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Abstract: We discuss the signature of the anomalous breaking of the superconformal

symmetry inN = 1 super Yang Mills theory, mediated by the Ferrara-Zumino hypercurrent

(J ) with two vector (V) supercurrents (JVV) and its manifestation in the anomaly action,

in the form of anomaly poles. This allows to investigate in a unified way both conformal

and chiral anomalies. The analysis is performed in parallel to the Standard Model, for

comparison. We investigate, in particular, massive deformations of the N = 1 theory and

the spectral densities of the anomaly form factors which are extracted from the components

of this correlator. In this extended framework it is shown that all the anomaly form factors

are characterized by spectral densities which flow with the mass deformation. In particular,

the continuum contributions from the two-particle cuts of the intermediate states turn into

poles in the zero mass limit, with a single sum rule satisfied by each component. Non

anomalous form factors, instead, in the same anomalous correlators, are characterized

by non-integrable spectral densities. These tend to uniform distributions as one moves

towards the conformal point, with a clear dual behaviour. As in a previous analysis of

the dilaton pole of the Standard Model, also in this case the poles can be interpreted

as signaling the exchange of a composite dilaton/axion/dilatino (ADD) multiplet in the

effective Lagrangian. The pole-like behaviour of the anomaly form factors is shown to be

a global feature of the correlators, present at all energy scales, due to the sum rules. A

similar behaviour is shown to be present in the Konishi current, which identifies additional

composite states. We conclude that global anomalous currents characterized by a single flow

in the perturbative picture always predict the existence of composite interpolating fields.

In case of gauging of these currents, as in superconformal theories coupled to gravity, we

show that the cancellation of the corresponding anomalies requires either a vanishing β

function or the inclusion of an extra gravitational sector which effectively sets the residue

at the anomaly poles of the gauged currents to vanish.
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1 Introduction

Dilaton fields are expected to play a very important role in the dynamics of the early

universe and are present in almost any model which attempts to unify gravity with the or-

dinary gauge interactions (see for instance [1]). Important examples of these constructions

are effective field theories derived from strings, describing their massless spectra, but also

theories of gravity compactified on extra dimensional spaces, where the dilaton (graviscalar)

emerges in 4 spacetime dimensions from the extra components of the higher dimensional

metric (see for instance [2–6]). In these formulations, due to the geometrical origin of

these fields, the dilaton is, in general, a fundamental (i.e. not a composite) field. Other

extensions, also of significant interest, in which a fundamental dilaton induces a gauge con-

nection for the abelian Weyl symmetry in a curved spacetime, have been considered (see

the discussion in [7–9]). However, also in this case, the link of this fundamental particle to

gravity renders it a crucial player in the physics of the early universe, and not a particle

to be searched for at colliders. In fact, its interaction with ordinary matter should be

suppressed by the Planck scale, except if one entails scenarios with large extra dimensions.

More recently, following an independent route, several extensions of the Standard

Model with an effective dilaton have been considered. They conjecture the existence of

a scale-invariant extension of the Higgs sector [10–12]. In this case the breaking of the

underlying conformal dynamics, in combination with the spontaneous breaking of the elec-

troweak symmetry [9], suggests, in fact, that the dilaton could emerge as a composite field,

appearing as a Nambu-Goldstone mode of the broken conformal symmetry. A massless

dilaton of this type could acquire a mass by some explicit potential and could mix with

the Higgs of the Standard Model.

By reasoning in terms of the conformal symmetry of the Standard Model, which should

play a role at high energy, the dilaton would be the physical manifestation of the trace

anomaly in the Standard Model, in analogy to the pion, which is interpolated by the

U(1)A chiral current and the corresponding 〈AV V 〉 (axial-vector/vector/vector) interac-

tion in QCD. As in the 〈AV V 〉 case, this composite state should be identified with the

anomaly pole of the related anomaly correlator (the 〈TV V 〉 diagram, with T the energy

momentum tensor (EMT)), at least at the level of the 1-particle irreducible (1PI) anomaly

effective action [11]. Considerations of this nature brings us to the conclusion that the ef-

fective massless Nambu-Goldstone modes which should appear as a result of the existence

of global anomalies, should be looked for in specific perturbative form factors under special

kinematical limits. For this reason they are easier to investigate in the on-shell anomaly

effective action, with a single mass parameter which drives the conformal/superconformal

deformation. This action has the advantage of being gauge invariant and easier to compute

than its off-shell relative. We remark, however, that this picture remains limited to per-

turbation theory and may be drastically modified by the non perturbative dynamics. The
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radiative nature of the breaking of a certain global symmetry, as in the case of the anomaly,

does not guarantee the massless nature of these modes, which could acquire a nonzero mass.

The extension of this analysis to the superconformal case is particularly interesting

in view of recent results concerning the derivation of the superconformal anomaly action

for the Goldstone supermultiplet in a theory where conformal symmetry is spontaneously

broken [13]. In this case it has been argued in favour of the existence of a conformal

anomaly matching between the broken and the unbroken phases of the superconformal

theory. Our results are in line with these previous elaborations.

1.1 Anomalies and anomaly poles

To take advantage at full scale of the analogy between chiral and conformal anomalies,

one should turn to supersymmetry, where the correlation between poles and anomalies

should be more direct. In fact, in an ordinary quantum field theory, the 〈TV V 〉 diagram

(and the corresponding anomaly action) is characterized, as we are going to show, by pole

structures both in those form factors that contribute to the trace anomaly and in those that

don’t. For this reason we turn our attention to the effective action of the superconformal

(the Ferrara-Zumino, FZ) multiplet, where chiral and conformal anomalies share similar

signatures, being part of the same multiplet.

We are going to prove rigorously in perturbation theory that the anomaly of the FZ

multiplet is associated with the exchange of three composite states in the 1PI supercon-

formal anomaly action. These have been discussed in the past, in the context of the

spontaneous breaking of the superconformal symmetry [14]. They are identified with the

anomaly poles present in the effective action, extracted from a supersymmetric correlator

containing the superconformal hypercurrent and two vector currents, and correspond to

the dilaton, the dilatino and the axion. This exchange is identified by a direct analysis

of the anomalous correlators in perturbation theory or by the study of the flow of their

spectral densities under massive deformations. The flow describes a 1-parameter family

of spectral densities — one family for each component of the correlator — which satisfy

mass independent sum rules, and are, therefore, independent of the superpotential. This

behaviour turns a dispersive cut of the spectral density ρ(s,m2) into a pole (i.e. a δ(s)

contribution) as the deformation parameter m goes to zero. Moreover, denoting with k2

the momentum square of the anomaly vertex, each of the spectral densities induces on the

corresponding form factor a 1/k2 behaviour also at large k2, as a consequence of the sum

rule.

We also recall that the partnership between dilatons and axions is not new in the

context of anomalies, and it has been studied in the past — for abelian gauge anomalies

— in the case of the supersymmetric Stückelberg multiplet [15–18].

The three states associated to the three anomaly poles mentioned above are described

— in the perturbative picture — by the exchange of two collinear particles. These cor-

respond to a fermion/antifermion pair in the axion case, a fermion/antifermion pair and

a pair of scalar particles in the dilaton case, and a collinear scalar/fermion pair for the

dilatino. The Konishi current will be shown to follow an identical pattern and allows the

identification of extra states, one for each fermion flavour present in the theory.
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(a) (b) (c)

Figure 1. The triangle diagram in the fermion case (a), the collinear fermion configuration respon-

sible for the anomaly (b) and a diagrammatic representation of the exchange via an intermediate

state (dashed line) (c).

This pattern appears to be general in the context of anomalies, and unique in the case

of supersymmetry. In fact, we are going to show that in a supersymmetric theory anomaly

correlators have a single pole in each component of the anomaly multiplet, a single spectral

flow and a single sum rule, proving the existence of a one-to-one correspondence between

anomalies and poles in these correlators.

Our work is organized as follows. We first illustrate the motivations of our study by

overviewing the analysis of the spectral densities performed in the investigations of the con-

formal anomaly in the 〈TV V 〉 vertex at nonzero momentum transfers in QED [19, 20] and

QCD [21]. The case of a general non-abelian theory, with the inclusion of scalars, is new and

is discussed — in the massless case — in section 3. This may serve to highlight some specific

properties of these types of vertices which have not received sufficient attention in the past.

Then we turn to a perturbative study of the effective action in the case of super-

symmetric N = 1 theories, focusing on the components of the FZ multiplet and on the

corresponding anomalies. This is followed by a study of the spectral densities of the relevant

diagrams which are responsible for the superconformal anomaly. We show the existence

of a unique sum rule for each component of the multiplet, and of a spectral density flow

driven by the mass perturbations. As the deformation (mass) parameter turns to zero,

restoring the superconformal symmetry, the flow gets localized at zero invariant mass, sig-

nalling the exchange of a massless pole in the anomaly effective action. We will compare

non supersymmetric and supersymmetric realizations, highlighting the differences between

the two cases. In particular we will show in detail how the cancellation of the extra poles

of non anomalous form factors is realized in supersymmetric theories. Finally, we present

the structure of the anomaly action as a combination of the pole contributions, plus the

non anomalous (logarithmic) terms. In superspace, the first had been identified in the

past relying on supersymmetric arguments [2]. We will conclude our analysis with some

comments on the possible implications of our results about the physical manifestation of

anomaly poles — for global anomalous symmetries — and their cancellations in the case

of their superconformal gaugings.

2 Sum rules

As pointed out long ago in the literature on the chiral anomaly [22], its perturbative

signature is in the appearance of a massless pole (an anomaly pole) in the spectrum of the
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〈AV V 〉 diagram. The pole is present, in perturbation theory, only in a specific kinematic

configuration, namely at zero fermion mass and with on-shell vector lines. The intermediate

state which is exchanged in the effective action, see figure 1, and which is mediated by the

〈AV V 〉 diagram, is characterized by two massless and collinear fermions moving on the light

cone. It is rather compelling to interpret the appearance of this intermediate configuration

— within the obvious limitations of the perturbative picture — as signalling the possible

exchange of a bound state in the quantum effective action.

In a phenomenological context, what gives a far broader significance to this kinemat-

ical mechanism is the appearance of a certain kinematic duality, which accompanies any

perturbative anomaly. In this case it is better known as Q2-duality, relating the resonance

and the asymptotic region of a certain correlator in a nontrivial way [23]. This property,

in general, finds its justification in the existence of a sum rule for the spectral density

ρ(s,m2). Generically, it is given in the form

1

π

∫ ∞
0

ρ(s,m2)ds = f, (2.1)

with the constant f independent of any mass (or other) parameter which characterizes the

thresholds or the strengths of the resonant states eventually present in the integration re-

gion (s > 0). It should be stressed that sum rules formulated for the study of the structure

of the resonances, i.e. their strengths and masses, as in the QCD case, involve a param-

eterization of the resonant behaviour of ρ(s,m) at low s values, via a phenomenological

approach, with the inclusion of the asymptotic behaviour of the correlator, amenable to

perturbation theory, for larger s. For this significant interplay between the infrared (IR)

and the ultraviolet (UV) regions, the term duality is indeed quite appropriate to qualify

the implications of a given sum rule.

It was pointed out, some time ago, that one specific tract of the chiral anomaly is in

the existence of a sum rule for the 〈AV V 〉 diagram [24], later extended to a similar study

of the trace of the energy momentum tensor (trT ) for the 〈trTV V 〉 in QED (with V a

vector current), at zero momentum transfers [25, 26]. Similar analysis were performed on

the 〈TT 〉 correlator in 2-dimensional gravity [27], which is affected by the trace anomaly.

The analysis brought substantial evidence that the sum rule, combined with the original

identification of the anomaly pole from the perturbative spectral density [22], were two

important and related aspects of the anomaly phenomenon. We recall that the study of

these types of correlators has a quite long history [28–30].

More recently, very general perturbative analysis of the 〈TV V 〉 correlator (or graviton-

gauge-gauge vertex), performed off-shell and at nonzero momentum transfer, have shown

that the general features observed in the 〈AV V 〉 and 〈trTV V 〉 cases where preserved [19–

21, 31].

A specific feature of the spectral density of the chiral and conformal anomalies is that

the pole is introduced in the spectrum in a specific kinematical limit, as a degeneracy of

the two-particle cut when any second scale (for instance the fermion mass) is sent to zero.

The property of the cut turning into a pole is peculiar to finite (non superconvergent) sum

rules. It is related to a spectral density which is normalized by the sum rule just like an
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ordinary weighted distribution, and whose support is located at the edge of the allowed

phase space (s = 0) as the conformal deformation turns to zero. This allows to single out

a unique interpolating state out of all the possible exchanges permitted in the continuum,

i.e. for s > 4m2, as the theory flows towards its conformal/superconformal point.

2.1 Sum rule and the UV/IR conspiracy of the anomaly

As we have just mentioned, the existence of a sum rule for the form factor responsible for

a certain anomaly indicates a UV/IR connection manifested by the corresponding spectral

density, but it is not exclusively related, obviously, to the anomaly phenomenon. In fact,

non anomalous form factors, in some cases, as we are going to show next, share a similar

behaviour. We would expect, though, that the breaking of a symmetry should manifest

in the apperance of a massless state in the spectrum of the effective theory, and in this

respect the saturation of the spectral density with a single resonance in an anomaly form

factor acquires a special status. Elaborating on eq. (2.1), one can show that the effect of

the anomaly is, in general, related to the behaviour of the spectral density at any values of

s, although, in some kinematical limits, it is the region around the light cone (s ∼ 0) which

dominates the sum rule, and amounts to a resonant contribution. In fact, the combination

of the scaling behaviour of the corresponding form factor F (Q2) (equivalently of its density

ρ) with the requirement of integrability of the spectral density, essentially fix f to be a

constant and the sum rule (2.1) to be saturated by a single massless resonance. Obviously, a

superconvergent sum rule, obtained for f = 0, would not share this behaviour. At the same

time, the absence of subtractions in the dispersion relations guarantees the significance of

the sum rule, being this independent of any ultraviolet cutoff.

It is quite straightforward to show that eq. (2.1) is a constraint on asymptotic behaviour

of the related form factor. The proof is obtained by observing that the dispersion relation

for a form factor in the spacelike region (Q2 = −k2 > 0)

F (Q2,m2) =
1

π

∫ ∞
0

ds
ρ(s,m2)

s+Q2
, (2.2)

once we expand the denominator in Q2 as 1
s+Q2 = 1

Q2 − 1
Q2 s

1
Q2 + . . . and make use of

eq. (2.1), induces the following asymptotic behaviour on F (Q2,m2)

lim
Q2→∞

Q2F (Q2,m2) = f. (2.3)

The F ∼ f/Q2 behaviour at large Q2, with f independent of m, shows the pole dominance

of F for Q2 → ∞. The UV/IR conspiracy of the anomaly, discussed in [20, 31, 32], is in

the reappearance of the pole contribution at very large value of the invariant Q2, even for

a nonzero mass m. In fact, as we are going to show in the following sections, the spectral

density has support around the s = 0 region (ρ(s) ∼ δ(s)), as in the massless (m = 0)

case. This point is quite subtle, since the flows of the spectral densities with m show the

decoupling of the anomaly pole for a nonzero mass. Here, the term decoupling will be used

to refer to the non resonant behaviour of ρ. Therefore, the presence of a 1/Q2 term in

the anomaly form factors is a property of the entire flow which a) converges to a localized
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massless state (i.e. ρ(s) ∼ δ(s)) as m → 0, while b) the presence of a non vanishing sum

rule guarantees the validity of the asymptotic constraint illustrated in eq. (2.3). Notice that

although for conformal deformations driven by a single mass parameter the independence of

the asymptotic value f on m is a simple consequence of the scaling behaviour of F (Q2,m2),

it holds quite generally even for a completely off-shell kinematics [19].

