g O

(8.38)
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In a similar way the Fourier transform of the first term is

1 > 1 1
7T e g s e %0 s
(271.)3d §5(d)(k+p+q) 43+w 2T (w — 1)

(d—6)(d—4)(d—2)d (4m)34/2 T(d/2 — 3)T(d/2 — 1)T(d/2 + 1 — w)
a; U= Qal—q)p(—q)u(l—q)
8 / R () (s Y [ (R
— glttrra) 32 734/ 1 4 P(l=qa(l - )= q)u(l—q)
T d(d—2) I(d/2-1)3 [_w/ U+ p)°[( - ¢)2 ]
2 1og (12/2) (1= @)a U —@)p (1 — @) (I — q)s
* / i T+ P2 — P

illustrating quite clearly how the general procedure can be implemented.

+O(w), (8.39)

At this point we pause for some comments. The regularization can be performed by
sending d — d — 2w — with no distinction among the various terms — or, alternatively, one
can regulate only the non integrable terms. The two approaches, in a generic computation,
will differ only at O(w) and as such they are equivalent. One can obviously check this by
an explicit computation.

Another important point concerns the possibility of performing an explicit compu-
tation of the logarithmic integrals. They are indeed calculable in terms of generalized
hypergeometric functions (for general w), but the small w expansion of these functions is
rather difficult to re-express as a combination of ordinary functions and polylogs. This is
due to the need of performing a double expansion (in € and in w) if we move to d = 4
and insist, as we should, on the use of dimensional regularization in the computation of
the momentum integrals. This difficulty is attributed to the absence of simple expansions
of hypergeometric functions (ordinary and generalized) about non integer (real) values of
their indices. However, if the 1/w terms for a combination of terms similar to those shown
above cancel, there are some steps which can be taken in order to simplify this final part
of the computation.

8.4 Application to the VVV case

To illustrate the way to proceed in general, we reconsider the VV'V case, that we know to
be integrable, but treated this time with the general algorithm. We expand the correlator
and perform the R-substitutions (8.9). The direct algorithm gives an expression which is
not immediately recognized as being integrable

e o e ¥ g e
0 G G O e
a7 g (3 G 8 e g B2 )
+ (I23)1d/21 (ag)l (xgl)ld/21 3&28,}2 (22,)d/2-1 +852 (x%)ld/z1 331821 (:1731){1/21>
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1 23 1 12912 1 12 1 23 023 1
AT (ap @1 o O a1 O a1 O 0 (g yae

L (), 1 b s L by o 1
d—2 d+2 (@3) 4271 \(afp) 2 77 (233)4/271  (a33)4/2 F (af,)Y/27!

)
1 O 31 1 Opp 12 1
0
T @) ((z@dﬂ O @1t @g)an O @y

1 5up 23 1 5'/9 31 1
AL <<x§1>d/2 O gy T @y % @y ) | f (8.40)

The apparent non-integrability is due to terms of the form 1/ (azfj)d/ 2 in the last addend.

+

For this reason, ignoring any further information, to test the approach we proceed with a
regularization of the non-integrable terms. The expression in momentum space is obtained
by sending d — d — 2w in all the terms of the form 1/($?j)d/2. Expanding in w the result,
one can show that, as expected, the 1/w terms cancel, proving its integrability. We fill in
few more details to clarify this point. A typical not manifestly integrable term in VVV is

1 1 1 1 1 1
823 + 831
(3) %271 (a35)Y2 F (233) 4271 (233) 4271 (afy) 2 P (23,) 42!

(8.41)

which in momentum space after w regularization gives (omitting an irrelevant constant)

20P — ¢
2w d
e T (w /d l . 8.42
el R L (R (542)
Expanding in w, the residue at the pole is given by the integral
2P — P
A 8.43
/ P(l—q)? (843

which vanishes in dimensional regularization. The finite term is logarithmic and it is

given by

/ddllog (L +p)*/?) 21 =) (8.44)

(I —q)?
The scale dependence also disappears, since the log u? term is also multiplied by the same
vanishing integral. Obviously, the nontrivial part of the computation is in the appearance
of a finite logarithmic integral which, due to the finiteness of the correlator, has to be
re-expressed in terms of other non-logarithmic contributions, i.e. of ordinary Feynman
integrals. There is no simple way to relate one single integral to an ordinary non-logarithmic
contribution unless one performs the entire computation and expresses the result in terms of
special polylogarithmic functions, using consistency. For correlators which are integrable,
however, it is possible to relate two log integrals to regular Feynman integrals. Single
log integrals, at least in this case, can also be evaluated explicitly, as we illustrate in an
appendix.

