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From weak to strong chaos in the Fermi–Pasta–Ulam β system
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The key words that have characterized for more
than fifty years the study of the Fermi–Pasta–
Ulam (FPU) system [1] are recurrences, stability,
relaxation time, weak and strong chaos and, more
recently, breathers and q–breathers. These con-
cepts apply both to non exact solutions and to
exact solutions (π–mode, π/2–mode, etc.) of the
system.

When a generic linear mode of wave number
k is initially excited, energy is exchanged with
the other modes that start to gain energy. If
the coupling nonlinear parameter and the energy
of the excited mode is small, then the energies
exchanged remain small and change periodically.
When the nonlinear effects become larger, some of
the normal modes gain considerable energy, and
induce the decay of the excited initial mode as
well as a conspicuous exchange of energy among
normal modes. This phenomenon is called the
induction phenomenon and is observed mostly in
the small energy density regime.

We recall that the Hamiltonian of the FPU–β
system reads
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with xN+1 = x1 and β > 0.
It is well known that, for a periodic FPU–

β chain with N oscillators and periodic condi-
tions, there are nonlinear one–mode exact solu-
tions (OMSs) [5] (π–mode, π/2–mode, etc.) cor-
responding to the values of the mode number n
with n natiral number
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Some years ago, the concept of strong stochas-
ticity threshold (SST) has been introduced [3,4].
It is defined as the energy density threshold that
characterizes the transition of the system dynam-
ics between weak and strong chaos, after the in-
duction phenomenon and during the relaxation
of the system towards ergodicity and equiparti-
tion. This transition between the two chaoticity

regimes, in the the FPU–β model, is numerically
characterized by a change of energy density de-
pendence of the largest Lyapunov exponent and
of the relaxation time.

The aim of our recent research is to perform
an analysis of the thermodynamics of the FPU–β
system [6–8]. We have shown that this system
possesses qualitatively two regimes, of weak and
strong chaos respectively. In the weakly chaotic
regime, the ergodicity hypothesis is no longer
valid, the behaviour of the emerging distributions
is not Gaussian and consequently the standard
Boltzmann–Gibbs statistical mechanics fails to be
correct. Instead, in this context, generalized ther-
mostatistics should be considered [2]. In order
to perform quantitatively our analysis, we intro-
duce a new universal indicator ρ(q), that mea-
sures the deviation of a generic assigned distribu-
tion from the Gaussian behaviour. This deviation
is explicitly expressed in terms of a statistical pa-
rameter q. When q → 1, the statistics is Boltz-
mannian. The function ρ(q) is model–independent

and can be used as an indicator of the behaviour
at the edge of chaos of any complex physical sys-
tem. This indicator is particularly suitable for the
analysis of the FPU-β system. Indeed, consider
the quantities ηi = xi + xi−1, where xi denotes
the deviation of the i–the particle with respect to
its equilibrium position. If one excites the mode
N/2, the relation

xi(t) =
1√
N

(−1)iQN/2(t) (3)

holds. The quantity ηi is then zero during the
time evolution of the system, if it is stable. When
the energy density is greater than the instability
threshold value, ηi is no more equal to zero. The
distribution of the values of ηi is characteristic
of the dynamics of the system, namely of the ex-
change of energy among the mode N/2 and the
other modes. Taking into account these consider-
ations, we study the evolution of the system, as a
function of the energy density ε, by means of the
variation of the quantity

ρ =
σ

θ
. (4)

Here σ is the standard deviation associated to the
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values of ηi and θ is the mean value of the mod-
uli of differences between the values of ηi and
the mean value < ηi >. The function ρ is the
global indicator of our analysis. Now, observe
that for ε < εt, the energy of the mode N/2 re-
mains constant, and one has ηi = xi + xi−1 = 0.
For ε > εt, there is an energy exchange with the
N/2 − 1 mode and subsequently with the other
modes. Therefore, ηi is no more constant and the
distribution of its values is determined essentially
by the dynamics of energy exchange rather than
the statistic of the numerical integration errors.
Let ξi be the difference between the value of ηi at
time ti and the mean value < ηi >, evaluated in
a time interval sufficiently large.

In our analysis, we distinguish two possibilities.
a) The distribution of these difference is nor-

mal, i.e. described by the Gauss function

f(ξ) =
a√
π

exp (−a2ξ2) (5)

where a is a parameter. One has for the theoret-
ical value of ρ:
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Eq. (6) is characteristic of normal distributions
and can be utilized to verify roughly if a series of
measures satisfies or not the Gauss distribution.

b) The distribution is a q–Gaussian:
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In this case, one can prove that the function ρ has
the following exact expression for q < 1:
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What one expects is that for ε < εt, when the
distribution of the energy values is determined by
the statistics of the errors due the numerical in-
tegration, the value of the parameter ρ(ε) should
remain approximately constant. Also, it should
change abruptly for ε > εt, when the N/2 mode
starts to exchange energy with the other modes.
For large values of ε, when an equipartition state
has been reached, the parameter ρ should assume
a constant value by increasing ε.

Another quantity that remains constant during
the time evolution of the system, if the mode N/2
is stable, is the energy of each particle. Let the
value of the nonlinearity parameter β be fixed to
one. For the energy Ei of the i–th particle of the
chain, one has:
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where E is the energy of the π–mode. If this mode
is stable, the excitation energy remains fairly dis-
tributed among all particles of the chain. For
ε > εt,the energy of the mode is no more con-
stant and the previous relations are not valid. We
associate to the energy Ei the global indicator
ρ = σ/θ, where now σ is the square root of the
mean value of E2

i , calculated over a time interval
sufficiently long, and θ is the mean value of Ei,
calculated over the same time.

The study of the function ρ(ε) associated to the
observables ηi or Ei is then another method to
explore the route of the system towards the chaos,
when a one mode solution is initially excited.
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