In summary, in complete agreement with a previous analysis by Giannotti and Mot-

tola [19], we are going to verify that for a generic supersymmetric N = 1 theory, the two

basic features of the anomalous behaviour of a certain form factor responsible for chiral

or conformal anomalies are: 1) the existence of a spectral flow which turns a dispersive

cut into a pole as m goes to zero and 2) the existence of a sum rule which relates the

asymptotic behaviour of the anomaly form factor to the strength of the pole resonance.

In a supersymmetric theory this correspondence, as we are going to show, is unique,

since the only poles present in the explicit expressions are those of the anomaly form fac-

tors. This feature is shared also by the 〈AV V 〉 in non supersymmetric theories, where one

can identify a single pole in the related form factor, a single sum rule and a single spectral

density flow. In the 〈TV V 〉 diagram, for a general field theory, instead, this feature is ab-

sent. The appearance of extra poles in the form factors of the traceless parts of this second

correlators leaves unanswered the question about the physical meaning of these additional

singularities [19–21, 31]. On the other end, the effective massless states emerging from the

anomaly sectors should be identified with the Nambu-Goldstone modes of the corresponding

broken symmetries, which are such because of non conserved dilatation and chiral currents.

The reason for turning to supersymmetry should be obvious. One expects, in general,

that the perturbative structure of the chiral and conformal [33] anomalies, in this case,

should be similar. This should occur for a supersymmetric anomaly multiplet, where both

the 〈TV V 〉 and the 〈AV V 〉-like diagrams are components of the same anomalous correlator.

At the same time, we expect to recover, for each single component, the properties found in

the past, separately in the chiral and in the conformal cases [24–26], but, hopefully, without

the extra poles present in the non anomalous tensor structures and form factors of 〈TV V 〉.

We are going to prove, by an explicit computation, that this is indeed the case. We

also stress the fact that our analysis, in particular in the 〈TV V 〉 case, is entirely performed

at nonzero momentum transfer, working with the insertion of the uncontracted T , rather

than with its trace, as done in [25, 26]. The study is centered around the 〈J VV〉 corre-

lator, in N = 1 and N = 4 theories, containing the hypercurrent J (the Ferrara-Zumino

multiplet [34]) and two vector supercurrents V. We will show that the two requirements

enunciated above are satisfied by every component of this multiplet. However, before

moving to the supersymmetric case, we briefly review the results of the computation of the

〈TV V 〉 in an ordinary non-abelian gauge theory. This may serve to illustrate the differences

between an ordinary gauge theory and its supersymmetric version, which has triggered the

current analysis.
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3 The 〈TV V 〉 and 〈AV V 〉 vertices in an ordinary gauge theory

We consider a non-abelian gauge theory containing massless scalars, fermions and gauge

fields, with fermions and scalars assigned to the representations Rf and Rs respectively,

and define a correlator with a symmetric EMT (T ) and two vector (gauge) currents (V ).

The correlator can be interpreted, in a weak gravitational background, as describing the

one graviton-two gauge fields vertex, which is affected by the trace anomaly. The analysis

in QED is contained in [19, 20], while generalization to QCD and to the Standard Model

can be found in [21, 35]. The general tensor structure of this type of vertex has been

given in QED by Giannotti and Mottola [19] in terms of a non minimal basis of 13 form

factors (t1, t2, . . . , t13) in the course of their studies on the 1PI conformal anomaly effective

action for gravity. Here we present the tensor expansion of the one-loop 〈TV V 〉 vertex

with on-shell vector lines in a non-abelian gauge theory. Details can be found in [21].

The on-shell expansion of the 〈TV V 〉 correlator in a non-abelian gauge theory is ex-

pressed in terms of just 3 independent form factors [21]

Γµναβ(T ) (p, q) = f1(k2)φµναβ1 (p, q) + f2(k2)φµναβ2 (p, q) + f3(k2)φµναβ3 (p, q) , (3.1)

where the tensor structures are defined by

φµναβ1 (p, q) ≡ tµναβ1 (p, q) = (k2ηµν − kµkν)uαβ(p, q) ,

φµναβ2 (p, q) ≡ tµναβ3 (p, q)+tµναβ5 (p, q)−4tµναβ7 (p, q)=−2uαβ(p, q)[k2ηµν+2(pµpν+qµqν)

−4(pµqν + qµpν)] ,

φµναβ3 (p, q) ≡ tµναβ13 (p, q) = (pµqν + pνqµ)ηαβ + p · q(ηανηβµ + ηαµηβν)− ηµνuαβ(p, q)

−(ηβνpµ + ηβµpν)qα − (ηανqµ + ηαµqν)pβ, (3.2)

with

uαβ(p, q) = ηαβp · q − pβqα . (3.3)

Here k = p+ q is the incoming momentum in the EMT line, while pα and qβ are the two

outgoing momenta from the two vector currents.

For massless fields running in the loops, of these 3 tensor structures only φ1 is traceful,

contributing to the trace anomaly, the remaining ones being traceless. Fermions, scalars

and gauge fields give contributions which are separately gauge invariant. Both f1, the

anomaly form factor, and the form factor f2 of the traceless tensor φ2 are found to be

finite, while f3, the form factor of the traceless φ3, gets renormalized. In the most general

paremeterization of the vertex — assuming nonzero virtualities of all the external lines

and an internal mass (m) for the field in the loops — tµναβ1 is still the only traceful and

anomalous tensor structure.

t2 is also traceful, but describes the explicit breaking of the conformal symmetry (its

form factor is proportional to m and therefore it is non anomalous) and t13 is the only

tensor structure affected by renormalization. The remaining form factors, corresponding

to the contributions (t1, t2, t3, . . . , t12) are finite.
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In the on-shell and massless case, for a Dirac fermion (f) in the representation Rf
running in the loops, the form factors are given by

f
(f)
1 (k2) = −

g2 T (Rf )

18π2 k2
, f

(f)
2 (k2) = −

g2 T (Rf )

144π2 k2
,

f
(f)
3 (k2) =

g2 T (Rf )

144π2

{
11 + 12B0(k2, 0)

}
(3.4)

where TrT aT b = T (R)δab is the Dynkin index of the representation R.

Analogous results hold for a conformally coupled complex scalar (s) in the represen-

tation Rs

f
(s)
1 (k2) = −g

2 T (Rs)

72π2 k2
, f

(s)
2 (k2) =

g2 T (Rs)

288π2 k2
,

f
(s)
3 (k2) =

g2 T (Rs)

288π2

{
7 + 6B0(k2, 0)

}
, (3.5)

while for a gauge field (A) in the adjoint representation one obtains

f
(A)
1 (k2) =

11g2 T (A)

72π2 k2
, f

(A)
2 (k2) =

g2 T (A)

288π2 k2
,

f
(A)
3 (k2) = −g

2 T (A)

8π2

{
65

36
− B0(0, 0) +

11

6
B0(k2, 0) + k2 C0(k2, 0)

}
. (3.6)

A discussion of the scalar integrals is given in appendix A. It is a common lore to denote with

B0 and C0 the scalar 2- and 3- point functions. Note that in the expression of C0(k2,m2),

the scalar triangle integral, the first entry is the only nonzero external invariant, while m

is the mass of the virtual particles. Also note that f1 and f2 are both finite, while f3 needs

renormalization, as we have just mentioned.

Each contribution is separately gauge invariant and it is characterized by an anomaly

pole in the corresponding form factor f1, described by a spectral density which is a Dirac

delta (∼ δ(k2)). However, additional poles are present also in f2, which multiplies a

traceless structure, and are not directly linked to the conformal anomaly. These extra poles

have demised, so far, any interpretation, but they seem to share the same properties of the

anomaly poles of the correlator. It is then clear that both f1 and f2, in this case, should

be treated on the same footing since, as we are going to show, they are both characterized

by spectral densities satisfying the conditions enunciated in the previous sections. We will

see, however, that supersymmetry gives a surprisingly simple answer on this issue, since

the extra, non anomalous poles in the supersymmetric case are simply not present.

The existence of extra poles is a characteristic of the 〈TV V 〉 correlator in ordinary

gauge theories, but not of the 〈AV V 〉, where A is an axial-vector current. We recall that

for an axial anomaly, the usual Rosenberg parameterization in terms of six form factors

(A1, . . . , A6), and the use of the Ward identities and on-shellness conditions on the vector

lines, reduce the anomaly amplitude ∆λµν to the simple form [32]

∆λµν =A6(k2,m2)kλε[p, q, ν, µ]+(A4(k2,m2)+A6(k2,m2))(qνε[p, q, µ, λ]−pµε[p, q, ν, λ]),

(3.7)
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with k denoting the incoming momentum of the axial-vector line (of Lorentz index λ), and

with p and q denoting the outgoing momenta of the (µ, ν) vector lines. Note that in this

case the transversality condition for the vector currents removes the second combination

of form factors, leaving only a nonzero A6, which is given by

A6(k2,m2) =
1

2π2k2

(
1 +

m2

k2
log2

(√
τ(k2,m2) + 1√
τ(k2,m2)− 1

))
k2 < 0 (3.8)

with τ(k2,m2) = 1−4m2/k2. In the massless limit, the spectral density of this form factor,

for k2 > 0, is proportional to a Dirac δ-function, since the logarithmic term vanishes, and is

accompanied by a sum rule. In any case, the spectral density of the A4 +A6 form factor is

not integrable, and the link between the chiral anomaly and the corresponding pole is again

unique. We will illustrate this point in a following section. We now turn to discuss the

structure of the correlator which is responsible for the superconformal anomaly, proceeding

with a perturbative analysis of its components and of its related spectral densities.

4 Theoretical framework

In this section we review the definition and some basic properties of the Ferrara-Zumino

supercurrent multiplet, which from now on we will denote also as the hypercurrent, in order

to distinguish it from its fermionic component, usually called the supercurrent.

We consider a N = 1 supersymmetric Yang-Mills theory with a chiral supermultiplet

in the matter sector. In the superfield formalism the action is given by

S =

(
1

16g2T (R)

∫
d4x d2θTrW 2 + h.c.

)
+

∫
d4x d4θ Φ̄eV Φ +

(∫
d4x d2θW(Φ) + h.c.

)
(4.1)

where the supersymmetric field strength WA and gauge vector field V are contracted with

the hermitian generators T a of the gauge group to which the chiral superfield Φ belongs.

In particular

V = 2gV aT a , and WA = 2gW a
AT

a = −1

4
D̄2e−VDA e

V . (4.2)

In order to clarify our conventions we give the component expansion of the chiral superfield

Φ

Φi = φi +
√

2θχi + θ2Fi , (4.3)

and of the superfields W a
A and V a in the Wess-Zumino gauge

W a
A = λaA + θAD

a − (σµνθ)AF
a
µν + iθ2 σµ

AḂ
Dµλ̄a Ḃ , (4.4)

V a = θσµθ̄Aaµ + θ2θ̄λ̄a + θ̄2θλa +
1

2
θ2θ̄2 (Da + i∂µA

aµ) , (4.5)

where φi is a complex scalar and χi its superpartner, a left-handed Weyl fermion, Aaµ
and λa are the gauge vector field and the gaugino respectively, F aµν is the gauge field

strength while Fi and Da correspond to the F - and D-terms. Moreover, we have defined

σµν = (i/4)(σµσ̄ν − σν σ̄µ).
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Using the component expansions introduced in eq. (4.3) and (4.4) we obtain the su-

persymmetric lagrangian in the component formalism, which we report for convenience

L = −1

4
F aµνF

aµν + iλaσµDabµ λ̄b + (Dµijφj)
†(Dik µφk) + iχjσµDµ †ij χ̄i

−
√

2g
(
λ̄aχ̄iT

a
ijφj + φ†iT

a
ijλ

aχj

)
− V (φ, φ†)− 1

2
(χiχjWij(φ) + h.c.) , (4.6)

where the gauge covariant derivatives on the matter fields and on the gaugino are defined

respectively as

Dµij = δij∂
µ + igAaµT aij , Dacµ = δac∂µ − g tabcAbµ , (4.7)

with tabc the structure constants of the adjoint representation, and the scalar potential is

given by

V (φ, φ†) =W†i (φ
†)Wi(φ) +

1

2
g2
(
φ†iT

a
ijφj

)2
. (4.8)

For the derivatives of the superpotential we have been used the following definitions

Wi(φ) =
∂W(Φ)

∂Φi

∣∣∣∣ , Wij(φ) =
∂2W(Φ)

∂Φi∂Φj

∣∣∣∣ , (4.9)

where the symbol | on the right indicates that the quantity is evaluated at θ = θ̄ = 0.

Notice that in the above equations the F - and D-terms have been removed exploiting

their equations of motion. Having defined the model, we can introduce the Ferrara-Zumino

hypercurrent

JAȦ = Tr
[
W̄Ȧe

VWAe
−V ]− 1

3
Φ̄

[←
∇̄Ȧ e

V∇A − eV D̄Ȧ∇A+
←
∇̄Ȧ

←
DA e

V

]
Φ , (4.10)

where ∇A is the gauge-covariant derivative in the superfield formalism whose action on

chiral superfields is given by

∇AΦ = e−VDA

(
eV Φ

)
, ∇̄ȦΦ̄ = eV D̄Ȧ

(
e−V Φ̄

)
. (4.11)

The conservation equation for the hypercurrent JAȦ is

D̄ȦJAȦ=
2

3
DA

[
− g2

16π2
(3T (A)−T (R)) TrW 2− 1

8
γ D̄2(Φ̄eV Φ)+

(
3W(Φ)−Φ

∂W(Φ)

∂Φ

)]
,

(4.12)

where γ is the anomalous dimension of the chiral superfield.

The first two terms in eq. (4.12) describe the quantum anomaly of the hypercurrent,

while the last is of classical origin and it is entirely given by the superpotential. In par-

ticular, for a classical scale invariant theory, in which W is cubic in the superfields or

identically zero, this term identically vanishes. If, on the other hand, the superpotential is

quadratic the conservation equation of the hypercurrent acquires a non-zero contribution

even at classical level. This describes the explicit breaking of the conformal symmetry.

We can now project the hypercurrent JAȦ defined in eq. (4.10) onto its components.