By applying the algorithm we get

(Ve VP, Ve, (p,q) = (2m)*4 6D (k +p + q)i f*°

X {C(d/2 -1)° {a (GCi;d_);)gQ v (2 Juvp(0,=0) + (P + D Jop(P, =) + Pv Jup (P =)
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—p S (Ds =) = Pv 4w Jp (P, —q) — Pu o Ju (P, —q))]

a

tad—2p

+qopv (2 (s =) + (0 — 0),. I (p, Q))>

et s t) [ (2100 —0110.0.-0))

+ 5,U,p (2 ILV(_Qa Oap) + D IL(_qa 07p))

( —2 (pu+qu) (0o Jp(0s =) + 4p 1o (P, —q))

+ 0, <2 IL,(q,0,k) + k, IL(g,0, k))] } (8.45)

The notations introduced for the momentum space integrals here and in the following point
are explained in appendix F. One can easily show the scale independence of the result,
which is related to the finiteness of the expressions and to the fact that the logarithmic
contributions, in this case, are an artifact of the approach. For this reason, when the scale
independence of the regulated expressions has been proved, then one can go back and try
to rewrite the correlator in such a way that it is manifestly integrable. Obviously this may
not be a straightforward thing to do, especially if the expression is given by hundreds of
terms in configuration space. If, even after proving the finiteness of the expression, one is
unable to rewrite it in an integrable form, one can always continue applying the algorithm
that we have presented, generating the logarithmic integrals. Pairs of log integrals can be
related to ordinary Feynman integrals by applying appropriate tricks. We have illustrated
in an appendix an example where we discuss the computation of the single log-integral
appearing in VVV as an example. In the TOO case one encounters both single and
double-log integrals. For non-conformal correlators these second type of integrals are,
in general, expected and turn out to be a characteristic feature of these correlators in
momentum space.

8.5 Direct methods for the TOO case and double logs

A similar analysis can be pursued in the TOO case. Also for this correlator we can apply
a direct approach in order to show the way to proceed in the test of its regularity. Using
our basic transform (8.33) and introducing the regulator w to regulate the intermediate
singularities we can easily transform it to momentum space

fT[< Ty (1) Ola), 0<x3>>] — (T, 00) (p.q) = (20 6D (k + p+ g)a
{ G |- 401 o —0-2(a 1) (100~ 20 D0 =00+ = ) Ll —0)

+ (d (Puav + Pvau) — (d = 2) (pupy + QuQV)) J(p, —Q)}

C(d/2 — 1) C(d)2 - w) 2 2
5(/ T +/ a1 z2<z+p>2[<1—q>2]w>

d p
O(d/2 1) O(d/2 ~ w)? ) ey
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The expression above is affected by double and single poles in w once we perform an expan-
sion in this parameter, which are expected to vanish in order to guarantee a finite result.
The coefficient of the double pole is easily seen to take the form
a(272)4dC(d/2 - 1) (0)
I'(d/2)? ’

where the integral vanishes in dimensional regularization, being a massless tadpole.

The coeflicient of the simple pole is instead given by

447542 C(d)2 — 1)? 1
T (d)) {r<d/z o T(d/2? [2 ('V ~logd —ld/f 2)> 10)

+ (IL(p, 0,0) + IL(—q,0, 0)>] + e 11)2 ST {I(p) + I(q)] } (8.48)

The first term of (8.48) vanishes as in the case of the double pole, while for the remaining
contributions we use the relation

log ((ZZ’;)Q) 9 12
IL(p,0,0) :/ddlw = /dle

It is easy to see that the contributions in the last line in (8.48) cancel after inserting the
explicit value for the 2-point function in (8.7).

(8.49)

w=0

The finite part of the expression is found to be, after removing some additional
tadpoles,
(T, 00) (p,q) = (2m)* 6D (k +p+q)a
c(d/2-1)3
{ G |~ 10050 = 2= 1) (@ = ) Tl =)+ (0= ) Ll —0))

+ <d (Pugv + vau) — (d = 2) (pupy + quV)) J(p, —q)]

_ 2
s [ (0 tog 472D (1) + 10) + (1200, ~) + 12(-0.0.)

+ 3@2@/;;2/2)2 (12 (v —log4 — 1(d/2)) (IL(p,0,0) + IL(—q,0,0))

+3(ILL(p,p,0,0) + 2 ILL(p, —q,0) + ILL(~g, —q,0, o)))} } (8.50)

where now also double logarithmic integrals have appeared. Using the relations (8.7)
and (8.49), the terms proportional to (y —log4 — 1(d/2)), which are just a remain of the
regularization procedure, cancel out, leaving us with the simplified result

(T 00) (p,q) = (21)* 6D (k +p+q)a
X{W { —4(d—=1) Juw(p,—q) —2(d - 1) <(qu =) Ju(ps =) + (g — i) T (P, q)>
+ (d (Puav + Poau) — (d = 2) (Pupy + q,tqu)) J(p, —q)]
—» Cm {(M)d/? I'(d/2) C(d/2 —1) ((IL(p, 0,—q) + IL(—q, O,p)))

+(d —4) (ILL(p,p,0) +2ILL(p, —q,0,0) + ILL(—q, —q,0, O))} } (8.51)
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It is slightly lengthy but quite straightforward to show that (8.51) can be re-expressed
in terms of ordinary Feynman integrals. This can be obtained by reducing all the tensor
integrals (logarithmic and non-logarithmic) to scalar forms. After the reduction, one can
check directly that specific combinations of logarithmic integrals can be expressed in terms
of ordinary master integrals. In this case these relations hold since the integrands of the
logarithmic expansion (linear combinations thereof) are equivalent to non-logarithmic ones,
given the finiteness of the correlators. Obviously for a correlator which is not integrable
such a correspondence does not exist and the logarithmic integrals cannot be avoided. This
would be another signal, obviously, that the theory does not have a realization in terms of
a local Lagrangian, since a Lagrangian field theory has a diagrammatic description only in
terms of ordinary Feynman integrals.

