Proton-Air inelastic cross section measurement with ARGO-YBJ

Ivan De Mitri

University of Salento and
Istituto Nazionale di Fisica Nucleare
Lecce, Italy

On behalf of the ARGO-YBJ Collaboration

XXX International cosmic Ray Conference, ICRC 2007
Merida, Mexico, July 3-11, 2007
The ARGO-YBJ experiment

High Altitude Cosmic Ray Laboratory @ YangBaJing, Tibet, China
Site Altitude: 4,300 m a.s.l., ~ 600 g/cm²
ARGO-YBJ physics goals

- **Cosmic ray physics:**
 - anti-\(p/p\) ratio at TeV energy,
 - spectrum and composition (\(E_{th}\) few TeV),
 - study of the shower space-time structure,
 - p-Air cross section,

- **VHE \(\gamma\)-Ray Astronomy:**
 - search for point-like (and diffuse) galactic and extra-galactic sources at few hundreds GeV energy threshold

- **Search for GRB’s** (full GeV / TeV energy range)

- **Sun and Heliosphere physics** (\(E_{th} \sim\) few GeV)
 - through ...

Observation of *Extensive Air Showers* produced in the atmosphere by primary \(\gamma\)’s and nuclei
The ARGO-YBJ detector

- Strip = space pixel
- Pad = time pixel
- Time resolution ~1 ns
- 10 Pads (56 x 62 cm²) for each RPC
- 8 Strips (6.5 x 62 cm²) for each Pad
- 1 CLUSTER = 12 RPC
- (~43 m²)

+ Analog charge read-out on “Big Pads”
+ 0.5 cm lead converter (2008)
EAS reconstruction

Event Rate ~ 4 kHz for $N_{\text{hit}} > 20$

High space/time granularity
+ Full coverage
+ High altitude

detailed study on the EAS space/time structure with unique capabilities

3-D view of a detected shower

Top view of the same shower
The position of the shower maximum (and its rms)

![Graph showing the depth at shower maximum vs. energy for different particle interactions.](image)
Measurement of the Flux attenuation

Use the shower frequency vs (secθ -1)

\[I(\theta) = I(0) \cdot e^{-\frac{h_0}{\Lambda}(sec(\theta) - 1)} \]

for fixed energy and shower age.

However \(\Lambda = k \lambda_{\text{int}} \) mainly because of shower fluctuations.

It is determined by simulations and depends on:
- interaction model
- actual set of experimental observables
- energy
-

Then:
\[\sigma_{\text{p-Air}} \text{ (mb)} = 2.4 \times 10^4 / \lambda_{\text{int}} \text{ (g/cm}^2\text{)} \]

Warning

Take care of shower fluctuations

- **Constrain** \(X_{DO} = X_{\text{det}} - X_0 \) or better \(X_{DM} = X_{\text{det}} - X_{\text{max}} \)
- **Select** deep showers (large \(X_{\text{max}} \), i.e. small \(X_{D0} \) or \(X_{DM} \))
- **Exploit** detector features (space-time pattern) and location (depth).
Data selection

Event selection based on:
(a) “shower size” on detector, N_{hit} (pad multiplicity)
(b) core reconstructed in a fiducial area (60 x 60 m2)
(c) constraints on Strip density (> 0.2/m2 within R_{70})
and shower extension ($R_{70} < 25$m)

N_{hit} is used to get two separated E sub-samples
($N_{\text{hit}} = 300\div1000$, $N_{\text{hit}} > 1000$)

Full Monte Carlo simulation:
Corsika showers
QGSJET int. model
GEANT detector simulation

R_{70}: radius of circle including 70% of hits
Cuts in-dependence on the zenith angle

No significant zenith angle dependence below 30 degrees.
A slight shift might be seen above 40 degrees.
In this analysis we stop at 40 degrees.
The sec(θ) distributions

The contribution of He primaries has been checked to increase the cross section values by 7-9% (depending on the assumed primary spectra).

Correction for heavier primaries are expected to be negligible.

Exponential dependence in both MC and real data.

Larger contamination of “external” showers in the low energy bin

<table>
<thead>
<tr>
<th>Nhit</th>
<th>⟨E⟩</th>
<th>k</th>
<th>σ_{CR-Air} (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 ÷ 1000</td>
<td>3.9 ± 0.1 TeV</td>
<td>1.6 ± 0.3</td>
<td>299 ± 55</td>
</tr>
<tr>
<td>> 1000</td>
<td>12.7 ± 0.4 TeV</td>
<td>1.2 ± 0.1</td>
<td>306 ± 34</td>
</tr>
</tbody>
</table>
In this plot, ARGO-YBJ data points have been already corrected for the effect of primaries heavier than protons.

In agreement with a previous work based on 42 clusters data (ECRS, Lisbon 2006)
\begin{itemize}
 \item Glauber – Matthiae theory
 \item Durand – Pi
 \item Wibig – Sobczynska
 \item …. \end{itemize}

Models agree within few % in our energy range.

\[\sigma_{\text{inel}}^\text{p-Air} \Rightarrow \sigma_{\text{tot}}^\text{p-p} \]

\begin{tabular}{|c|c|c|c|c|}
 \hline
 Nhiten & \(<E>\) & \(k\) & \(\sigma_{\text{CR-Air}}\) (mb) & \(\sigma_{\text{p-Air}}\) (mb) & \(\sigma_{p-p}\) (mbarn) \\
 \hline
 300 ÷ 1000 & 3.9 ± 0.1 TeV & 1.6 ± 0.3 & 299 ± 55 & 275 ± 51 & 40 ± 7 \\
 \hline
 > 1000 & 12.7 ± 0.4 TeV & 1.2 ± 0.1 & 306 ± 34 & 282 ± 31 & 43 ± 5 \\
 \hline
\end{tabular}
Summary and Outlook

- The **flux attenuation** technique has been shown to give reliable results, by exploiting the **ARGO-YBJ detector features and location**.

- The inelastic proton-air (and the total p-p) cross section has been measured, giving results **in agreement with previous works**.

- The analysis will be extended to larger energies (up to 1 PeV), by also using the analog RPC readout, thus covering a region with few experimental information.

- **More accurate shower age and energy** determinations by the use of **timing** (rise time, front curvature,..) and **topological** information.

- **Further checks on systematics** will be done (shower fluctuations, interaction models, heavy primaries contribution, ..)