The lowest component is given by the Rµ current, the θ term is associated with the su-

percurrent SµA, while the θθ̄ component contains the energy-momentum tensor Tµν . In
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the N = 1 super Yang-Mills theory described by the Lagrangian in eq. (4.6), these three

currents are defined as

Rµ = λ̄aσ̄µλa +
1

3

(
−χ̄iσ̄µχi + 2iφ†iD

µ
ijφj − 2i(Dµijφj)

†φi

)
, (4.13)

SµA = i(σνρσµλ̄a)AF
a
νρ −

√
2(σν σ̄

µχi)A(Dνijφj)† − i
√

2(σµχ̄i)W†i (φ
†)

−ig(φ†iT
a
ijφj)(σ

µλ̄a)A + SµI A , (4.14)

Tµν =−F aµρF a νρ+
i

4

[̄
λaσ̄µ(δac

→
∂ν−g tabcAb ν)λc+λ̄aσ̄µ(−δac

←
∂ν−g tabcAb ν)λc+(µ↔ ν)

]
+(Dµijφj)

†(Dνikφk) + (Dνijφj)†(D
µ
ikφk) +

i

4

[
χ̄iσ̄

µ(δij
→
∂ν +igT aijA

a ν)χj

+ χ̄iσ̄
µ(−δij

←
∂ν +igT aijA

a ν)χj + (µ↔ ν)

]
− ηµνL+ TµνI , (4.15)

where L is given in eq. (4.6) and SµI and TµνI are the terms of improvement in d = 4 of

the supercurrent and of the EMT respectively. As in the non-supersymmetric case, these

terms are necessary only for a scalar field and, therefore, receive contributions only from

the chiral multiplet. They are explicitly given by

SµI A =
4
√

2

3
i
[
σµν∂ν(χiφ

†
i )
]
A
, (4.16)

TµνI =
1

3

(
ηµν∂2 − ∂µ∂ν

)
φ†iφi . (4.17)

The terms of improvement are automatically conserved and guarantee, forW(Φ) = 0, upon

using the equations of motion, the vanishing of the classical trace of Tµν and of the classical

gamma-trace of the supercurrent SµA. The anomaly equations in the component formalism,

which can be projected out from eq. (4.12), are

∂µR
µ =

g2

16π2

(
T (A)− 1

3
T (R)

)
F aµνF̃ aµν , (4.18)

σ̄µS
µ
A = −i3 g

2

8π2

(
T (A)− 1

3
T (R)

)(
λ̄aσ̄µν

)
A
F aµν , (4.19)

ηµνT
µν = − 3 g2

32π2

(
T (A)− 1

3
T (R)

)
F aµνF aµν . (4.20)

The first and the last equations are respectively extracted from the imaginary and the real

part of the θ component of eq. (4.12), while the gamma-trace of the supercurrent comes

from the lowest component.

5 The perturbative expansion in the component formalism

In this section we will present the one-loop perturbative analysis of the one-particle irre-

ducible correlators, built with a single current insertion contributing — at leading order in

the gauge coupling constant — to the anomaly equations previously discussed.
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We define the three correlation functions, Γ(R), Γ(S) and Γ(T ) as

δab Γµαβ(R) (p, q) ≡ 〈Rµ(k)Aaα(p)Ab β(q)〉 〈RV V 〉 ,

δab Γµα
(S)AḂ

(p, q) ≡ 〈SµA(k)Aaα(p) λ̄b
Ḃ

(q)〉 〈SV F 〉 ,

δab Γµναβ(T ) (p, q) ≡ 〈Tµν(k)Aaα(p)Ab β(q)〉 〈TV V 〉 , (5.1)

with k = p+q and where we have factorized, for the sake of simplicity, the Kronecker delta

on the adjoint indices. These correlation functions have been computed at one-loop order in

the dimensional reduction scheme (DRed) using the Feynman rules listed in appendix E.

We recall that in this scheme the tensor and scalar loop integrals are computed in the

analytically continued spacetime while the sigma algebra is restricted to four dimensions.

In order to provide more details, we will present the results for the matter chiral and

gauge vector multiplets separately, for on-shell external gauge lines. The chiral contribution

will be discussed first, and the result will be given with the inclusion of the corresponding

mass corrections.

Notice that the matter chiral superfield belongs to a certain representation R of the

gauge group. If the representation is complex, for instance the fundamental of SU(N), then

the superfield must be accompanied by another superfield (eventually with the same mass)

belonging to the complex-conjugate representation R̄. In this case, the generator T̄ a of R̄

are related to those of R by the equation T̄ a = −(T a)T = −(T a)∗. For simplicity, in the

following we will consider just the case of a single chiral superfield in a real representation

of the gauge group. The extension to a complex representation amounts just to a factor of

2 in front of all the expressions which are generated for the chiral multiplet. Indeed these

terms are all proportional to T (R), which is equal to T (R̄).

The one-particle irreducible correlation functions of the Ferrara-Zumino multiplet are

ultraviolet (UV) divergent, as one can see from a direct computation, and we need a suitable

renormalization procedure in order to get finite results. In particular we have explicitly

checked that, at one-loop order, among the three correlators defined in eq. (5.1), only

those with SµA and Tµν require a UV counterterm. The renormalization of the correlation

functions is guaranteed by replacing the bare operators in eq. (4.14) and eq. (4.15) with

their renormalized counterparts. This introduces the renormalized parameters and wave-

function renormalization constants which are fixed by some conditions that specify the

renormalization scheme. In particular, for the correlation functions we are interested in,

the bare SµA and Tµν current become

SµA = iZ
1/2
λ Z

1/2
V (σνρσµλ̄aR)AF

a
R νρ + . . . ,

Tµν = ZV

(
−F aµρR F a νR ρ +

1

4
ηµνF a ρσR F aRρσ

)
+ . . . , (5.2)

where the suffix R denotes renormalized quantities. ZV and Zλ are the wave-function

renormalization constants of the gauge and gaugino field respectively, while the ellipses

stand for all the remaining operators. In the previous equations we have explicitly shown

only the contributions from which, at one-loop order, we can extract the counterterms
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needed to renormalize our correlation functions. All the other terms, not shown, play a

role at higher perturbative orders.

Expanding the wave-function renormalization constants at one-loop as Z = 1 + δZ we

obtain the vertices of the counterterms

δ[SµA(k)Aaα(p)λ̄b
Ḃ

(q)] = (δZV + δZλ) pρ (σαρσµ)AḂ ,

δ[Tµν(k)Aaα(p)Ab β(q)] = δZV δ
ab
{
p · q Cµναβ +Dµναβ(p, q)

}
, (5.3)

with p and q outgoing momenta and where the two tensor structures Cµναβ and Dµναβ(p, q)

are given in appendix E. The δZ counterterms can be defined, for instance, by requiring a

unit residue of the full two-point functions on the physical particle poles. This implies that

δZV = − ∂

∂p2
Σ(V V )(p2)

∣∣∣∣
p2=0

and δZλ = −Σ(λλ̄)(0) , (5.4)

where the one-loop corrections to the gauge and gaugino two-point functions are defined as

Γ(V V )
µν (p) = −iδab

(
ηµν −

pµpν
p2

)
Σ(V V )(p2) , (5.5)

Γ
(λλ̄)

AḂ
(p) = iδab pµσ

µ

AḂ
Σ(λλ̄)(p2) , (5.6)

with

Σ(V V )(p2) =
g2

16π2
p2
{
T (R)B0(p2,m2)− T (A)B0(p2, 0)

}
, (5.7)

Σ(λλ̄)(p2) =
g2

16π2

{
T (R)B0(p2,m2) + T (A)B0(p2, 0)

}
. (5.8)

Using the previous expressions we can easily compute the wave-function renormalization

constants

δZV = − g2

16π2

{
T (R)B0(0,m2)− T (A)B0(0, 0)

}
,

δZλ = − g2

16π2

{
T (R)B0(0,m2) + T (A)B0(0, 0)

}
, (5.9)

and therefore obtain the one-loop counterterms needed to renormalize our correlators. In

the following we will always present results for the renormalized correlation functions.

It is interesting to observe that, accordingly to eq. (5.3), the one-loop counterterm to

the supercurrent correlation function is identically zero for the vector gauge multiplet, due

to a cancellation between δZV and δZλ. Therefore we expect a finite result for the vector

supermultiplet contribution to the Γµα(S). Indeed this is the case as we will show below.

The correctness of our computations is secured by the check of some Ward identities.

These arise from gauge invariance, from the conservation of the energy-momentum tensor

and of the supercurrent. In particular, for the three point correlators defined above, we have

pα Γµαβ(R) (p, q) = 0 , qβ Γµαβ(R) (p, q) = 0 ,
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Rµ(k)

Ab β(q)

Aa α(p)

(a)

Rµ(k)

Ab β(q)

Aa α(p)

(b)

Rµ(k)

Ab β(q)

Aa α(p)

(c)

Rµ(k)

Ab β(q)

Aa α(p)

(d)

Rµ(k)

Ab β(q)

Aa α(p)

(e)

Rµ(k) Ab β(q)

Aa α(p)

(f)

Ab β(q)

Aa α(p)
Rµ(k)

(g)

Figure 2. The one-loop perturbative expansion of the 〈RV V 〉 correlator with a massless chiral

multiplet running in the loops.

pα Γµα(S)(p, q) = 0 ,

pα Γµναβ(T ) (p, q) = 0 , qβ Γµναβ(T ) (p, q) = 0 (5.10)

from the conservation of the vector current, and

i kµ Γµα(S)(p, q) = −2pµ σ
µαΓ̂(λλ̄)(q)− iσµΓ̂µα(V V )(p) ,

i kµ Γµναβ(T ) (p, q) = qµΓ̂αµ(V V )η
βν(p)+pµΓ̂βµ(V V )(q)η

αν−qνΓ̂αβ(V V )(p)−p
νΓ̂αβ(V V )(q) , (5.11)

for the conservation of the supercurrent and of the EMT respectively, where Γ̂(V V ) and

Γ̂(λλ̄) are the renormalized self-energies. Their derivation follows closely the analysis pre-

sented in [21]. Notice that, for on-shell gauge and gaugino external lines, the two identities

in eq. (5.11) simplify considerably because their right-hand sides vanish identically.

6 The supercorrelator in the on-shell and massless case

In this section we discuss the explicit results of the computation of supercorrelator when

the components of the external vector supercurrents are on-shell and the superpotential of

the chiral multiplet is absent. We will consider first the contributions due to the exchange

of the chiral multiplet, followed by a subsection in which we address the exchange of a

virtual vector multiplet.

6.1 The chiral multiplet contribution

We start from the chiral multiplet, presenting the result of the computation for massless

fields and on shell gauge and gaugino external lines.

-Three-point function of the Rµ current. The diagrams defining the one-loop ex-

pansion of the Γ(R) correlator are shown in figure 2. They consist of triangle and bubble

topologies with fermions, since the scalars do not contribute. The explicit result for a
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Sµ
A(k)

λ̄b
Ḃ
(q)

Aa α(p)

(a)

Sµ
A(k)

λ̄b
Ḃ
(q)

Aa α(p)

(b)

Sµ
A(k)

λ̄b
Ḃ
(q)

Aa α(p)

(c)

Sµ
A(k) λ̄b

Ḃ
(q)

Aa α(p)

(d)

Figure 3. The one-loop perturbative expansion of the 〈SV F 〉 correlator with a massless chiral

multiplet running in the loops.

T µν(k)

Ab β(q)

Aa α(p)

(a)

T µν(k)

Ab β(q)

Aa α(p)

(b)

T µν(k)

Ab β(q)

Aa α(p)

(c)

T µν(k) Ab β(q)

Aa α(p)

(d)

T µν(k)

Ab β(q)

Aa α(p)

(e)

T µν(k)

Ab β(q)

Aa α(p)

(f)

T µν(k)

Ab β(q)

Aa α(p)

(g)

T µν(k) Ab β(q)

Aa α(p)

(h)

Ab β(q)

Aa α(p)
T µν(k)

(i)

T µν(k)

Ab β(q)

Aaα(p)

(j)

Figure 4. The one-loop perturbative expansion of the 〈TV V 〉 correlator with a massless chiral

multiplet running in the loops. The last diagram, being a massless tadpole, is identically zero in

dimensional regularization.

massless chiral multiplet with on-shell external gauge bosons is given by

Γµαβ(R) (p, q) = −ig
2 T (R)

12π2

kµ

k2
ε[p, q, α, β] , (6.1)

The correlator in eq. (6.1) satisfies the vector current conservation constraints given in

eq. (5.10) and the anomalous equation of eq. (4.18)

ikµ Γµαβ(R) (p, q) =
g2 T (R)

12π2
ε[p, q, α, β] . (6.2)

There is no much surprise, obviously, for the anomalous structure of eq. (6.1) which is

characterized by a pole 1/k2 term, since in the on-shell case and for massless fermions

(which are the only fields contributing to the 〈RV V 〉 at this perturbative order), we recover

the usual structure of the 〈AV V 〉 diagram.
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-Three-point function of the SµA current. The perturbative expansion of the Γµα
(S)AḂ

correlation function is depicted in figure 3. For simplicity we will remove, from now on,

the spinorial indices from the corresponding expressions. The explicit result for a massless

chiral supermultiplet with on-shell external gauge and gaugino lines is then given by

Γµα(S)(p, q) = −ig
2T (R)

6π2 k2
sµα1 + i

g2T (R)

64π2
Φ2(k2, 0) sµα2 , (6.3)

where the form factor Φ2(k2, 0) is defined as

Φ2(k2, 0) = 1− B0(0, 0) + B0(k2, 0) , (6.4)

and the two tensor structures are

sµα1 = σµνkν σ
ρkρ σ̄

αβpβ ,

sµα2 = 2pβ σ
αβσµ . (6.5)

The B0 function appearing in eq. (6.4) is a two-point scalar integral defined in appendix A.

Notice that the form factor multiplying the second tensor structure s2 is ultraviolet finite,

due to the renormalization procedure, but has an infrared singularity inherited by the

counterterms in eq. (5.3).

It is important to observe that the only pole contribution comes from the anomalous

structure sµα1 , which shows that the origin of the anomaly has to be attributed to a unique

fermionic pole (σρkρ/k
2) in the correlator, in the form factor multiplying sµα1 . It is easy to

show that eq. (6.3) satisfies the vector current and EMT conservation equations. Moreover,

the anomalous equation reads as

σ̄µ Γµα(S)(p, q) =
g2T (R)

4π2
σ̄αβpβ , (6.6)

where only the first tensor structure contributes to the σ-trace of the correlator. This result

is clearly in agreement with eq. (4.19) after Fourier transform (F .T .), owing to

F .T .
{
i

2

δ2Fµν σ̄
µν λ̄

δAα(x)δλ̄(y)

}
= σ̄αβpβ . (6.7)

Notice also that

F .T .
{

δ2Sµ

δAα(x)δλ̄(y)

}
= sµα2 . (6.8)

-Three-point function of the energy-momentum tensor Tµν . The diagrams ap-

pearing in the perturbative expansions of the Γ(T ) are depicted in figure 4. They consist of

triangle and bubble topologies. There is also a tadpole-like contribution, figure 4j, which

is non-zero only in the massive case.

The explicit expression of the Γ(T ) correlator for a massless chiral supermultiplet and

on-shell gauge lines is given by

Γµναβ(T ) (p, q) = −g
2 T (R)

24π2 k2
tµναβ1S (p, q) +

g2 T (R)

16π2
Φ2(k2, 0) tµναβ2S (p, q) , (6.9)
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where the Φ2 is defined in eq. (6.4) and

tµναβ1S (p, q) ≡ φµναβ1 (p, q) = (ηµνk2 − kµkν)uαβ(p, q) , (6.10)

tµναβ2S (p, q) ≡ φµναβ3 (p, q) = (pµqν + pνqµ)ηαβ + p · q(ηανηβµ + ηαµηβν)− ηµνuαβ(p, q)

−(ηβνpµ + ηβµpν)qα − (ηανqµ + ηαµqν)pβ , (6.11)

where φµναβ1 , φµναβ3 and uαβ are given in eqs. (3.2) and (3.3). As in the previous cases

we have explicitly checked all the Ward identities originating from gauge invariance and

conservation of the energy-momentum tensor. As one can easily verify by inspection, only

the first one of the two tensor structures is traceful and contributes to the anomaly equation

of the Γ(T ) correlator

ηµν Γµναβ(T ) (p, q) = −g
2 T (R)

8π2
uαβ(p, q) . (6.12)

The comparison of eq. (6.12) to eq. (4.20) is evident if one recognizes that

F .T .
{
−1

4

δ2FµνF
µν

δAα(x)δAβ(y)

}
= uαβ(p, q) . (6.13)

For completeness we give also the inverse Fourier transform of tµναβ2S (p, q) which is obtained

from

F .T .
{

δ2Tµνgauge

δAα(x)δAβ(y)

}
= tµναβ2S (p, q) , (6.14)

where Tµνgauge is the pure gauge part of the energy-momentum tensor. Notice that t2S is

nothing else than the tree-level vertex with two onshell gauge fields on the external lines.