We conclude this section with few more remarks concerning the treatment of correlators
with more general scaling dimensions (2A). For instance one could consider correlators of
the generic form

A
(Oi(2:)O0;(x) O (x)) = (@i—z;)2) A BBk ((x _wk)zjiﬁArAi (2p—2) ) SR FA—A;

(8.52)
In this case their expression in momentum space can be found by applying Mellin-
Barnes methods. They can be reconducted to integrals in momentum space of the form
dl
J(v1,v9,v3) =
wes) = |
V1:d/2—AZ’—A]‘+A]€ VQZd/Q—Aj—Ak—i-AZ‘ 1/3:d/2—Ak—Ai+Aj
(8.54)

(8.53)

which can be expressed [13] in terms of generalized hypergeometric functions
Fyla,b,c,d; x,y] of two variables (x,y), the two ratios of the 3 external momenta. The
computation of these integrals with arbitrary exponents at the denominators is by now
standard lore in perturbation theory, with recursion relations which allow to relate shifts
in the exponents in a systematic way. The problem is more involved for correlators which
require an intermediate regularization in order to be transformed to momentum space. In
this case one can show, in general, that the pole structure (in 1/w) of these can be worked
out closely, but the finite O(1) contributions involve derivatives of generalized hypergeo-
metric functions respect to their indices a, b, ¢, d. The latter can be re-expressed in terms of
poly-logarithmic functions, which are typical and common in ordinary perturbation theory,
only in some cases. The possibility to achieve this is essentially related to finding simple
expansions of the hypergeometric functions around non integer (and not just rational) in-
dicial points. For integrable correlators the analysis of Mellin-Barnes methods remains,
however, a significant option, which will probably deserve a closer look.

9 Perspectives: the integrated anomaly and the nonlocal action

Before coming to our conclusions, we offer here a brief discussion of the possible extensions
of our analysis in the context of the emergence of massless degrees of freedom in the

— 53 —



computation of correlators of the form TVV and TTT, as predicted by Riegert’s Lagrangian
solution [30] of the anomaly equation. We recall that an action that formally solves the
anomaly equation takes the form

Sanom [ga A] =

1 2 2

g/d4x\/§/d4x’\/—g’ (G - BDR) Gy(z,z") [ZbF—i— v (G - 353) + 2cFm,F*“’} (9.1)
where b, b/ and ¢ are parameters. For the case of a single fermion in an abelian gauge
theory they are given by b = 1/32072, ¥ = —11/576072%, and ¢ = —e?/247%. F is the
square of the Weyl tensor and G is the Euler density. The notation G4(x, ') denotes the
Green’s function of the differential operator defined by

2 1 2
A=V, (V“V” 4+ 2RM — 3RgW> V, =0F + 2R"V,V, + 5 (V'R)V,, — JOR. (92)

As shown in [21, 26] performing repeated variations of the “anomaly induced” action (9.1)
with respect to the background metric g,, and to the A, gauge field, here taken as a
background, one can reproduce the anomalous contribution of correlators with multiple
insertions of the EMT or of gauge currents. This action does not reproduce the homoge-
neous contributions to the anomalous trace Ward identity, which require an independent
computation in order to be identified. The action can be reformulated in such a way that
its interactions become local [26], by introducing two auxiliary scalar fields. After some
manipulations, one can show that the quartic pole reduces to a single pole and the anomaly
induced action near a flat background takes the simpler form

Sanom|g, A] — —% / dz\/g / d'a'\/—g RO}, [FapF . (9.3)

Notice that this action is valid to first order in metric variations around flat space. Its
local expression is given by

R c
Suonlos i) = [ @0 VG |-0Dp - F0' + SRasF™). (94)

with ¢’ and ¢ defined as in [21]. R, in the equations above, is the linearized version of the
Ricci scalar
R=0,0; W —0h, h = 1, K. (9.5)

eq. (9.4) shows the appearance of coupled massless degrees of freedom whose interpretation
has been offered in [21] using the approach of dispersion relations and to which we refer
for further details. This analysis, so far, has been limited to the TVV correlator and
can be obviously extended, with some effort, to the case of the TT'T vertex whose explicit
computation has been discussed in this paper. In particular this analysis could test directly
if the pole structure present in the expression of the TT'T" vertex will match the prediction
of the same vertex once this is computed using (9.1) by functional differentiation respect to
the metric. This point is technically very involved since it requires a comparison between
the result of a direct computation in perturbative field theory of the TT'T, as done in this
work, with the same correlator computed from Riegert’ s variational solution. We hope to
come back to discuss this point in a related work.
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10 Conclusions

In this work we have tried to close the gap between two analysis of several CFT correlators,
such as the TVV and TTT vertices, characterized by the presence of one, two and three
gravitons on the external lines. We have tried to map position space and momentum space
approaches, showing their interrelation. We have used free field theory realizations of the
general solutions of these correlators in order to establish their expression in momentum
space. These expressions, obviously, remain valid for any CFT. We have also drawn a
parallel between the approach to renormalization typical of standard perturbation theory
and the same approach based on the solution of the anomalous Ward identities, as discussed
in [18, 27]. As a nontrivial test of the equivalence of both methods in 4 dimensions, we have
verified that the counterterms predicted by the general analysis in position space coincide
with those obtained from momentum space in the Lagrangian predictions derived from
one-loop free field theory calculations.

