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Electroweak corrections of infrared origin
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It has become clear in recent years that elec-
troweak radiative corrections at the Teraelettron-
volt (TeV) scale, which is the energy scale rele-
vant for present or near future accelerators, are
much bigger than one could näıvely expect [1].
In fact, while at LEP energies (∼ 100 GeV) elec-
troweak corrections are parametrized by the weak
coupling constant, αW

π
<∼ 1%, a steady growth

with energy makes them reach the 20÷30% level
at the TeV scale. At higher energies, electroweak

corrections keep on growing and become as big
as the tree level values for the cross sections, thus
making a perturbative treatment problematic. As
one tries to understand the asymptotic behavior,
i.e. how the cross sections depend on the typical
energy of the process when the energy itself be-
comes much bigger than all particle’s masses, two
striking features emerge:

• the behavior of cross sections for energies
much higher than the weak scale M ∼ 100
GeV is related to the infrared, rather than
the ultraviolet, structure of the Standard
Model; M plays the role of infrared cutoff
[2].

• No “infrared safe” observable exists: even
at the highest energies, all observables de-
pend crucially on the low energy infrared
cutoff M .

In order to clarify these two points, I will exam-
ine a simple example. Let us a consider a scat-
tering process in which the center of mass energy
E is much bigger than any scale of the theory:
particle’s masses, symmetry breaking scale and
so on. At first sight, the asymptotic behavior of
the cross section σ(E) should depend on how the
theory behaves for very high energies, that is on
its ultraviolet properties, encoded into the Renor-
malization Group Equations (RGEs). In many
cases, this amounts to the following recipe: cal-
culate the tree level value for σ = σ(αi, ...), then
substitute the “fixed coupling constants” αi with
the “running coupling constants αi(µ) evaluated
at a scale µ = E. However, by doing this and
comparing with, say a numerical calculation, one
obtains a completely wrong result! What went
wrong?

The crucial point is that all cross sections have
an unavoidable dependence also on the weak sym-
metry breaking scale M , and not only on the
process scale E. It has been clarified that this
dependence is related to the infrared properties
of the theory, and that M acts as an infrared
cutoff: all quantities would be divergent in the
limit M → 0. Moreover, while RGEs equations
produce asymptotic behaviors growing like single
logs, the infrared behavior generates double logs:
at one loop the correction to the cross section
is proportional to αw log2 E

M
. So, infrared origi-

nated weak corrections dominate the ultraviolet
behavior.

To my knowledge, this is the only case in which
studying RGEs is of little use in order to under-
stand asymptotic behaviors. In fact, due to very
general theorems, in the case of QED and QCD
the dependence on the infrared cutoff is usually
canceled between different contributions and one
can measure “infrared safe” observables. This
leads me to the second point sketched previously.

For very high energies, besides photons (γ) and
gluons (g), also weak gauge bosons (W, Z) are
radiated copiously when two initial particles un-
dergo a hard scattering into a given final state.
To be definite, let us consider e+e− → 2 jets
+X , a process relevant for future e+e− linear
colliders. Here the experimental trigger is de-
fined to be 2 ”hard” jets (i.e. two hadronic
jets forming a large invariant mass), while any
type of radiation (γ, g, W, Z) is included in ”X”.
The hope is that, by defining such an inclusive
quantity, there is a better theoretical control over
the perturbative predictions: this is what hap-
pens in QED and QCD, where a cancellation be-
tween virtual corrections and real γ, g emissions
so that the final result is independent of the in-
frared cutoff and thus free of large logarithms.
However, no such a cancellation happens when
considering weak bosons emission, and the in the
fully inclusive cross sections cross large double
logs ∼ αw log2 E

M
are still present. The theo-

retical reason for this is now well understood [3]
and is related to the weak sector of the Stan-
dard Model being simultaneously non abelian and
(spontaneously) broken. This noncancellation,
baptised ”Bloch-Nordsieck violation”, is gener-
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ically unavoidable since it is present whenever
two or more weak isospin charges (belonging to
the initial and/or final states) are detected ex-
perimentally. Since initial states in an accelera-
tor (protons, electrons,..) do carry weak isospin
charges, uncanceled double logs at high energies
are truly ubiquitous.

The theoretical behavior of weak corrections
at very high energies is by now well understood:
techniques partly mutuated from QCD allow to
resum these contributions at all orders, allowing
a good theoretical control over the asymptotic
behavior of cross sections. Then, a very rele-
vant question arises: are these corrections phe-
nomenologically relevant? The answer is not ob-
vious, since next generation of hadronic (LHC)
and electron-positron (ILC) colliders will probe
the TeV scale, which is not much bigger than the
weak scale of about 100 GeV. Is the double loga-
rithmic enhancement enough to produce relevant
effects? The answer is yes: the ”effective cou-
pling constant” αw log2 E

M
is of the order of 10

% at the TeV scale, and one loop weak correc-
tions can reach the 50 % (!) level [4]. At a linear
e+e− collider, with its clean experimental envi-
ronment allowing for precision measurements, it
is also clear that the one loop approximation is
not enough: one needs to calculate also higher or-
ders and/or all-order resummed corrections. The
outcome is not so clearcut in an hadronic collider
like the LHC, where strong interactions provide a
dominant background and a lower experimental
precision. Let me discuss this issue by taking a
particular example, that we studied in [6].

The scattering of longitudinally polarized
gauge bosons, VLVL → VLVL where V = W, Z,
probes the physics responsible for the symme-
try breaking mechanism. In fact the longitudi-
nal degrees of freedom, that the gauge bosons ac-
quire when the electroweak SU(2) ⊗ U(1) sym-
metry breaks, interact with each other through
that very same sector of the Lagrangian (the so
called “Higgs sector”) which is also responsible
for symmetry breaking1. It turns out that even at
the highest energies radiative corrections depend
crucially on the low energy infrared cutoff M , fea-
turing the infamous double logs. This holds true
even for a fully inclusive quantity, i.e. a quantity
where W, Z radiation is included in the final state.
These kind of corrections can be resummed at all
orders and a give well behaved result (see fig. 1,
continuous line). In this figure, the dependence
of the radiative correction to the cross section is
drawn as a function of the center of mass energy
E =

√
s. For a comparison, the “exclusive” case,

where W, Z radiation is forbidden, is also depicted
in fig. 1 (dashed line).

1a formal proof of this statement is given by the so called
“equivalence theorem” [5]

An important comment is in order. Whether
gauge bosons emission is measured or not strongly
depends on the experimental setup. This means
that, depending on what are the “experimental
cutoffs” on the final state, i.e. what kind of parti-
cles are detected and with what properties (mass,
momenta and so on), the theoretical prediction
can be anywhere between the dashed and contin-
uous lines in fig. 1. A more detailed study on
this subject is therefore needed; to this we will
soon dedicate our efforts in order to get theoreti-
cal predictions nearer to actual exeriments.
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Figure 1. Radiative electroweak cross sections
relative to the Born value, in the case of W +Z

scattering. Dashed green line: additional gauge
bosons are excluded from the observable defini-
tion. Continuous blue line: additional gauge bo-
son radiation is included.
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