As in the previous subsection, concerning the supersymmetric current SµA, also in the

case of this correlator there is only one structure containing a pole term, which appears in

the only form factor (which multiplies t1S) with a nonvanishing trace. Differently from the

non supersymmetric case, such as in QED and QCD, with fermions or scalars running in

the loops, as shown in eqs. (6.15), (6.16), and (6.17), there are no extra poles in the traceless

structures of the decomposition of the correlators. This shows that in a supersymmetric

theory the signature of all the anomalies in the 〈J VV〉 correlator are only due to anomaly

poles in each channel.

6.2 The vector multiplet contribution

Finally, we come to a discussion of the perturbative results for the vector (gauge) multiplet

to the three anomalous correlation functions presented in the previous sections. Notice

that due to the quantization of the gauge field, gauge fixing and ghost terms must be taken

into account both, increasing the complexity of the computation. This technical problem is

completely circumvented with on-shell gauge boson and gaugino, which is the case analyzed

in this work.

Concerning the diagrammatic expansion, the topologies of the various contributions

defining the three correlators is analogous to those illustrated in massless chiral case. The

explicit results are given by

Γµαβ(R) (p, q) = i
g2 T (A)

4π2

kµ

k2
ε[p, q, α, β] , (6.15)
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Rµ(k)

Ab β(q)

Aa α(p)

(a)

Sµ
A(k)

λ̄b
Ḃ
(q)

Aa α(p)

(b)

T µν(k)

Ab β(q)

Aa α(p)

(c)

Figure 5. A sample of diagrams, for a massive chiral multiplet, mass insertions in the fermion

propagators.

Γµα(S)(p, q) = i
g2T (A)

2π2 k2
sµα1 + i

g2T (A)

64π2
V (k2) sµα2 , (6.16)

Γµναβ(T ) (p, q) =
g2 T (A)

8π2 k2
tµναβ1 (p, q) +

g2 T (A)

16π2
V (k2) tµναβ2 (p, q) , (6.17)

where

V (k2) = −3 + 3B0(0, 0)− 3B0(k2, 0)− 2k2 C0(k2, 0) . (6.18)

The tensor expansion of the correlators is the same as in the previous cases. The only differ-

ences are in the form factors. In particular, the first in each of them is the only one respon-

sible for the anomaly and is multiplied, respect to the chiral case, by a factor −3 and by a

different group factor. The result reproduces exactly the anomaly eqs. (4.18), (4.19), (4.20).

Concerning the ultraviolet divergences of these correlators, the explicit computation shows

that the vector multiplet contribution to Γµν(S) is indeed finite at one-loop order before any

renormalization. This confirms a result obtained in the analysis of the renormalization

properties of these correlators presented in a previous section, where we have shown the

vanishing of the counterterm of Γµα(S) for the vector multiplet.

Also for the vector multiplet, the result is similar, since the only anomaly poles present

in the three correlators (6.15), (6.16) and (6.17) are those belonging to anomalous struc-

tures. We conclude that in all the cases discussed so far, anomaly poles are the signature

of an anomaly in a superconformal theory.

7 The supercorrelator in the on-shell and massive case

We now extend our previous analysis to the case of a massive chiral multiplet. This will

turn out to be extremely useful in order to discuss the general behaviour of the spectral

densities away from the conformal point.

The diagrammatic expansion of the three correlators for a massive chiral multiplet in

the loops grows larger, with a bigger set of contributions. These are characterized by mass

insertions on the SµA and Tµν vertices and on the propagators of the Weyl fermions. A

sample of them is shown in figure 5. An explicit computation, in this case, gives

Γµαβ(R) (p, q) = i
g2 T (R)

12π2
Φ1(k2,m2)

kµ

k2
ε[p, q, α, β] , (7.1)

Γµα(S)(p, q) = i
g2T (R)

6π2 k2
Φ1(k2,m2) sµα1 + i

g2T (R)

64π2
Φ2(k2,m2) sµα2 , (7.2)
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Γµναβ(T ) (p, q) =
g2 T (R)

24π2 k2
Φ1(k2,m2) tµναβ1S (p, q) +

g2 T (R)

16π2
Φ2(k2,m2) tµναβ2S (p, q) , (7.3)

with

Φ1(k2,m2) = −1− 2m2 C0(k2,m2) ,

Φ2(k2,m2) = 1− B0(0,m2) + B0(k2,m2) + 2m2C0(k2,m2) . (7.4)

The expressions above show that the only modifications introduced by the mass corrections

are in the form factors, while the tensor structures remain unchanged.

As we have previously discussed, if the superpotential is quadratic in the chiral super-

field, the conservation equation of the hypercurrent is non homogeneous. Its four-divergence

equals a classical (non-anomalous) contribution due to the explicit breaking of the confor-

mal symmetry. Therefore, in this case, the anomaly equations (6.2), (6.6), and (6.12) must

be modified in order to account for the mass dependence. The new conservation equations

for a massive chiral supermultiplet become

ikµ Γµαβ(R) (p, q) = −g
2T (R)

12π2
Φ1(k2,m2)ε[p, q, α, β] , (7.5)

σ̄µ Γµα(S)(p, q) = −g
2T (R)

4π2
Φ1(k2,m2)σ̄αβpβ , (7.6)

ηµν Γµναβ(T ) (p, q) =
g2T (R)

8π2
Φ1(k2,m2)uαβ(p, q) . (7.7)

It is interesting to observe that supersymmetry prevents the appearance of new structures

in the conservation equations, at least for these correlation functions, being the explicit

classical breaking terms just a correction to the anomaly coefficient. This does not occur

in non-supersymmetric theories [19, 20].

8 The flavor chiral symmetries and the Konishi anomaly

If the superpotential W(Φ) is absent, the action in eq. (4.1) is also invariant under a

phase rotation of the chiral superfield alone. This transformation, differently from the R

transformation, does not affect the θ, θ̄ coordinates. If the theory contains Nf flavor chiral

superfields Φf , then we can construct Nf chiral currents associated to the each of the

independent U(1) flavor rotations. In the superfield formalism these are given by

J f
AȦ

= −1

2
[DA, D̄Ȧ]J f (8.1)

where J f is the Konishi operator defined as

J f = Φ̄feV Φf . (8.2)

In the component formalism the chiral currents are extracted from the θθ̄ component of

the Konishi operator and are given by

Jfµ = χ̄f σ̄µχ
f + i φf †(Dµφf )− i (Dµφf )†φf . (8.3)
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Differently from the R current, which belongs to a supermultiplet together with the super-

current and the energy-momentum tensor, the U(1) chiral currents discussed here are the

only non-trivially conserved components of the Konishi operator.

As for non-supersymmetric theories, these U(1) chiral symmetries suffer from an

anomaly whose equation in the superfield formalism is given by

D̄2J f =
T (Rf )

2π2
TrW 2 , or σ̄ȦAµ ∂µJ f

AȦ
= i

T (Rf )

16π2
D2TrW 2 + h.c. , (8.4)

or, equivalently, in components as

∂µJfµ =
g2 T (Rf )

16π2
F aµνF̃ aµν . (8.5)

The one-loop perturbative computation for the three-point function, Γµαβ
(Jf )

, with a Jfµ
current insertion and two on-shell gauge fields on the external lines can be easily recovered

from the previous computations. Indeed, due to its chiral nature, the Jf current is quite

similar to the R current. Taking into account the fact that the scalar part of Jfµ in eq. (8.3)

does not contribute to the one-loop correlator, the result for Γµαβ
(Jf )

is obtained from eq. (6.1)

with a multiplicative factor −3, or from the vector multiplet contribution of eq. (6.15) with

a different group theoretical factor. Therefore, for massless chiral multiplets we have

Γµαβ
(Jf )

(p, q) = i
g2 T (Rf )

4π2

kµ

k2
ε[p, q, α, β] , (8.6)

which manifests, also in this case, an anomaly pole.

We conclude this section by giving the expression of the correlator responsible for the

Konishi anomaly in the massive case

Γµαβ
(Jf )

(p, q) = −i
g2 T (Rf )

4π2
Φ1(k2,m2)

kµ

k2
ε[p, q, α, β] , (8.7)

with Φ1(k2,m2) given in eq. (7.4), in full analogy with the result for the correlator of the

R current.

In the next section we investigate the sum rule and the spectral density flows associated

with these correlators, showing the universality of their behaviour.

9 Mass deformations and the spectral densities flow

In this and in the following section, we turn to a detailed discussion of the dispersive

structure of the form factors of the correlators computed above, since their spectral densities

carry significant information on the anomaly. As before, we will be setting the momenta

p, q on-shell, and choose the incoming momentum k to be either spacelike, timelike or

null. Being interested in the analysis of the spectral density of the anomalous form factor

Φ1(k2,m2), it is convenient first to describe the analytic properties of the three-point scalar

integral C0(k2,m2) which enters in the definition of Φ1, as clear from eq. (7.4).
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Figure 6. Representatives of the family of spectral densities
ρχ

(n)

π (s) plotted versus s in units of

m2. The family “flows” towards the s = 0 region becoming a δ(s) function as m2 goes to zero.

We start by introducing the spectral density ρ(k2), which is the discontinuity of C0

along the cut (k2 > 4m2), as

ρ(k2,m2) =
1

2i
Disc C0(k2,m2) , (9.1)

with the usual iε prescription (ε > 0)

Disc C0(k2,m2) ≡ C0(k2 + iε,m2)− C0(k2 − iε,m2). (9.2)

To determine the discontinuity above the two-particle cut we can proceed in two different

ways. We can use the unitarity cutting rules and therefore compute the integral

Disc C0(k2,m2) =
1

iπ2

∫
d4l

2πiδ+(l2 −m2)2πiδ+((l − k)2 −m2)

(l − p)2 −m2 + iε

=
2π

ik2
log

(
1 +

√
τ(k2,m2)

1−
√
τ(k2,m2)

)
θ(k2 − 4m2) , (9.3)

where τ(k2,m2) =
√

1− 4m2/k2. The integral has been computed by sitting in the rest

frame of the off-shell line of momentum k. Alternatively, we can exploit directly the analytic

continuation of the explicit expression of the C0(k2,m2) integral in the various regions. This

is given by

C0(k2 ± iε,m2) =



1
2k2

log2
√
τ(k2,m2)+1√
τ(k2,m2)−1

for k2 < 0 ,

− 2
k2

arctan2 1√
−τ(k2,m2)

for 0 < k2 < 4m2 ,

1
2k2

(
log

1+
√
τ(k2,m2)

1−
√
τ(k2,m2)

∓ i π
)2

for k2 > 4m2 .

(9.4)
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From the two branches encountered with the ±iε prescriptions, the discontinuity is then

present only for k2 > 4m2, as expected from unitarity arguments, and the result for

the discontinuity, obtained using the definition in eq. (9.2), clearly agrees with eq. (9.3),

computed instead by the cutting rules.

The dispersive representation of C0(k2,m2) in this case is written as

C0(k2,m2) =
1

π

∫ ∞
4m2

ds
ρ(s,m2)

s− k2
, (9.5)

which, for k2 < 0 gives the identity∫ ∞
4m2

ds

(s− k2)s
log

(
1 +

√
τ(s,m2)

1−
√
τ(s,m2)

)
= − 1

2k2
log2

√
τ(k2,m2) + 1√
τ(k2,m2)− 1

, (9.6)

with ρ(s,m2) given by eqs. (9.1) and (9.3). The identity in eq. (9.6) allows to reconstruct

the scalar integral C0(k2,m2) from its dispersive part.

Having determined the spectral function of the scalar integral C0(k2,m2), we can ex-

tract the spectral density associated with the anomaly form factors in eqs. (7.1), (7.2), (7.3)

and (8.7), which is given by

χ(k2,m2) ≡ Φ1(k2,m2)/k2, (9.7)

and which can be computed as

Discχ(k2,m2)=χ(k2+iε,m2)−χ(k2−iε,m2)=−Disc

(
1

k2

)
−2m2Disc

(
C0(k2,m2)

k2

)
. (9.8)

Using the principal value prescription

1

x± iε
= P

(
1

x

)
∓ iπδ(x), (9.9)

we obtain

Disc

(
1

k2

)
= −2iπδ(k2)

Disc

(
C0(k2,m2)

k2

)
= P

(
1

k2

)
Disc C0(k2,m2)− iπδ(k2)A(0) , (9.10)

where we have defined

A(k2) ≡ C0(k2 + iε,m2) + C0(k2 − iε,m2), (9.11)

and

A(0) = lim
k2→0

A(k2) = − 1

m2
. (9.12)

This gives, together with the discontinuity of C0(k2,m2) which we have computed previously

in eq. (9.3),

Disc

(
C0(k2,m2)

k2

)
= −2i

π

(k2)2
log

1 +
√
τ(k2,m2)

1−
√
τ(k2,m2)

θ(k2 − 4m2) + i
π

m2
δ(k2). (9.13)
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The discontinuity of the anomalous form factor χ(k2,m2) is then given by

Discχ(k2,m2) = 4iπ
m2

(k2)2
log

1 +
√
τ(k2,m2)

1−
√
τ(k2,m2)

θ(k2 − 4m2). (9.14)

The total discontinuity of χ(k2,m2), as seen from the result above, is characterized just

by a single cut for k2 > 4m2, since the δ(k2) (massless resonance) contributions cancel

between the first and the second term of eq. (9.8). This result proves the decoupling of the

anomaly pole at k2 = 0 in the massive case due to the disappearance of the resonant state.

The function describing the anomaly form factor, χ(k2,m2), then admits a dispersive

representation over a single branch cut

χ(k2,m2) =
1

π

∫ ∞
4m2

ρχ(s,m2)

s− k2
ds (9.15)

corresponding to the ordinary threshold at k2 = 4m2, with

ρχ(s,m2) =
1

2i
Discχ(s,m2) =

2πm2

s2
log

(
1 +

√
τ(s,m2)

1−
√
τ(s,m2)

)
θ(s− 4m2). (9.16)

From the spectral function given above and from the corresponding integral representation

one can extract a new nontrivial integral relation∫ ∞
4m2

1

s2(s−k2)
log

(
1+
√
τ(s,m2)

1−
√
τ(s,m2)

)
ds=− 1

2k2m2
− 1

2(k2)2
log2

√
τ(k2,m2)+1√
τ(k2,m2)−1

, (9.17)

which is the analogue of eq. (9.6).

As we have anticipated above, a crucial feature of these spectral densities is the exis-

tence of a sum rule. In this case it is given by

1

π

∫ ∞
4m2

dsρχ(s,m2) = 1. (9.18)

At this point, to show the convergence of the family of spectral densities to a resonant

behaviour, it is convenient to extract a discrete sequence of functions, parameterized by an

integer n and let n go to infinity.