In our approach, based on dimensional regularization, the anomaly is generated by
tracing in 4 dimensions the renormalized vertex, and in some cases, such as in the TVV
vertex, it can be thought as due to a single specific tensor structure. This is characterized
by the appearance of an anomaly pole. In the TT'T case, the explicit expression of this
vertex that we have presented is the starting point for further analysis. For instance
it is a necessary intermediate step in demonstrating the correspondence between general
CF'T calculations in d-dimensional FEuclidean position space, perturbative calculations by
Feynman diagrams in momentum space, and the anomaly effective action of [24-26, 30].
This will remove a possible objection to the anomaly effective action raised in [18]) by
the consistent inclusion of all the terms required by conformal invariance, including the
non-anomalous ones for which the anomaly effective action is mute. The origin of an
effective massless degree of freedom (an effective “dilaton-like” field) coupled to gravity
in the Standard Model will then be made fully explicit. As we have mentioned, this
point has already been proven in the TVV case [3, 4, 21| and is expected on general
grounds of anomalous Ward identities and the associated non-trivial cohomology of Weyl
transformations [24].

We have also discussed a general algorithm that should prove useful to regulate and
map correlators from position space to momentum space, and we have illustrated how to
perform such a mapping in a systematic way with a number of examples. The method
can be applied in the analysis of more complex correlators, for which a manifest proof
of finiteness may not be available. The power of the approach has been shown by re-
analysing finite conformal correlators investigated in the first part, offering a complete test
of its consistency.
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A The computation of TTT

A.1 Definitions and conventions

The covariant derivatives of a contravariant vector A* and of a covariant one B, are
respectively

V, AR = 9, A" + T AP, (A1)
V,B, = 0,B, ~T%,B,, (A.2)

with the Christoffel symbols defined as

3,(2) = 30™(2) [-0603 (2) + D30 (2) + D3005(2)] (43)

Our definition of the Riemann tensor is

R/\um/ = &,Fﬁ,{ - 8NF;\W + Fﬁnfﬁn - FinFZV‘ (A4)

The Ricci tensor is defined by the contraction R, = R/\M,\V and the scalar curvature by

R=g'"R,,.
The traceless part of the Riemann tensor in d dimension is the Weyl tensor,

2
Capys = Rapys — m(gav Rsg + gas Byg — 98y Rsa — 985 Rya)

2
+ d-1)d-2 (Gary 958 + Gas 948) R,

(A.5)

and its square, F%, whose d = 4 realization, called simply F', appears in the trace anomaly
equation (2.1), is

4 2
Fl=0*¢C, 3.6 = R*°YR, 3.6 — ——R*YRosg+ ————— R2. A6
Bd Bo d—2 5+(d_2)(d_1) ( )
The Euler density is instead
G = R*®°R,p.5 — 4 R’ Ro5 + R?. (A.7)

The functional variations with respect to the metric tensor are computed using the relations
0v/g = —%\@gaﬁ 6g9°° 0v/g = %@g“ﬁ 89ap
89 = —Guadus 597 09" = —g"* 9"’ 6gap . (A.8)
The structure s*?7% has been repeatedly used throughout the calculations: it comes from

~ 0g™P(2)
5975(3’3)

= % 597590 4 529557 §W (2 —z) = B 5D (z —z).  (A9)

gul/:a;uz
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B Functional derivation of invariant integrals

In this appendix we briefly show how to evaluate the functional variation of the invariant
integral Z(a, b, c)

Z(a,b,c) ;/dda;\/gK ;/ddx\/g(aRaWRaM+bRaﬂRaﬁ+cR2), (B.1)

needed to compute the counterterms found in section 6.3.
Our index conventions for the Riemann and Ricci tensors are those in (A.4). We have

§(RP° Ragrs) = 6(ga gﬁ”g”cg‘spRawR"ngp)
= (gacy 9CQ&p)RaﬁvﬁRanCP+90{095779%96’)5(Raﬁ%RanCp)
= 5(9a0g”"97 9°°)R® 3,5 R% e p + 20(R* gy5) Ra™° . (B.2)

Using (A.8) and (A.9) and the product rule for derivatives one easily finds out that the
variation can be written at first as

6Z(a,b,c) = / d%z f{ [ 9" K —2a R*PYRY 5 — 2b RFRY,, — 2¢ RRM }@W
+2a Ry 105 R 5.5 + 2b R*P6 Ro + 2¢ RgaﬁéRaﬁ} . (B.3)

Exploiting the Palatini identities,
SR 5s = (OT%)s — OT%)y = 0Rss = (0TH)s — (0T, (BA)
and the Bianchi identities we get

Raﬁvém + Raﬁm;6 + Raﬁénw =0 = Rﬂﬁm - Rﬁn;5 + Rﬁ/ﬂén;v =0
1
= Rs=2R%, < <Ra5 - 2gaﬁR> = 0. (B.5)
B

)

After an integration by parts and a reshuffling of indices we get
0Z(a,b,c) = / diz f{ [ g K — 2( R“QBWRVQM +bRMYRY ,, + CRR’“’)] O
+ 40,9597 (0T )iy — (4 +26) (8T 5) + (4 +26) (OTy) 5 — g™ 9,0 (OT75);5] Raﬁ}-
(B.6)

The variations of the Christoffel symbols and of their covariant derivatives in terms of
covariant derivatives of the metric tensors variations are

TG, = = g~ (898y)i6 + (8988)sy + (8945);8] »