ρ(n)
χ (s) ≡ ρχ(s,m2

n) with m2
n =

4m2

n
. (9.19)

One can show that this sequence {ρ(n)
χ } then converges to a Dirac delta function

lim
m→0

ρχ(s,m2) = lim
m→0

2πm2

s2
log

(
1 +

√
τ(s,m2)

1−
√
τ(s,m2)

)
θ(s− 4m2) = πδ(s) (9.20)

in a distributional sense. We have shown in figure 6, on the left, the sequel of spectral

densities which characterize the flow as we turn the mass parameter to zero. The area

under each curve is fixed by the sum rule and is a characteristic of the entire flow. Clearly,
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(a)

Figure 7. 3-D Plot of the spectral density ρχ in the variables s and m2.

the ρ(n) are normalized distributions for each given value of m. They describe, for each

invariant mass value s, the absolute weight of the intermediate state — of that specific

invariant mass — to a given anomaly form factor. Notice that the function χ(s,m2) is

a universal function, since it provides a full description of the flow for the anomaly form

factors of all the components of the multiplet.

One can see from the same figure how the density gets more and more peaked towards

the lower end of the region of the interval 4m2
n ≤ s <∞ as m2

n tends to zero. In physical

terms this means that the branch cut is replaced by a single massless anomaly pole. In

figure 6, on the right, we have included a 3D plot of ρχ(s,m2) in the (s,m2) plane, giving

a visual perspective on the entire flow.

9.1 The analytic structure of Φ2

Here we discuss the spectral representation of the second of the form factors appearing in

the same ΓT and ΓS correlators, which is proportional to the renormalized function Φ2

Φ2(k2,m2) = 1− B0(0,m2) + B0(k2,m2) + 2m2C0(k2,m2) (9.21)
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which needs a subtraction for its integrability, due to the UV singularities of Φ2. Clearly, in

this case, Φ2 does not admit a dispersive representation, due to its logarithmic divergence

at large k2, and, as we are going to show, it is characterized just by an ordinary cut for

k2 > 4m2, as in the previous case. We are now going to briefly illustrate this point.

As for C0(k2,m2) also in this case we give the three branches of B0(k2,m2) in the

k2 < 0, 0 < k2 < 4m2 and k2 > 4m2 regions

B0(k2± iε,m2) =


2

εUV
+ 2− log m2

µ2 +
√
τ(k2,m2) log

√
τ(k2,m2)−1√
τ(k2,m2)+1

for k2 < 0 ,

2
εUV

+ 2− log m2

µ2 − 2
√
−τ(k2,m2) arctan 1√

−τ(k2,m2)
for 0 < k2 < 4m2 ,

2
εUV

+ 2− log m2

µ2 −
√
τ(k2,m2)

(
log

1+
√
τ(k2,m2)

1−
√
τ(k2,m2)

∓ iπ
)

for k2 > 4m2 .

(9.22)

The discontinuity of the two-point scalar integral B0(k2,m2) is then easily computed and

it is given by

DiscB0(k2,m2) = B0(k2 + iε,m2)−B0(k2− iε,m2) = 2iπ
√
τ(k2,m2) θ(k2− 4m2) . (9.23)

From the previous equation and from eq. (9.3) we extract the discontinuity of Φ2 in the

form

Disc Φ2(k2,m2) = 2iπ

(√
τ(k2,m2)− 2m2

k2
log

1 +
√
τ(k2,m2)

1−
√
τ(k2,m2)

)
θ(k2 − 4m2). (9.24)

This shows that both Φ1/k
2 and Φ2 are characterized by a single 2-particle cut for a nonzero

mass deformation. It is important to observe that the spectral density of Φ2 tends to a

uniform distribution
1

π
lim
m→0

ρΦ2(k2,m2) = 1 (9.25)

in the massless limit. It is obvious, from this analysis, that the spectral density ρΦ2 of

Φ2, which characterizes all the non anomalous form factors of the correlators that we have

investigated, does not satisfy an unsubtracted dispersion relation. There is however a sort

of duality between the spectral densities of the two form factors, since while ρχ becomes

more and more localized at k2 = 0 as m→ 0, the opposite is true for the spectral density

of the non anomallous form factor ρΦ2 , as clear from figure 8. In this case, as m goes to

zero, the flow singles out — in the form factor which is relevant for the anomaly — a single

massless state, while all the continuum region carries uniform weight in ρΦ2 .

10 Constraining the flow: scaling behaviour and sum rules

The large momentum behaviour of the anomaly form factors, beside the sum rule, can be

studied directly also from the explicit expressions of these. For this goal, we are going

to investigate the behaviour of both Φ1 and Φ2 in the two opposite limits k2 → 0 and

k2 → −∞, which cover the light-cone as well as the deep euclidean regions of the correlators.

For k2 approaching zero we have

Φ1(k2,m2) ∼ 1

12

k2

m2
+O(k4/m4) , Φ2(k2,m2) ∼ 1

12

k2

m2
+O(k4/m4) , (10.1)
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Figure 8. Spectral density flow of
ρΦ2

π (s,m2) versus s. As m2 decreases they turn to a unit step

function θ(s).

while for a large and negative k2 we find

Φ1(k2,m2) ∼ −1− m2

k2
log2 −k2

m2
+O(m4/k4) ,

Φ2(k2,m2) ∼ 3− log
−k2

m2
+
m2

k2

(
2 + 2 log

−k2

m2
+ log2 −k2

m2

)
+O(m4/k4) . (10.2)

Because these form factors are characterized by only two mass scales, namely m2 and

k2, performing the k2 → −∞ limit is equivalent to taking the massless limit. Indeed it

is easy to show that the leading order terms in eq. (10.2) reproduce the massless chiral

contributions described in the previous sections. Notice also the presence of an infrared

singularity, for m2 → 0, in the Φ2 form factor (see eq. (10.2)). This is due to the B0(0, 0)

scalar integral appearing in eq. (6.4).

The argument can be formally stated as follows. The anomaly form factor χ = Φ1/k
2

satisfies the relation under rescaling with a constant λ

χ(λk2, λm2) =
1

λ
χ(k2,m2) (10.3)

being a homogeneous function. A similar property of homogeneity holds for the spectral

density itself

ρχ(λs, λm2) =
1

λ
ρχ(s,m2), (10.4)

which under a partial rescaling, involving only the mass parameter m, with m2 → m2/λ

and λ large (which is the same as m→ 0) has the resonant behaviour

lim
λ→∞

ρχ

(
s,
m2

λ

)
= πδ(s). (10.5)
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At this point, using eq. (10.4) a large rescaling of the invariant mass s gives

ρχ(λs,m2) =
1

λ
ρχ

(
s,
m2

λ

)
∼ π

λ
δ(s) = πδ(λs), (10.6)

showing that the asymptotic behaviour of ρχ under a rescaling of s with λ identifies its

support on the s = 0 region. Notice that eq. (10.6) should be interpreted as a light-cone

dominance (s→ 0) of the asymptotic limit of the correlator as λ goes to infinity.

On the other hand, the vanishing of the massive form factors in the k2 → 0 region,

and the consequent disappearance of the 1/k2 pole in the anomalous correlators, may be

understood as a consequence of decoupling of the massive states.

Scaling relations (a), combined with the sum rule (b) and the resonant behaviour of

the densities for m going to zero (c), provide some important constraints on the structure

of the flow, although they are not exclusive to anomalous form factors. We recall that as

a consequence of the scaling relation, one has the constraint

k2∂χ(k2,m2)

∂k2
+m2∂χ(k2,m2)

∂m2
+ χ(k2,m2) = 0. (10.7)

Similar conditions are satisfied by the related spectral density (ρχ)

s
∂ρχ
∂s

+m2 ∂ρχ
∂m2

+ ρχ = 0. (10.8)

The combination of scaling behaviour and of the sum rule, together with the vanishing of

ρχ(s,m2) at the threshold (i.e. at s = 4m2), induces further constraints on its functional

form, for instance

1

π

∫ ∞
4m2

∂ρχ(s,m2)

∂s
ds = 0,

1

π

∫ ∞
4m2

∂ρχ(s,m2)

∂m2
ds = 0,

1

π

∫ ∞
4m2

s
∂ρχ(s,m2)

∂s
ds = −f.

(10.9)

In the previous equation, and in the following ones, f is a nonzero constant which normalizes

the sum rule of the spectral density. For ρχ introduced in the previous section f = 1.

Eq. (10.9) can be generalized to give an infinite set of ordinary and superconvergent

sum rules

1

π

∫ ∞
4m2

ds (s− 4m2)n
∂nρχ
∂sn

= (−1)nn!f, n ≥ 1

1

π

∫ ∞
4m2

ds (s− 4m2)n
∂n+1ρχ
∂sn+1

= 0. (10.10)

Additional constraints come from the scaling relation expanded to second order,

s2∂
2ρχ
∂s2

+m4 ∂2ρχ
∂(m2)2

+ 2sm2 ∂2ρχ
∂s ∂m2

= 2π f. (10.11)

Using the information that the density has only a branch cut for nonzero m, integrating

over the cut eq. (10.11) we get

m4

∫ ∞
4m2

ds
∂2ρχ
∂(m2)2

= −2m2

∫ ∞
4m2

ds s
∂2ρχ
∂s ∂m2

. (10.12)
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At this point, the sign of the dispersive integrals above can be determined by exploiting

the derivative form of the sum rule

1

π

∫ ∞
4m2

dss
∂ρχ
∂s

= −f, (10.13)

which is satisfied because of the convergence condition of the integral of ρχ. Differentiated

respect to m2 the sum rule above gives∫ ∞
4m2

ds
∂2ρχ
∂s ∂m2

= 16m2∂ρχ
∂s

∣∣∣∣
s=4m2

, (10.14)

which relates the integral of the mixed derivatives to the spectral density at the threshold.

If the spectral density is properly normalized with a positive constant f in the sum rule,

then it will be always positive along the entire cut and, in particular, at threshold t. Notice

that as m goes to zero, the density is saturated by the pole behaviour, and it is then clear

that it implies the local positivity relation

∂2ρχ
∂s ∂m2

> 0 m ∼ 0, (10.15)

being the integral dominated just by the region around the threshold s ∼ 4m2. Clearly

this implies that ∫ ∞
4m2

ds
∂2ρχ
∂(m2)2

< 0, (10.16)

having used eq. (10.12). Also in this case, in the m → 0 limit, the inequality becomes a

local condition
∂2ρχ
∂(m2)2

< 0 (10.17)

which has to be satisfied by the flow. Notice that in the presence of multiple thresholds at

specific masses mn the density jumps at every threshold by a positive or a negative amount.

The jump is proportional to the contribution of the new threshold to the β function of the

theory. This point can be easily illustrated by reintroducing the prefactor contribution of

each massless state in front of the corresponding density. For this purpose we define the

contributions of each field to the β function of a theory at 1-loop, which for a Dirac fermion

and a complex scalar in the representation Rf and Rs respectively, and for a spin 1 in the

adjoint are

β(g) =
∑
n

g3

16π2
c(n), (10.18)

with

c(D) =
4

3
T (Rf ) c(A) = −11

3
T (A) c(φ) =

1

3
T (Rs) (10.19)

with T (Rf ), T (A), T (Rs) being the Dynkin indices of the respective representations. Real

scalars and Weyl fermions contribute with an additional factor of 1/2 respect to complex

scalars and Dirac fermions. We recall that in a SU(N) N = 1 theory, the vector multiplet

contributes with −11/3T (A) and 2/3T (A) for the gauge field and the gaugino respectively,
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while the chiral supermultiplet gives 2/3T (R) and 1/3T (R) for the Weyl fermion and the

complex scalar.

We use the notation

ρ(s, {m2
n}) =

∑
n

c(n)ρχ(s,m2
n) (10.20)

to refer to the total spectral density of a certain theory, with intermediate thresholds at

increasing mass values {m2
n} ≡ (m2

1,m
2
2, . . . ,m

2
I) with (m1 < m2 < . . . < mI), where I

counts the total number of degrees of freedom. The corresponding anomaly form factor

will be given by

F (Q2, {m2
n}) =

−2

3g

g3

16π2

∑
n

c(n) 1

π

∫ ∞
4m2

n

ds
ρχ(s,m2

n)

s+Q2
. (10.21)

Notice that if Q2 � 4m2
n, for a certain mass threshold n, then we can set Q2 = 4m2

nλ, with

1/λ = 4m2
n/Q

2 � 1. Due to scaling, the nth threshold will then contribute to the total

form factor with the amount

Fn(Q2,m2
n) =

−2

3g

g3

16π2
c(n) 1

π

∫ ∞
4m2

n/λ
ds
ρχ(s,m2

n/λ)

s+ 4m2λ
, (10.22)

which in the 1/λ� 1 limit will give

Fn(Q2,m2
n) ∼ −2

3g

g3

16π2
c(n)

∫ ∞
0

ds
δ(s)

λ(s+ 4m2
n)

=
−2

3g
β(n)(g)

1

Q2
. (10.23)

Eq. (10.23) reduces to the anomaly pole contribution times the contribution of the state

(n) to the expression of the total β function. As Q2 grows larger than any intermediate

scale, the total spectral density ρ in the dispersive integral is asymptotically given by the

expression

ρ(s, {m2
n}) ∼

∑
n

c(n)δ(s) =
16π2

g3
β(g)πδ(s) , (10.24)

where we have used eq. (10.5). Notice that ρ(s, {m2
n}) satisfies a total sum rule to which

contribute all the intermediate thresholds for 0 < s <∞
1

π

∫ ∞
0

ds ρ(s, {m2
n}) =

∑
n

c(n) 1

π

∫ ∞
4m2

n

ds ρχ(s,m2
n) =

16π2

g3
β(g). (10.25)

In supersymmetric theories this function is the only one which developes a resonant be-

haviour at the conformal point and satisfies a sum rule, as we have pointed out. The sum

of the densities stripped of the gauge factors, integrated over the thresholds

1

π

∑
n

∫ ∞
4m2

n

ds ρχ(s,m2
n) = I (10.26)

simply counts the number of degrees of freedom (I).

Notice that the analysis of this section related to eqs. (10.7)–(10.16) remains valid

also for any form factor which is characterized by a finite (non superconvergent) sum rule.

The asymptotic analysis discussed in eqs. (10.21)–(10.26), can be also easily extended to

cases unrelated to the anomaly, with coefficients c(n) replaced by some new coefficients,

not related to the β function.
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11 Comparing supersymmetric and non supersymmetric cases: sum

rules and extra poles in the Standard Model

In this section and in the following one, we compare the structure of the spectral densities

in supersymmetric and in non supersymmetric theories in the presence of mass terms. In

particular we will be looking for additional sum rules not directly related to the anomalies,

which may be present in the 〈TV V 〉 and 〈AV V 〉 correlators. We anticipate that these are

found in the 〈TV V 〉 (hence in the non supersymmetric case) in all the gauge invariant

sectors of the Standard Model. We start our analysis with the conformal anomaly action

of QCD, described by the EMT-gluon-gluon vertex and then move to the EMT-γγ vertex

of the complete electroweak theory. Obviously, the spectral densitites develope anomaly

poles in the limit in which all the second scales of the vertices turn to zero. By this we

refer to fermion masses, to the W mass and to the external virtualities of the diagrams.

Moreover, we are going to identify the explicit form of the sum rules satisfied by these

correlators in perturbation theory.

11.1 The extra pole of QCD

For definiteness we focus our attention on a specific gauge theory, QCD. We write the

whole amplitude Γµναβ(p, q) of the 〈TV V 〉 diagram in QCD in the form

Γµναβ(p, q) = Γµναβq (p, q) + Γµναβg (p, q), (11.1)

having separated the quark (Γq) and the gluons/ghosts (Γg) contributions. We have omitted

the colour indices for simplicity, being the correlator diagonal in colour space. As described

before in section 3 in the massless case, also in the massive case the amplitude Γ is expressed

in terms of 3 tensor structures. In the MS scheme these are given by [21]

Γµναβq/g (p, q) =

3∑
i=1

Φi q/g(k
2,m2)φµναβi (p, q) . (11.2)

For on-shell and transverse gluons, only 3 invariant amplitudes contribute, which for the

quark loop case are given by

Φ1 q(k
2,m2) =

g2

6π2k2

{
− 1

6
+
m2

k2
−m2C0(k2,m2)

[
1

2
− 2m2

k2

]}
, (11.3)

Φ2 q(k
2,m2) = − g2

4π2k2

{
1

72
+
m2

6k2
+
m2

2k2
D(k2,m2) +

m2

3
C0(k2,m2)

[
1

2
+
m2

k2

]}
, (11.4)

Φ3 q(k
2,m2) =

g2

4π2

{
11

72
+
m2

2k2
+m2C0(k2,m2)

[
1

2
+
m2

k2

]
+

5m2

6k2
D(k2,m2) +

1

6
BMS

0 (k2,m2)

}
, (11.5)

where the on-shell scalar integrals D(k2,m2), C0(k2,m2) and BMS
0 (k2,m2) are given in

appendix A.

Here we concentrate on the two form factors which are unaffected by renormalization,

namely Φ1,2q. Both admit convergent dispersive integrals of the form

Φ1,2q(k
2,m2) =

1

π

∫ ∞
0

ds
ρ1,2q(s,m

2)

s− k2
, (11.6)
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in terms of spectral densities ρ1,2q(s,m
2). From the explicit expressions of these two form

factors, the corresponding spectral densities are obtained using the relations

Disc

(
1

s2

)
= 2iπδ′(s),

Disc

(
C0(s,m2)

s2

)
= −2iπ

s3
log

1 +
√
τ(s,m2)

1−
√
τ(s,m2)

θ(s− 4m2) + iπδ′(s)A(s), (11.7)

where A(s) is defined in eq. (9.11) and we have used the general relation(
1

x+ iε

)n
−
(

1

x− iε

)n
= (−1)n

2πi

(n− 1)!
δ(n−1)(x) , (11.8)

with δ(n)(x) the n-th derivative of the delta function. The contribution proportional to

δ′(s) in eq. (11.7) can be rewritten in the form

δ′(s)A(s) = −δ(s)A′(0) + δ′(s)A(0), with A(0) = − 1

m2
, A′(0) = − 1

12m4
, (11.9)

giving for the spectral densities

ρ1q(s,m
2) =

g2

12π

m2

s2
τ(s,m2) log

1 +
√
τ(s,m2)

1−
√
τ(s,m2)

θ(s− 4m2) ,

ρ2q(s,m
2) = − g2

12π

[
3m2

2s2

√
τ(s,m2)− m2

s

(
1

2s
+
m2

s2

)
log

1 +
√
τ(s,m2)

1−
√
τ(s,m2)

]
θ(s− 4m2). (11.10)

Both functions are characterized by a two particle cut starting at 4m2, with m the quark

mass. Notice also that in this case there is a cancellation of the localized contributions

related to the δ(s), showing that for nonzero mass there are no pole terms in the dispersive

integral. The crucial difference, respect to the supersymmetric case discussed above, is

that now we have two independent sum rules

1

π

∫ ∞
0

ds ρ1q(s,m
2) =

g2

36π2
,

1

π

∫ ∞
0

ds ρ2q(s,m
2) =

g2

288π2
, (11.11)

one for each form factor, as it can be verified by a direct integration. We can normalize

both densities as

ρ̄1q(s,m
2) ≡ 36π2

g2
ρ1q(s,m

2) ρ̄2q(s,m
2) ≡ 288π2

g2
ρ2q(s,m

2) (11.12)

in order to describe the two respective flows, which are homogeneuos, since both densities

carry the same physical dimension and both converge to a δ(s) as the quark mass m is sent

to zero

lim
m→0

ρ̄1q = lim
m→0

ρ̄2q = δ(s). (11.13)

Indeed at m = 0, Φ1,2q are just given by pole terms, while Φ3q is logarithmic in momentum

Φ1 q(k
2, 0) = − g2

36π2k2
, Φ2 q(k

2, 0) = − g2

288π2 k2
, (11.14)
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H

Figure 9. Amplitude with the graviton — Higgs mixing vertex generated by the term of improve-

ment. The blob represents the SM Higgs -VV’ vertex at one-loop.

Φ3 q(k
2, 0) = − g2

288π2

(
12 log

(
−k

2

µ2

)
− 35

)
, for k2 < 0. (11.15)

It is then clear, from this comparative analysis, that the supersymmetric and the non su-

persymmetric anomaly correlators can be easily differentiated with respect to their spectral

behaviour. In the non supersymmetric case the spectral analysis of the 〈TV V 〉 correlator

shows the appearance of two flows, one of them being anomalous, the other not. A similar

pattern is found in the gluon sector, which obviously is not affected by the mass term. In

this case the on-shell and transverse condition on the external gluons brings to three very

simple form factors whose expressions are

Φ1 g(k
2) =

11 g2

72π2 k2
CA , Φ2 g(k

2) =
g2

288π2 k2
CA , (11.16)

Φ3 g(k
2) = − g2

8π2
CA

[
65

36
+

11

6
BMS

0 (k2, 0)− BMS
0 (0, 0) + k2 C0(k2, 0)

]
. (11.17)

The MS renormalized scalar integrals can be found in appendix A. Also in this case, it is

clear that the simple poles in Φ1 g and Φ2 g, the two form factors which are not affected by

the renormalization, are accounted for by two spectral densities which are proportional to

δ(s). The anomaly pole in Φ1 g is accompanied by a second pole in the non anomalous form

factor Φ2 g. Notice that Φ3g is affected by renormalization, and as such it is not considered

relevant in the spectral analysis.

11.2 〈TV V 〉 and the two spectral flows of the electroweak theory

The point illustrated above can be extended to the entire electroweak theory by looking at

some typical diagrams which manifest a trace anomaly. The simplest case is the 〈TV V 〉 in

the full electroweak theory, where V , in this case, denotes on-shell photons. At one loop

level it is given by the vertex Γµναβ and expanded onto two terms

Γµναβ(p, q) = Σµναβ(p, q) + ∆µναβ(p, q) , (11.18)

where Σµναβ(p, q) is a full irreducible contribution derived from the set of diagrams given in

the appendices and depicted in figures 11, corresponding to topologies of triangles, bubbles

and tadpoles. In this case Σµναβ(p, q) is given by the expression [11, 35, 36]

Σµναβ(p, q) = Σµναβ
F (p, q) + Σµναβ

B (p, q) + Σµναβ
I (p, q), (11.19)
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corresponding to the exchange of fermions (ΣF ), gauge bosons (ΣB) and to a term of

improvement (ΣI). The latter is generated by an EMT of the form

T Iµν = −1

3

[
∂µ∂ν − ηµν �

]
H†H = −1

3

[
∂µ∂ν − ηµν �

](
H2

2
+
φ2

2
+ φ+φ− + v H

)
. (11.20)

and is responsible for a bilinear mixing between the EMT and the Higgs field.

The term ∆µναβ(p, q) in eq. (11.18) comes from the insertion of the EMT of improve-

ment given above on the Standard Model Hγγ vertex. The relevant diagram is reported

in figure 9. The inclusion of this term is necessary in order to guarantee consistent Ward

identities, as discussed in [35].

They complete irreducible contributions are expanded as

Σµναβ
F (p, q) =

3∑
i=1

Φi F (s, 0, 0,m2
f )φµναβi (p, q) , (11.21)

Σµναβ
B (p, q) =

3∑
i=1

Φi B(s, 0, 0,M2
W )φµναβi (p, q) , (11.22)

Σµναβ
I (p, q) = Φ1 I(s, 0, 0,M

2
W )φµναβ1 (p, q) + Φ4 I(s, 0, 0,M

2
W )φµναβ4 (p, q) . (11.23)

with s = k2 = (p+ q)2, φµναβi (p, q) given in eq. (3.2) and

φµναβ4 (p, q) = (s ηµν − kµkν) ηαβ, (11.24)

while the ∆ term reads as

∆µναβ(p, q) = ∆µναβ
I (p, q)

= Ψ1 I(s, 0, 0,m
2
f ,M

2
W ,M

2
H)φµναβ1 (p, q) + Ψ4 I(s, 0, 0,M

2
W )φµναβ4 (p, q) . (11.25)

This is obtained by combining the tree level vertex for EMT/Higgs mixing, coming from

the improved EMT, and the Standard Model Hγγ correlator at one-loop. For convenience,

we have included in appendix B the explicit expression of these form factors, from which

we extract the corresponding spectral densities and sum rules.

The spectral densities of the fermion contributions, related to ΣF have structure similar

to those computed above in eq. (11.10), as one can easily deduce from the explicit expression

of the form factor given in eq. (B.2), with ρΦ1F
∼ ρ1q(s) and ρΦ2F

∼ ρ2q(s). Therefore we

have two sum rules and two spectral flows also in this case, following the pattern discussed

before for the spectral densities in eq. (11.10).

A similar analysis on the two form factors ΦB in the gauge boson sector gives

ρφ1B (s) =
2M2

W

s3
(2M2

W − s)α log

1 +
√
τ(s,M2

W )

1−
√
τ(s,M2

W )

 θ(s− 4M2
W ) (11.26)

while ρφ2B has the same functional form of ρφ2F , modulo an overall factor, with m, the

fermion mass, replaced by the W mass MW . Notice that both ρφ1B and ρφ2B , as well as

ρφ1F and ρφ2F are deprived of resonant contributions, being the diagrams massive.
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Coming to the form factors in ΣI , whose explicit expressions are given in eq. (B.6), one

immediately realizes that the spectral density of Φ1I shares the same functional form of

ρχ, extracted from eq. (9.16), and there is clearly a sum rule associated to it. Also in this

case, this result is accompanied by the 1/k2 behaviour of the corresponding form factor,

due to the anomaly.

Finally, for the case of ψ1I , one can also show that the spectral density finds support

only above the two particle cuts. The cuts are linked to 2m and 2MW . In this case there

is no sum rule and the contribution is not affected by an anomaly pole, as expected, being

the virtual loop connected with the Hγγ vertex (see figure 9). The explicit expression of

this density is given in appendix B.

11.3 The non-transverse 〈AV V 〉 correlator

Before closing the analysis of the spectral densitites for non supersymmetric theories, we

pause for a few comments on the structure of the 〈AV V 〉 diagram. This correlator, as we are

going to show, is affected by a single flow even if we do not impose the transversality condi-

tion on the two photons. As a clarification of this point we consider once more the anomaly

vertex as parameterized in eq. (3.7), and consider the second form factor A4+6 ≡ A4 +A6,

which contributes to the anomaly loop for non transverse (but on-shell) photons. The ex-

pression of A6, the anomalous form factor, has been given in eq. (3.8), while A4 is given by

A4(k2,m2) = − 1

2π2k2

[
2−

√
τ(k2,m2) log

√
τ(k2,m2) + 1√
τ(k2,m2)− 1

]
, k2 < 0 (11.27)

and A4+6 takes the form

A4+6(k2,m2) =
1

2π2k2

[
−1 +

√
τ(k2,m2) log

√
τ(k2,m2) + 1√
τ(k2,m2)− 1

+
m2

k2
log2

√
τ(k2,m2) + 1√
τ(k2,m2)− 1

]
. (11.28)

Its discontinuity is given by

DiscA4+6(k2,m2)=−2iπ

[√
τ(k2,m2)

k2
+

2m2

(k2)2
log

√
τ(k2,m2)+1√
τ(k2,m2)−1

]
θ(k2−4m2). (11.29)

Notice that in this case there is no sum rule satisfied by this spectral density, being non-

integrable along the cut. Coming to the spectral density for the anomaly coefficient A6,

this is proportional to the density of χ(s,m2) given in eq. (9.16) and shares the same

behaviour found for ρχ(s,m2), as expected. This analysis shows that in the 〈AV V 〉 case

one encounters a single sum rule and a single massive flow which degenerates into a δ(s)

behaviour, as in the supersymmetric case. This condition remains valid also for non-

transverse vector currents. It is then clear that the crucial difference between the non

supersymmetric case and the supersymmetric one manifests in the 〈TV V 〉 diagram, due

to the extra sum rule discussed above.

11.4 Cancellations in the supersymmetric case

In order to clarify even more how the cancellation of the extra poles occurs in the su-

persymmetric 〈TV V 〉, we consider the non-anomalous form factor f2 in a general theory
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(given in eqs. (3.4), (3.5), (3.6)), with Nf Weyl fermions, Ns complex scalars and NA

gauge fields. We work, for simplicity, in the massless limit. In this case the non anomalous

form factor f2, which is affected by pole terms, after combining scalar, fermions and gauge

contributions can be written in the form

f2(k2) =
Nf

2
f

(f)
2 (k2) +Ns f

(s)
2 (k2) +NA f

(A)
2 (k2)

=
g2

144π2 k2

[
−
Nf

2
T (Rf ) +Ns

T (Rs)

2
+NA

T (A)

2

]
, (11.30)

where the fermions give a negative contribution with respect to scalar and gauge fields. If

we turn to a N = 1 Yang-Mills gauge theory, which is the theory that we are addressing,

we need to consider in the anomaly diagrams the virtual exchanges both of a chiral and

of a vector supermultiplet. In the first case the multiplet is built out of one Weyl fermion

and one complex scalar, therefore in eq. (11.30) we have Nf = 1, Ns = 1, NA = 0 with

T (Rf ) = T (Rs). With this matter content, the form factor is set to vanish.

For a vector multiplet, on the othe other end, we have one vector field and one Weyl

fermion, all belonging to the adjoint representation and then we obtain Nf = 1, Ns =

0, NA = 1 with T (Rf ) = T (A). Even in this case all the contributions in the f2 form factor

sum up to zero. It is then clear that the cancellation of the extra poles in the 〈TV V 〉 is

a specific tract of supersymmetric Yang Mills theories, due to their matter content, not

shared by an ordinary gauge theory. A corollary of this is that in a supersymmetric theory

we have just one spectral flow driven by the deformation parameter m, accompanied by

one sum rule for the entire deformation.

12 The anomaly effective action and the pole cancellations for N = 4

The appearance of poles in an effective action is associated, in general, either with the inter-

mediate exchange of particles related to the fundamental fields in the defining Lagrangian or

with the exchange of intermediate bound states. For convenience, this point has been briefly

reviewed by us, in the case of three-point correlators, in appendix D, to which we refer for

further detais. Here, instead, we just present the expression of the quantum effective action

obtained from the three-point correlation functions that we have previously discussed.