(61_‘%7);5 =

N =N =

g*" [ = (098+) ;6 + (098y) 6 + (59771);6;5] . (B.7)
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Now we use them to rewrite (B.6) as
1
0Z(a,b,c) = /dd:v \/E{ [29‘“’[( —-2(a RMOPYRY 5 4+ bRIRY , + cRR‘“’)] Y

+ [2@ [ = (89a8):85y + (09ap)syss + (0985 )01
—(2a+b) [ - (59a6);5w+(59a6);5;v+(5gﬁ5);a;v} +(2640)(6945):018

—2¢c [ — ((Sg»y&);a;ﬁ + ((59(16);7;5 + ((59a«y);6;5]]975 Raﬁ} . (BS)

The presence of the factor ¢g°*R% imposes two symmetry constraints on the terms in the
last contribution in square brackets. By adding and subtracting —(4a + 2b) (dgac).a:p We
obtain the expression

0Z(a,b,c) = / dix \/§{ [;g’“’K —2(a R*PYRY 45 + b RFRY o, + cRR’“’)] S
+ [(4@ +2b) [(09ay);8:6 — (0gar)issp] + (da+ b)(0gas)iys

+(4c+ 0)(09+5);0:8 — (4a + 2b + 40)(59047);5;5} g7éRa6} . (B.9)
The commutation of covariant derivatives allows us to write
975 [(59047);5;5 - (59057);5;6] R = g’yé[ - 5gaoR0766 - 5970Raa,85] R*?
= g7~ sho R85 — sty R aps) R Ogyu
= (—RM"“RY, + R“O‘VBRaﬁ)nguy ] (B.10)
Inserting this back into (B.9) we get
0Z(a,b,c) =

1
/ dda:\/g{ [2 9" K —2aRMPYRY 5 +-4aR'RY o, — (4a + 2b) RFVP R, —QCRR“”} G,

|40+ )(08) s+ (464 08030 i — (40 + 20+ 40) B 5] 7 RO}
(B.11)

If the coefficients are a = ¢ = 1 and b = —4, i.e. if the integrand is the Euler density, the
last three terms are zero.

All that is left to do is a double integration by parts for each one of the last three
terms, to factor out dg,,. This is easily performed and the final result can be written as

I
0w

5
I(a,b,c) = 57 / d*z\/g(aR*"" Rogys + DR Rog + cR?)
g
1
=g { 3 9" K —2aR'PYRY (5 +-4aR' RY o — (4a+2b) RFP R 5 —2c RRM

+(4a+b)DR‘“’+(4c+b)g“l’Raﬂ;a;g—(4a+2b+4c)R”ﬂ;5m}. (B.12)
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C List of functional derivatives

We list here the contributions to the trace anomalies for three point function coming from
the elementary quadratic objects. They are given by

[OR]* (p,q) = [¢" (0,80 — T),00)R] "7 (p, q)
= 2 (p+9)? [R]"(p,q) — {2 ¢%¢° — 6" [T2,]*" (0) i x } R (q)
—{i®pPp” — " [1),]" (a)ipr} R*" (p)
1 1
=(p+ Q)2{ - 55“5 (Pa” +p7¢" +20"p7) = 507 (a"p" + ¢ +2¢%¢%)
1 1
+5p- q 6P 5P + 1 (p°q°6°7 + pP g3 + p°qP 5% + pq*5P")
1
+§ [(qppﬁ(;cw + qppa(gﬁv + qo'pﬂ(gap + qvpa(;ﬁp)
+5° (pPp + ¢°q%) + 6° (°p” + ¢°¢") + 57 (p*p° + ¢*¢°)

+677 (p°p” + q%¢") — (57657 + 6577 (0 + ¢ + gp : q)} }

+=(p?6° —p°pP) (p- ¢ 6”7 — (P°q° +p7¢°) — 2p°p7)

+5(4207 = 4°¢") (p- a 3% — (0*d” +1%¢%) = 2¢°¢°), (C.1)

N =N =

with

[P25]77 (1) = %5%’ (2L + 67 b — s e
[Rap) ™7 (1) = —ila [T3g)P7 (1) + i lx [T04)77 (1) (C.2)
[R)\WVRMW] Otﬁﬁff(p7 q) = 2 |:R>\,u,m/] aﬁ(p) [R)‘”’W] pa(q)
=p-q [p . q((gaﬂ(gﬁa + 50“75,3/1) _ (5app0q + 5aappq,3
+6ﬂppaqa + 5ﬁcrpqu¥)] + QPPpUqaqﬁ ,
(R R )7 (,q) = 2[R ] (0)[R™]" (g)
1
= 4P q(8°PpP g7 + 677 pP P + 6°Pp™q” + 5P p*¢P)
+%(p . q)25a65p0 + %p2q2 (6ap6ﬁa + 50405,3,0)
_ in (qaqp(;ﬂa + qaqo(;ﬁp + qﬁqp(;cw + qﬁqo(;ap)
1
+§5“ﬁ (p-a®’q” +p°¢") — @p°p7) + (o, B,p) > (p,0.9) |,

[R2] aBpo (p7 CJ) =9 5#1/ [R/W] apf (p)(;rw [R‘rw] po (q)
= 2(p°P?qPq" — P*qPq° 5% — PppPrT + p? ?6°P6P7) . (C.3)

The dependence on the momenta is obviously determined by (2.25).