We consider the massless case for the chiral supermultiplet and on-shell external gauge

bosons and gauginos. The anomalous part is given by the three terms

Sanom = Saxion + Sdilatino + Sdilaton (12.1)

which are given, respectively, by

Saxion = − g2

4π2

(
T (A)− T (R)

3

)∫
d4z d4x ∂µBµ(z)

1

�zx

1

4
Fαβ(x)F̃αβ(x) (12.2)

Sdilatino =
g2

2π2

(
T (A)− T (R)

3

)∫
d4z d4x

[
∂νΨµ(z)σµνσρ

←
∂ρ
�zx

σ̄αβλ̄(x)
1

2
Fαβ(x) + h.c.

]
(12.3)

Sdilaton = − g2

8π2

(
T (A)− T (R)

3

)∫
d4z d4x (�h(z)− ∂µ∂νhµν(z))

1

�zx

1

4
Fαβ(x)Fαβ(x). (12.4)
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Aaα(p)

Ab β(q)

Rµ(k)

Aaα(p)

λ̄b
Ḃ
(q)

Sµ
A(k)

Aaα(p)

Ab β(q)

T µν(k) +

Aaα(p)

Ab β(q)

T µν(k)

Figure 10. The collinear diagrams corresponding to the exchange of a composite axion (top right),

a dilatino (top left) and the two sectors of an intermediate dilaton (bottom). Dashed lines denote

intermediate scalars.

We show in figures 10 the three types of intermediate states which interpolate between the

Ferrara-Zumino hypercurrent and the gauge (A) and the gaugino (λ) of the final state.

The axion is identified by the collinear exchange of a bound fermion/antifermion pair in a

pseudoscalar state, generated in the 〈RV V 〉 correlator. In the case of the 〈SV F 〉 correlator,

the intermediate state is a collinear scalar/fermion pair, interpreted as a dilatino. In the

〈TV V 〉 case, the collinear exchange is a linear combination of a fermion/antifermion and

scalar/scalar pairs.

The non-anomalous contribution is associated with the extra term S0 which is given by

S0 =
g2

16π2

∫
d4z d4xhµν(z)

(
T (R) Φ̃2(z − x) + T (A) Ṽ (z − x)

)
Tµνgauge(x)

+
g2

64π2

∫
d4z d4x

[
iΨµ(z)

(
T (R) Φ̃2(z − x) + T (A) Ṽ (z − x)

)
Sµgauge(x) + h.c.

]
, (12.5)

where Φ̃2(z−x) and Ṽ (z−x) are the Fourier transforms of Φ2(k2, 0) and V (k2) respectively.

Their contributions in position space correspond to nonlocal logarithmic terms.

The relation between anomaly poles, spectral density flows and sum rules appear to be

a significant feature of supersymmetric theories affected by anomalies. It is then clear that

supersymmetric anomaly-free theories should be free of such contributions in the anomaly

effective action. In this respect, it natural to turn to the N = 4 theory, which is free of

anomalies, in order to verify and validate this reasoning. Indeed the β function of the

gauge coupling constant in this theory has been shown to vanish up to three loops [37–

39], and there are several arguments about its vanishing to all the perturbative orders.

As a consequence, the anomaly coefficient in the trace of the energy-momentum tensor,

being proportional to the β function, must vanish identically and the same occurs for the

other anomalous component, related to the R and to the S currents in the Ferrara-Zumino

supermultiplet.

We recall that in the N = 4 theory the spectrum contains a gauge field Aµ, four

complex fermions λi (i = 1, 2, 3, 4) and six real scalars φij = −φji (i, j = 1, 2, 3, 4). All

fields are in the adjoint representation of the gauge group.
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From the point of view of theN = 1 SYM, this theory can be interpreted as describing a

vector and three massless chiral supermultiplets, all in the adjoint representation. Therefore

the 〈TV V 〉 correlator in N = 4 can be easily computed from the general expressions in

eqs. (6.9) and (6.17) which give

Γµναβ(T ) (p, q)=
g2 T (A)

16π2

[
V (k2)+3Φ2(k2, 0)

]
tµναβ2S (p, q)=−g

2 T (A)

8π2
k2 C0(k2, 0) tµναβ2S (p, q) .

(12.6)

One can immediately observe from the expression above the vanishing of the anomalous

form factor proportional to the tracefull tensor structure tµναβ1S . The partial contributions

to the same form factor, which can be computed using eqs. (6.9) and (6.17) for the various

components, are all affected by pole terms, but they add up to give a form factor whose

residue at the pole is proportional to the β function of the N = 4 theory. It is then clear

that the vanishing of the conformal anomaly, via a vanishing β function, is equivalent to

the cancellation of the anomaly pole for the entire multiplet.

Notice also that the only surviving contribution in eq. (12.6), proportional to the

traceless tensor structure tµναβ2S , is finite. This is due to the various cancellations between

the UV singular terms from V (k2) and Φ2(k2, 0) which give a finite correlator without the

necessity of any regularization.

We recall that the cancellation of infinities and the renormalization procedure, as we

have already seen in the N = 1 case, involves only the form factor of tensor tµναβ2S , which

gets renormalized with a counterterm proportional to that of the two-point function 〈AA〉,
and hence to the gauge coupling. For this reason the finiteness of the second form factor and

then of the entire 〈TV V 〉 in N = 4 is directly connected to the vanishing of the anomalous

term, because its non-renormalization naturally requires that the β function has to vanish.

13 Conclusions and perspectives

Our analysis and results show the consistency of a conjecture about the perturbative

structure of the anomalies in supersymmetric theories, formulated by us in previous

works [35, 36]. We have presented additional evidence that anomaly poles are the sig-

nature of the anomalies in the perturbative anomaly action of these theories, extending

former studies [19, 21, 31]. For global anomalies it is expected that the massless states

identified by the pole contributions can be promoted to new composite degrees of freedom

by some non perturbative dynamics, as for the chiral anomaly and the pion.

In the QCD case [21], for instance, the breaking of classical scale invariance — in

this perturbative picture — should manifest in the emergence of a dilaton, if gluons were

asymptotic states. We have noticed, though, that the 〈TV V 〉 vertex in QCD, as we have

shown, has one extra pole and one extra flow related to a non anomalous form factor which

is both IR and UV safe, which should be interpreted as an extra interpolating state. A

similar perturbative pattern emerges in the Standard Model [11, 36], as clear from the

analysis of the conformal anomaly in the electroweak sector [36].

However, by turning to supersymmetry, we have shown that here the connection be-

tween anomalies, poles and sum rules for anomaly vertices are one to one. The 1/k2 feature
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of the anomaly form factors has been investigated in connection with the scaling properties

of their spectral densities and with the finite (non zero) sum rule which it satisfies, in

agreement with a previous analysis by Giannotti and Mottola [19]. We have seen that the

anomalous behaviour emerges from the s ∼ 0 region of the spectral density of a given form

factor and covers, therefore, the entire light-cone surface. The resonant behaviour at s = 0

is present, as we have shown, also at very high momentum.

In supersymmetry we have focused our attention on the perturbative correlators

which are responsible for the generation of the superconformal anomaly, and shown

that the Ferrara-Zumino multiplet, as well as the Konishi currents, allow to identify

some composite states in the effective action, interpolating between the currents and the

on-shell final states. They correspond to a dilaton, a dilatino and an axion, plus a number

of pseudoscalar states, one for each fermion flavour. The description of these effective

degrees of freedom not as anomaly poles but as asymptotic states of the S-matrix remains,

obviously, an open issue, which goes beyond the simple perturbative picture discussed

here, as demonstrated by the complex pattern of chiral dynamics in QCD. In particular

would be interesting to compare this result with the anomaly action obtained in [13] in

the superconformal case, which is of Wess-Zumino type, which is local. We expect both

actions to share the same physical content.

Following this pattern, it is then natural to ask if global anomalies are always con-

nected to the generation of effective degrees of freedom, and hence to compositeness, as

indicated by the poles of the effective action. These results are valid for all the anomalies

characterized by a single flow, in particular for all the chiral currents affected by global

anomalies. From this perspective, also the Peccei-Quinn current should induce as an in-

terpolating state a composite axion rather an elementary one, being our argument generic

to anomalous global currents.

We stress once again, that all our results are limited to perturbation theory. Obviously,

nonperturbative effects may change drastically this picture, as in the case of the η′ in

QCD. In general, indeed, one expects the appearance of massless poles in the spontaneous

breaking of global symmetries and not in those driven by radiative effects, as in the case

of anomalies. For this reason mass corrections related to non perturbative effects should

modify this picture by shifting the position of these poles which could become massive.

There are also some drastic implications of our analysis, at least in the supersymmetric

case, whenever the symmetries of the hypercurrent are gauged, which concern the way

anomalies should cancel when a theory affected by a superconformal anomaly is coupled to

gravity. We have seen that the anomaly is entirely given by the β/k2 term, in terms of the

β function of the theory, and it appears obvious that the coupling to gravity has necessarily

to provide an extra massless sector in order to remove such contribution. This could only

take place if the gravitational sector can contribute by an equal and opposite amount to

the pole residue, at the cost, otherwise, of being left with an inconsistency in the total

theory. It is important to remark, as we have already pointed out, that the cancellation

of the pole may not be an identical cancellation of the anomaly vertex. We have in fact

explicitly shown that in a N = 4 theory, for instance, by setting the β function to zero,

one indeed is canceling the pole contributions, and hence the anomaly, but not the entire
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anomaly vertex, as clear from eq. (12.6). This situation is new compared to the case of

anomalous abelian symmetries, where anomaly cancellation by charge assignments on the

massless matter spectrum forces the entire 〈AV V 〉/〈AAA〉 vertices to vanish.

It is important to stress, at this point, that there are subtle issues related to the defini-

tion of the anomaly supermultiplet in general theories, of which the Ferrara-Zumino choice

is only one realization. For instance, in the presence of Fayet-Iliopoulos terms the multiplet

is not gauge invariant and requires an appropriate redefinition. Similar issues appear in

theories with a Kähler form that is not exact, as discussed in recent works [40–42].These

issues have particular relevance in the investigation of the coupling of these theories to

supergravity. In [42], for instance, it is shown that it is always possible to construct a new

supermultiplet which generalizes the FZ-multiplet. However, being our analysis limited

to a non-abelian gauge theory with a simple Kähler potential, the pathologies described

above are not present. In our case the Ferrara-Zumino supermultiplet is a good operator

of the theory. Of course, it would be interesting to extend our results to the perturbative

analysis of the supercurrent introduced in [42]. These issues are deferred to future studies.
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A Scalar integrals

One-, two- and three- point functions are denoted respectively as A0, B0 and C0 with

A0(m2) =
1

iπ2

∫
dnl

1

l2 −m2
,

B0(p2
1,m

2
0,m

2
1) =

1

iπ2

∫
dnl

1

(l2 −m2
0)((l + p1)2 −m2

1)
,

C0((p+q)2, p2, q2,m2
0,m

2
1,m

2
2) =

1

iπ2

∫
dnl

1

(l2−m2
0)((l−p)2−m2

1)((l−p−q)2−m2
2)
.(A.1)

Moreover, for equal internal masses and for p2 = q2 = 0 we have used the more compact

notation

B0(p2
1,m

2) ≡ B0(p2
1,m

2,m2) , C0((p+ q)2,m2) ≡ C0((p+ q)2, 0, 0,m2,m2,m2) . (A.2)

In the spacelike region (k2 < 0), using two regulators for the ultraviolet and infrared

singularities (n = 4 − εUV = 4 + εIR), where n denotes the spacetime dimensions, the

relevant 2-point functions appearing in the computation are

B0(k2, 0) =
2

εUV
+ 2− log

−k2

µ2
, (A.3)
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(a) (b) (c) (d) (e)

Figure 11. Different topologies for the 〈TV V 〉 vertex. Internal lines can be fermions, W bosons,

goldstones and ghosts.

B0(k2,m2) =
2

εUV
+ 2− log

m2

µ2
+
√
τ(k2,m2) log

√
τ(k2,m2)− 1√
τ(k2,m2) + 1

, (A.4)

with τ(k2,m2) = 1− 4m2/k2, while for k2 null we obtain

B0(0, 0) =
2

εUV
+

2

εIR
, (A.5)

B0(0,m2) =
2

εUV
− log

m2

µ2
. (A.6)

In the QCD computations we have also used the following finite two-point scalar integrals

D(k2,m2) = B0(k2,m2)− B0(0,m2) , (A.7)

and we have renormalized all the divergent B0 functions in the MS scheme in which the

1/εUV divergences have been subtracted.

The massless scalar 3-point function, for k2 < 0, is given by

C0(k2, 0) =
1

k2

[
4

εIR
+

2

εIR
log
−k2

µ2
+

1

2
log2 −k2

µ2
− π2

12

]
, (A.8)

while the massive C0(k2,m2) is given in eq. (9.4).

B Electroweak form factors for the 〈TV V 〉

In the fermion sector the form factors are given by

Φ1F (s, 0, 0, m2
f ) =

α

3π s
Q2
f

{
− 2

3
+

4m2
f

s
− 2m2

f C0(s, 0, 0,m2
f ,m

2
f ,m

2
f )

[
1−

4m2
f

s

]}
,

Φ2F (s, 0, 0, m2
f ) =

α

3π s
Q2
f

{
− 1

12
−
m2
f

s
−

3m2
f

s
D0(s, 0, 0,m2

f ,m
2
f )

−m2
fC0(s, 0, 0,m2

f ,m
2
f ,m

2
f )

[
1 +

2m2
f

s

]}
, (B.1)

Φ3F (s, 0, 0, m2
f ) =

α

3π s
Q2
f

{
11 s

12
+ 3m2

f +D0(s, 0, 0,m2
f ,m

2
f )
[
5m2

f + s
]

+sB0(0,m2
f ,m

2
f ) + 3m2

f C0(s, 0, 0,m2
f ,m

2
f ,m

2
f )
[
s+ 2m2

f

]}
. (B.2)
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The other gauge-invariant sector of the 〈TV V 〉 vertex is the one mediated by the exchange

of bosons and ghosts in the loop. In this sector the form factors are given by

Φ1B(s, 0, 0, M2
W ) =

α

π s

{
5

6
− 2M2

W

s
+ 2M2

W C0(s, 0, 0,M2
W ,M

2
W ,M

2
W )

[
1− 2M2

W

s

]}
,

Φ2B(s, 0, 0, M2
W ) =

α

π s

{
1

24
+
M2
W

2 s
+

3M2
W

2 s
D0(s, 0, 0,M2

W ,M
2
W )

+
M2
W

2
C0(s, 0, 0,M2

W ,M
2
W ,M

2
W )

[
1 +

2M2
W

s

]}
, (B.3)

Φ3B(s, 0, 0, M2
W ) =

α

π s

{
− 15 s

8
− 3M2

W

2
− 1

2
D0(s, 0, 0,M2

W ,M
2
W )
[
5M2

W + 7 s
]

−3

4
sB0(0,M2

W ,M
2
W )− C0(s, 0, 0,M2

W ,M
2
W ,M

2
W )
[
s2 + 4M2

W s+ 3M4
W

]}
. (B.4)

The contributions coming from the term of improvement are characterized bythe form

factors

Φ1 I(s, 0, 0, M2
W ) =

α

3π s

{
1 + 2M2

W C0(s, 0, 0,M2
W ,M

2
W ,M

2
W )

}
, (B.5)

Φ4 I(s, 0, 0, M2
W ) = − α

6π
M2
W C0(s, 0, 0,M2

W ,M
2
W ,M

2
W ), (B.6)

Ψ1 I(s, 0, 0, m2
f ,M

2
W ,M

2
H) =

α

3π s(s−M2
H)

{
2m2

f Q
2
f

[
2 + (4m2

f − s)C0(s, 0, 0,m2
f ,m

2
f ,m

2
f )

]
+M2

H + 6M2
W + 2M2

W (M2
H + 6M2

W − 4s)C0(s, 0, 0,M2
W ,M

2
W ,M

2
W )

}
, (B.7)

Ψ4 I(s, 0, 0,M2
W ) = −Φ4 I(s, 0, 0, M2

W ) . (B.8)

Finally, the spectral density associated to the form factor ψ1I for a light fermion (m) running

in the loop, takes the form

ρψ1I = A1(s,m2,M2
H) log

(
1 +

√
τ(s,m2)

1−
√
τ(s,m2)

)
θ(s− 4m2)

+A2(s,m2,M2
H) log

(
1 +

√
τ(s,M2

W )

1−
√
τ(s,M2

W )

)
θ(s− 4M2

W ) +A3(s,m2,M2
H ,M

2
W )δ(s−M2

H) (B.9)

with

A1(s,m2,M2
H) =

2

3

m2Q2
f

M2
Hs

2
α

(
4m2 +

M2
H − 4m2

s−M2
H

)
A2(s,M2

H ,M
2
W ) =

2

3M2
Hs

2
αM2

W

(
M2
H + 6M2

W + 3s
M2
H − 2M2

W

s−M2
H

)
A3(s,m2,M2

H ,M
2
W ) =

α

3M4
h

(
−M2

H(M2
H + 6M2

W ) +m2(4m2π2 −M2
H(4 + π2))Q2

f

+6M2
h(M2

H − 2M2
W )M2

WC0(M2
H ,M

2
W )
)
. (B.10)

C List of spectral discontinuities

We summarize here, for convenience, a list of the discontinuities of functions needed in the

computation of the spectral densities of the correlators.