— 59 —



D Vertices

We have shown in figure 3 a list of all the vertices which are needed for the momentum
space computation of the various correlators in d dimensions. We list them below: notice
that they are computed differentiating the first and second functional derivatives of the
action, because this allows to keep multi-graviton correlators symmetric (see 2.22).

v 1 146 v v v
Vigo(p:) = 5patsC” ’3+x<5“ pP+a)° =" +¢") 0 +4q )>,

1 14
Vige(p:a) = A" (0x — ),

VTw 1 UWVTW VTw 1 VTWw Y/ 1o e
VEG (0.0) = 3 [p a0 4 D ) g 00)] = (Vrant gVeas) ()

Viee0,0) = =V, (0. q)

)

x=0

for the graviton (T')- to two scalars (¢), fermions, photons and ghost pairs. Quadrilinear
interactions involving 2 gravitons are far more involved and are given by the expressions

1 . 1,
Vites(p:a:1) = 5p- g5 = 2G*7 (p,q) + 10" pagsCH”

+X{ |:(5,u)\50m5uﬁ + 6/10451/55,8)\ _ 5;1&51/)\6&,8 _ 5uu(5a/\5ﬂn) 857\2
1

—1—5(5’)‘7 <5“°‘5”ﬁ - 5’“’50‘5>} (Pags + Pada + PaDs + 4adp)

+ K(;wgaﬁ - 5#%”5) [Ta5]” ()i (pr + an)

+<5,m5u5 _ ;(wu(gaﬁ) [RQB}P”(Z)] }

YV HrPo 1

ot (p, Q) — TG |: — 4 Mo _ 9 sHv Soa)\pa 42 om SV)\pa 426 su)\pa + (5;0\ Ry

+5V}\ SOHPT + 5P A;wo&\:| Ya (p)\ _ (_I)\),

1 1
Vj;f;izzw(p’ q, l) — 2{ |:Ba,upaﬁ)\'yu + 4B,uupaa)\'yB:| Faﬁy)\ﬂd(pa Q)

1
_1_5 <H/,I/I/p0'7'w(p, q’ l) + I},LI/pO'TUJ(p, q, l)) }

1 1
+15"” {p -qCHTY 1 DT (p, q) + EE’M“ (p q)}
UV PoTW

- (VTTAA(pa Q) + ‘_/TTAA(pu q, l)) )

ViHvpo _Hvpo

TTce (pv q, l) = TT¢¢(p7Q7l) ) (Dl)

x=0

describing interactions similar to those shown above in the trilinear case, but now with
the insertion of one extra graviton. We have simplified the notation by introducing, for
convenience, the tensor components
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Ay,uoz)\ — 9 §Hv 5a)\ _ gam 5)\11 _ s 5/\/,1,
Boz,upa’ﬁ)\’yu — gampo 6[3)\ 5 + S,B)\pa' sam sv + §YVPO sau 55)\

CHVPT — §HPEVT 4 SHOSVP _ SRV §PT
DHP%(p,q) = 6" p7q” + 677 (p"q” + p"q") — 67 p"q” — 6"Pp7q” — 6" ptq” — 67 p7 g
EM?(p,q) = 6" [pPp” 4+ q°q7 + ¢ — [6V7p"p” + 6P q"q7 + 61V p’ + 6PV ¢7]
FHrPoTE(p q) = —87P8“Hp7 g + TPV p7 gt + 6776V pP g — 778 pP gt + (T, p) 4 (w,q)
G"P7(p,q) = 6" [pPq” + ¢°p"] + 8" [pPq" + ¢"p"] + 87 [p7q” + 4" p"] + 8" [p7q" + 47 p"]

=" [pq” + ¢"p]
H,u,upa'rw(p7q’l) _ |:(S;pra 51/)\ + Su)\pcr 6/_l,w> ' p‘r + e <S)\'rpa v + S)\Tpapl/> '
1 v T $po TAPO
+§5’“" (p+1) (—l o —|—2l,\s)‘p)+(u<—>u)}+(7’,p)%(w,q)
1 w w
THvPeTe(p q,l) = 6" {2 0Pl (p+q+1)" — sATPO [quA +i(p+qg+1) }

—ghwro [pT Pt ax (¢ + Z)T} } — shrre <p‘“ pT+q” pT) + (7,p) © (W, ).
(D.2)

We have performed all our computations in the Feynman gauge (£ = 1) The Euclidean
propagators of the fields in this case are

©9) () = -
@v) () =5
2y = 2
(ce) ) = —. (D.3)

E Comments on the inverse mapping

In this appendix we offer some calculational details in the derivation of the expression of
the TT'T" correlator in position space. The remarks apply as well to any other correlator.

For example eq. (4.4) refers to the contribution coming from the triangle diagram
shown in figure 2. We assign the loop momentum [ to flow from the upper external point
(x3) to the lower one (z2) on the right, the other two flows being determined by momentum
conservation. We denote the third external point as x;. For the scalar case, for instance,
the complete one-loop triangle diagram is

./ dl V(L= q,—L = p)VE (L~ + @)V, (L + p,—1) E1)
: .