Disc
C0(s,m2)

s2
= −2πi

s3
log

(
1 +

√
τ(s,m2)

1−
√
τ(s,m2)

)
θ(s− 4m2) +

iπ

12m4
δ(s)− iπ

m2
δ′(s) ,
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k

1

2

n−1

n

n+1

n+2

m−1

m

Figure 12. A correlation function exhibits a pole exchange with momentum k corresponding to

an elementary particle which appears in the Lagrangian.

k

1

2

n−1

n

n+1

n+2

m−1

m

Figure 13. A bound state interpolates between the two subamplitudes in a given correlation

function. In this case the pole corresponds to a composite, a bound state of two elementary

particles represented by straight lines, which interact together by the exchange of other elementary

states (curly lines).

Disc
C0(s,m2)

s
= −2iπ

s2
log

(
1 +

√
τ(s,m2)

1−
√
τ(s,m2)

)
θ(s− 4m2) +

iπ

m2
δ(s) ,

DiscD(s,m2) = 2iπ
√
τ(s,m2) ,

Disc
D(s,m2)

s
= 2iπ

√
τ(s,m2)

s
θ(s− 4m2) ,

Disc
D(s,m2)

s2
= 2iπ

√
τ(s,m2)

s2
θ(s− 4m2)− iπ

3m2
δ(s) . (C.1)

For the computation of the spectral densities of ψ1I we need also

Disc
C0(s,m2)

s−M2
H

= −2iπRe C0(M2
H ,m

2)δ(s−M2
H)− 2i

π

s(s−M2
H)

log

(
1 +

√
τ(s,m2)

1−
√
τ(s,m2)

)
θ(s− 4m2). (C.2)

where m can be either the W boson or the fermion mass.

D Polology

A pole in a correlation function may correspond either to the exchange of a fundamental

particle in the defining Lagrangian, as shown in figure 12, or to the exchange of a composite

particle, as in figure 13. We summarize the proof of the relation between the existence of

poles in the S-matrix and the nature of the intermediate exchange for the specific case of
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the 3-point functions that we investigate. We consider a generic correlator G as a function

of the momenta of the external lines. In coordinate space it is given by

G(x1, . . . , xn) = 〈0|T {A1(x1) . . . An(xn)} |0〉 (D.1)

with the operatros A denoting either fields appearing in the Lagrangian or even composite

local operators. We specialize to a simpler case with just three operators, say O(z), A1(x1)

and A2(x2). This is the situation encountered in our studies on chiral and conformal

anomalies. Then we move to momentum space and consider the correlator

G(k, p1, p2) =

∫
d4zd4x1d

4x2 e
−ikz−ip1x1−ip2x2〈0|T {O(z)A1(x1)A2(x2)} |0〉 (D.2)

as a function of the virtuality of O, namely k2 = (−p1 − p2)2. Notice that the virtualities

of the external momenta p2
1 and p2

2 are not fixed by any on-shellness condition and can be

arbitrary. We isolate the operator O from the T product and retain only the term in which

O appears to the far left

G(k, p1, p2) =

∫
d4zd4x1d

4x2 e
−ikz−ip1x1−ip2x2

×
{
θ(z0 −max{x0

1, x
0
2}) 〈0|O(z)T {A1(x1)A2(x2)} |0〉+ . . .

}
, (D.3)

where the ellipsis stand for the other time ordering products which we have ignored. They

do not contribute with any pole structure to the correlator. Now we insert a complete set

of intermediate states between the operator O and the other ones, isolating only single

particle states with a specific mass m. We discard the other single particle states with

different masses (they will contribute with poles but at other kinematical positions) and

multi particle states (which appear as branch cuts). We obtain

G(k, p1, p2) =
∑
σ

∫
d4zd4x1d

4x2d
3~p e−ikz−ip1x1−ip2x2

×
{
θ(z0 −max{x01, x02})〈0|O(z)|~p, σ〉〈~p, σ|T {A1(x1)A2(x2)} |0〉+ . . .

}
(D.4)

where |~p, σ〉 is a single particle state with mass m (p2 = m2) and with quantum numbers

collectively identified by σ. We extract the z and x1 dependences from the matrix elements

appearing in the previous equation, and introduce the new integration variable y = x1−x2

in place of x2. Finally we insert the integral representation of the step function θ(t) given by

θ(t) =
i

2π

∫ +∞

−∞
dω

e−iω t

ω + iε
(D.5)

where ε is an infinitesimal and positive constant. We have

G(k, p1, p2) =
i

2π

∑
σ

∫
d4z d4x1 d

4y d3~p
dω

ω + iε
e−ikz−i(p1+p2)x1−ip2y

× e−iω(z0−x01−max{0,y0})eipz−ipx1〈0|O(0)|~p, σ〉〈~p, σ|T {A1(0)A2(y)} |0〉+ . . . , (D.6)
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where the integration over z and x1 is straightforward and gives only delta functions

G(k, p1, p2) =
i

2π

∑
σ

∫
d4y d3~p

dω

ω + iε
e−ip2y+iωmax{0,y0}〈0|O(0)|~p, σ〉〈~p, σ|T {A1(0)A2(y)} |0〉

×(2π)8δ(3)(~k − ~p) δ(k0 −
√
~p2 +m2 + ω)δ(3)( ~p1 + ~p2 + ~p) δ(p01 + p02 +

√
~p2 +m2 − ω) + . . . . (D.7)

The integrations over the momenta ~p and ω are now trivial due to the delta functions and

lead to

G(k, p1, p2) = (2π)4δ(4)(k + p1 + p2)i
(2π)3√

~k2 +m2 − k0 + iε

×
∑
σ

∫
d4y e

i
(√

~k2+m2−k0
)

max{0,y0}
e−ip2y〈0|O(0)|~k, σ〉〈~k, σ|T {A1(0)A2(y)} |0〉 .(D.8)

The appearance of the pole in the limit k0 →
√
~k2 +m2 in the correlation function is now

explicitly manifest and originates from the massless pole in ω, which comes, in turn, from

the integral parameterization of the step function. In order to make the pole structure

more clear we notice that near the pole

1√
~k2 +m2 − k0 + iε

∼ 2k0

k2 −m2 − iε
(D.9)

while the exponential function under integration goes to unity. This allows us to define the

matrix elements

(2π)4δ(4)(k − p)M0|(k,σ)(k) ≡
∫
d4ze−ipz〈0|O(z)|~k, σ〉 (D.10)

(2π)4δ(4)(k+p1+p2)M(k,σ)|0(k, p1, p2) ≡
∫
d4x1d

4x2e
−ip1x1−ip2x2〈~k, σ|T {A1(x1)A2(x2)} |0〉 . (D.11)

With these definitions and simplifications the pole behaviour of the correlator is now explicit

and reads as

G(k, p1, p2)
k2→m2

−→ (2π)4δ(4)(k + p1 + p2)

×
∑
σ

√
2(2π)3k0M0|(k,σ)(k)

i

k2 −m2 − iε
√

2(2π)3k0M(k,σ)|0(k, p1, p2) . (D.12)

E Feynman rules

We report the Feynman rules used for the massless computation. All momenta are incom-

ing.

• fermion - fermion - gauge boson vertex

Aaµ

χjB

χ̄iȦ

= −ig (σ̄µ)ȦB T aij or ig (σµ)BȦ T
a
ij

– 45 –



J
H
E
P
0
6
(
2
0
1
4
)
1
3
6

• gaugino - gaugino - gauge boson vertex

Aaµ

λc
B

λ̄b
Ȧ

= −g (σ̄µ)ȦB tabc or g (σµ)BȦ t
abc

• scalar - scalar - gauge boson vertex

Aaµ

φj

φ†
i

k2

k1

= ig (k2 − k1)µ T aij

• scalar - scalar - gauge boson - gauge boson vertex

Abν

Aaµ

φj

φ†
i

= ig2ηµν
{
T a, T b

}
ij

• three gauge bosons vertex

Aaµ

Acρ

Abν

k1 k2

k3

= g [ηµν (k1−k2)ρ+ηνρ (k2−k3)µ+ηρµ (k3−k1)ν ] tabc

• four gauge bosons vertex

Abν

Aaµ

Adσ

Acρ

= −ig2
[
tabetcde (ηµρηνσ−ηµσηνρ)+tacetbde (ηµνηρσ−ηµσηνρ)

+tadetbce (ηµνηρσ − ηµρηνσ)
]
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• scalar - fermion - gaugino vertex

φj

χ̄iḂ

λ̄aȦ

= −i
√

2g T aij δ
Ȧ
Ḃ

or − i
√

2g T aij δ
Ḃ
Ȧ

• scalar - fermion - gaugino vertex

φ†
i

χjB

λaA

= −i
√

2g T aij δ
A
B or − i

√
2g T aij δ

B
A

• R - gaugino - gaugino vertex

Rµ

λb
B

λ̄a
Ȧ

= (σ̄µ)ȦB δab or − (σµ)BȦ δ
ab

• R - fermion - fermion vertex

Rµ

χjB

χ̄iȦ

= −1

3
(σ̄µ)ȦB δij or

1

3
(σµ)BȦ δij

• R - scalar - scalar vertex

Rµ

φj

φ†
i

k2

k1

=
2

3
(k2 − k1)µ δij
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• R - scalar - scalar - gauge boson vertex

Rµ

Aaν

φj

φ†
i

= −4

3
g ηµν T aij

• S - scalar - fermion vertex

Sµ
A

χB
j

φ†
i

k2

k1

=
√

2i kν2 (σν σ̄
µ)BA δij −

4

3

√
2i2 (k1 + k2)ν (σµν)BA δij

• S - scalar - fermion - gauge boson vertex

Sµ
A

χB
j

Aaν

φ†
i

=
√

2ig (σν σ̄µ)BA T
a
ij

• S - scalar - scalar - gaugino vertex

Sµ
A

λ̄a
Ḃ

φj

φ†
i

= −ig (σµ)AḂ T
a
ij

• S - gauge boson - gaugino vertex

Sµ
A

Abν

λ̄a
Ḃ

k1

= −2i2k1ρ (σρνσµ)AḂ δ
ab
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• S - gauge boson - gauge boson - gaugino vertex

Sµ
A

Acρ

Abν

λ̄a
Ḃ

= −2ig (σρνσµ)AḂ t
abc

• T - scalar - scalar vertex

T µν

φj

φ†
i

k2

k1

=

[
−k2ρ k1σ Cµνρσ+

1

3

(
(k1+k2)µ (k1+k2)ν − ηµν(k1+k2)2

)]
δij

• T - scalar - scalar - gauge boson vertex

T µν

φj

Aaρ

φ†
i

k2

k1

= −g(k2 − k1)σ C
µνρσT aij

• T - scalar - scalar - gauge boson - gauge boson vertex

T µν

Abσ

φj

φ†
i

Aaρ

= g2Cµνρσ
{
T a, T b

}
ij

• T - fermion - fermion vertex

T µν

χB
j

χ̄Ȧ
i

k2

k1

=
1

4
(k1 − k2)ρ

[
ηρν (σ̄µ)ȦB + ηρµ (σ̄ν)ȦB − 2ηµν (σ̄ρ)ȦB

]
δij
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• T - fermion - fermion - gauge boson vertex

T µν

χB
j

Aaρ

χ̄Ȧ
i

= −g
2

[
ηρν (σ̄µ)ȦB + ηρµ (σ̄ν)ȦB − 2ηµν (σ̄ρ)ȦB

]
T aij

• T - gaugino - gaugino vertex

T µν

λbB

λ̄aȦ

k2

k1

=
1

4
(k1−k2)ρ

[
ηρν (σ̄µ)ȦB+ηρµ (σ̄ν)ȦB−2ηµν (σ̄ρ)ȦB

]
δab

• T - gaugino - gaugino - gauge boson vertex

T µν

λbB

Acρ

λ̄aȦ

= i
g

2

[
ηρν (σ̄µ)ȦB + ηρµ (σ̄ν)ȦB − 2ηµν (σ̄ρ)ȦB

]
tabc

• T - gauge boson - gauge boson vertex

T µν

Abσ

Aaρ

k2

k1

=

(
k1 · k2 Cµνρσ +Dµνρσ(k1, k2) +

1

ξ
Eµνρσ(k1, k2)

)
δab

• T - gauge boson - gauge boson - gauge boson vertex

T µν

Acτ

Abσ

Aaρ

k3

k2

k1

= −ig (Cµνρσ(k3 − k2)τ + Cµνρτ (k1 − k3)σ

+Cµνστ (k2 − k1)ρ + Fµνρστ (k1, k2, k3)) tabc

Cµνρσ = ηµρ ηνσ + ηµσ ηνρ − ηµν ηρσ (E.1)

Dµνρσ(k1, k2) = ηµν k1σ k2 ρ −
[
ηµσkν1k

ρ
2 + ηµρ k1σ k2 ν − ηρσ k1µ rk2 ν + (µ↔ ν)

]
(E.2)
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Eµνρσ(k1, k2) = ηµν (k1 ρ k1σ + k2 ρ k2σ + k1 ρ k2σ)−
[
ηνσ k1µ k1 ρ + ηνρ k2µ k2σ + (µ↔ ν)

]
Fµνρσλ(k1, k2, k3) = gµρ gσλ (k2 − k3)ν + gµσ gρλ (k3 − k1)ν + gµλ gρσ(k1 − k2)ν + (µ↔ ν) (E.3)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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[16] C. Corianò, M. Guzzi, A. Mariano and S. Morelli, A light supersymmetric axion in an

anomalous Abelian extension of the Standard Model, Phys. Rev. D 80 (2009) 035006

[arXiv:0811.3675] [INSPIRE].
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[31] R. Armillis, C. Corianò and L. Delle Rose, Anomaly poles as common signatures of chiral

and conformal anomalies, Phys. Lett. B 682 (2009) 322 [arXiv:0909.4522] [INSPIRE].
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[35] C. Corianò, L. Delle Rose and M. Serino, Gravity and the neutral currents: effective

interactions from the trace anomaly, Phys. Rev. D 83 (2011) 125028 [arXiv:1102.4558]

[INSPIRE].
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