2m)¢ Z(1—q?(+p)?
The vertices are defined in eq. (D.1). The first argument in each vertex denotes the
momentum of the incoming particle, the second argument is the momentum of the outgoing
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one. A typical term appearing in the loop integral is then

d wiv p ol — N\ (] — 4\B
I:/ d’l (I +p)PU+p)7l—-q)*(1—-q)" (E.2)
(2m)? ?(—-q)?*(+p)?
From (8.1) the propagators in configuration space are
1 et [l-z23+(1—q)-z12+(1+p)-z31]
=C(1)* | da1pdaozd? E.3
Fagre ~ W [ e e e e (B9)

where C(«) has been defined in (8.1). It is straightforward to see that (E.2) is given by
/‘d% 1 (1 4p) (L +p) (- (- )
(2m) 2(1—q?(+p)? B

ddl (—i)6 P or. 9P H. H 85 ez‘[l-xgg—i—(l—q)-m12+(l+p)-x31]
013/ dd dd dd 23 Y23 Y31 Y31 Y12 ¥12
W7 ) Gy 2 e (@)1 (a3,) P ()7

(E.4)

We can now integrate by parts moving the derivatives onto the propagators, getting

; d .
I= C(l)d / (2m)d A1 dlxgs dlag) e @23t =) T2t (4p) 23]

‘ 1
><l6 853 853 8§1 8:(371 81042 8152

(95%2)d/2_1 (x%3)d/2_1 (x:%l)dﬂ_l ‘

(E.5)

The second line is immediately identified with the coordinate space Green’s function.
This can be done for each term of (E.1), justifying the rule quoted in section 4.2, that
we have used for all the inverse mappings of the paper. According to this the correlators in

[733))
]

coordinate space can be obtained replacing the momenta in the vertices with times the
respective derivative which then act directly on the propagators after a partial integration.

The same arguments could be applied to the bubbles. Nevertheless, we have seen in 4.2
that derivatives of delta functions appear in the scalar case. These are generated by the
dependence of the Vﬁ;;‘; (p,q,1) from the momentum [ of the graviton bringing the pair of
indices po (see eq. (D.1)). They are due to coupling of the scalar with derivatives of the
metric through the Ricci scalar R in the improvement term (see eq. (5.1)) and state that
the graviton feels the metric gradient. We discuss this below, showing how to inverse-map
the third bubble in figure 2, getting (4.11).

This bubble can be seen as the (xy — x3) limit of the triangle and its diagrammatic
momentum-space expression at one-loop is

/ dll Vin, (= ¢, —1 = p)Veibo (i + p,—1+ ¢, —q) (£6)
(2m)d (—q?(+p)? ' '
As the two propagators are expressed by
1 et [(l=q)-z12+(4p) -z31]
= 0(1)2 / ddlL‘lg ddZE31 N (E7)
I+ a2 U+p? (@) ()7

the dependence of the second vertex on p cannot be ascribed to neither of them.
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Two typical terms encountered in (E.6) are

/ d (1 +p)P (L +p)°(l—q)* (1 —q)°
(

2m)d (I—q)% (14 p)? ’
(14 (4 p)7 (- )
| o e (E8)

The first one is treated at once restricting the procedure used for the three point function
to the case of two propagators.
For the second one, the following relation is immediately checked:
/ dl (I +p)P(L+p)°(l—q)*p° _
(2m)? (=93 +p)?

il
0(1)2/ (2ﬂ_)ddd{£12dd$23dd$31(5(d)(:ng)(

—i)45§13§15?2 (631 — 823)Bei[l'$23+(Z—Q)‘w12+(l+p)~w31]
(22,)d/2=1(22)d/2-1 .

(E.9)

Notice that an integration by parts brings in a derivative on the delta functions giving

d
0(1)2/ ™ A%z 19d  wogdia gy el v2s (=) z12+(I4p) w51

(2m)d
6% (x93)

A ap a0 qa - B8
(1)" 05,05 075(931 — Oa3) (22,) 421 (z2,)d/2-1"

(E.10)

This approach has been followed in all the derivations of the expressions given in (4.2).
The integration on [ brings about a 5@ (212 + 223 + 31), so that it is natural to chose
the parameterization

Tip =T1 — T2, T3 =T —T3, X3 =T3—T]. (E.11)
A  more inviolved example is the 4-particle vertex. For instance the
VTT¢¢(I 031, —1012,1 (812 — 823)) is obtained from VTT¢¢(p, q, l) with the functional
replacements
p—>ﬁ:1831, q—>cj:—i€)12 l—>[=i(812—823) (E.12)
giving

VEEo (i 051, —i 12,1 (D12 — Da3)) =
%iagl - (=) D1asMPT — i GHP (i D31, —i D12) + iépozagm (—i) D1 g CHVP
+x { KW §O §V0 4 g1 5 0N — ghr 5N 5P — g 5o 5"’{) v
%5” (5*“15”5 - 5“”50“*” (10310(—1)0125 + 10315(—1)D120 + 1031000315 + (—i) D190 (—1)D125)
— KW §vB — g 5aﬁ> ([Fgﬁ]’”’ (i (D12 — 823))> (—i) (10315 + (—i)D12)

_~_% <5ua sV _ %5“” 5a/3) ([Raﬁ} 7 (i (Dra — 323))> } } ) (E.13)
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F Regularizations and distributional identities

We add few more comments and examples which illustrate the regularization that we have
applied in the computation of the various correlators.

The computation of the logarithmic integrals requires some care due to the distribu-
tional nature of some of these formulas. As an example we consider the integrals

. 2w " 2w " l2
o = /ddze“ [15]1+w H, = /ddle’“&[’l;ﬂw Hy = /ddzem log <u2> (F.1)

We can relate them in the form

0
He — —— H.
3 R

0
=0(—H
w=0 (8w '

w:O) (F.2)

In the two cases we get, using (8.1)

0 (4 w)d/2 I'(d/2)
IRz P T T "
and
0 20=274/21(d /2 — 1) d—2
L (1og<x2/ﬂ> oy —logd — (2) ) (F.4)

By redefining the regularization scale p with eq. (8.20) we clearly obtain from (F.4)

log(l2/,u2)6il'x 3 log $2ﬂ2
d _ od—2_d/2
/d ! 5 = 2972742 (4/2 — 1) T (F.5)
and
9 d—2_d/2 log 2*i°
Hy =0 <awH1 0) = 29-274/21(q/2 — 1)O i (F.6)

The use of Hs instead gives

0
Hs=—-——H
3 R

247421 (d /2)

(F.7)

w=0

Notice that this second relation coincides with (F.6) away from the point = 0, but differs
from it right on the singularity, since

og 22 /2
DW =-2(d-2) (F(d/2) log(a”p?) 8%(x) + W) (F.8)

For this reason we take (F.6) as the regularized expression of Hs, in agreement with the
standard approach of differential regularization.
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F.1 Evaluation of the single log integrals

The direct method discussed in the second part of the paper, though very general and
applicable to any correlator, introduces in momentum space some logarithmic integrals
which are more difficult to handle. They take the role of the ordinary master integrals of
perturbation theory. The scalar integrals needed for the tensor reduction of the logarithmic
contributions in the text are defined in (F.17). After a shift of the momentum in the
argument of the logarithm, a standard tensor reduction gives

IL,(0,p1,p2) = CL1(p1,p2) Prp + CLa(p1,2) P2y
2 —p1-p2)p2? IL 2 i py) ILH
CLi(pr,py) = P —P1 P2p2” TLO, p17p2)+(1’22 n p2) 1L, (0, pr.p2)
2(p1-p2)* — P12 p2
Z—p1- 21L(0 2_p . IL" (0
CLo(p1, ps) — (p2” = p1 - p2)p1® IL(0, p1, p2) + (p1” = p1 - p2) TL", (0, p1,p2) 9)

2(p1 - p2)? — p1? po?
To complete the computation of the VV'V correlator we need the explicit form of the
logarithmic integrals in terms of ordinary logarithmic and polylogarithmic functions. We

define
1 l2 2 2\
Iz/ddl Og(2/“) c=— 8/ddl R S (F.10)
(I+p1)*(l —p2) oA (AU +p1)? (1= p2)? 52

The logarithmic integral is identified from the term of O()\) in the series expansion of the

previous expression. Because the coefficient in front of the parametric integral starts at
this order, we just need to know the zeroth order expansion of the integrand, which we
separate into two terms. The first one is integrable

1 —€ 1—e—X 1
I :/0 dt%:/o dtw+O(A) 19+ o0, (F.11)

while the last term has a singularity in ¢ = 0 which must be factored out and re-expressed
in terms of a pole in A

Ry EER .

:_xl:_A[l—(e—l)/ th(:) (t—t1+t—1t2ﬂ
- 1

:x)\ {—1+(6—1)/0 th(tl)l—e <t_1t1+t—1t2)}}

+x1—6[log:c+(e—1)/ dtlog(t/:C( I >]+O(/\)

0 A(t)l c\t—1 t— 1o

1Y+ 10+ o,

>| =

(F.12)

where t; and t2 are the two roots of A(t) = yt? + (1 — z — y)t + x. We are now able to
write down the full A-expansion of J(1,1, ) and to extract the logarithmic integral Z

22 T(1 — (2 — e)l'(e) 1 ©) , 70
== (p3)° ['(2 - 2e¢) e—1 {II h } ' (19
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The previous expression can be expanded in d = 4 — 2¢ dimensions in which it manifests a
1/e pole of ultraviolet origin

- ”2@3)” (-1+) [Awn + B + 000, (P14)

€

where A(x,y) and B(z,y) are defined from the e-expansion of the two integrals Il(o) and

Iéo) as

A@@zx@ﬂ+%iﬁﬂﬁ—ﬂgW@(l + 1)], (F.15)

t—t,  t—ty

bodt
B(z,y) = —xlog’z —i—/o o) [yt (log (t —t1) + log (t — t2) — 2logt)

t—t1+t—t2

_vlog (t/2) ( ) (log (t — t1) + Log (¢ — t2) — log (x/y) — 1) |.

(F.16)

F.2 List of momentum space integrals

To set the stage for the explicit examples of three point functions treated in section 8, we
introduce here a systematic short-hand notation to denote the momentum-space integrals.
We define

L o Ly,
Do) = [ gt
lyy o001
Jm,...,,un(plaPZ) = /ddl 12 ( > =

L+ p1)2(1 +p2)?’
Ly - og (L4 p1)2/u)
IL ,p2,ps) = [ dil -
b (21, P2, ) / I+ p2)( + ps)?
/ddzl‘“ ool log ((L+p1)2/u?) log (14 p2)?/u?)
(14 p3)2(l + pa)? ‘

ILLMl---Mn (p17p27p37 p4) =
(F.17)

For correlators which are finite, the double logarithmic contributions will appear in com-
binations that can be re-expressed in terms of ordinary Feynman integrals.
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