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Introduction. Screening programs based on
low-dose Computed Tomography (CT) have been
shown to be a useful tool for the early detection
of lung nodules and the reduction of the num-
ber of lung cancer deaths. A key instrument for
this purpose is the use of Computer Aided Detec-
tion (CAD) systems for automatic identification
of pathological structures in CT images. CAD
systems are able to support the radiologist’s di-
agnosis by improving his performance and sav-
ing time. The basic steps of a CAD system can
be summarized as follows: (1) lung parenchyma
segmentation, (2) localization of the Regions Of
Interest (ROIs), (3) statistical and morphological
feature extraction from the ROIs and (4) clas-
sification of nodule candidates. The setting up
of CAD algorithms for an automated lung nod-
ule identification is one of the main scientifc goal
of the MAGIC-5 1 collaboration, involving sev-
eral italian Universities, INFN units and hospi-
tals. The CAD system so far developed by the
collaboration already gave satisfactory results[1].
Anyway, among several types of nodules those in
contact with pleura, called ”juxta-pleural” nod-
ules, are often difficult to be detected due to their
location and high density. Hereafter we will fo-
cus on the description of the tools that we are
currently building for their detection.

Lung segmentation algorithm. The seg-
mentation algorithm consists of several steps [2].
First, we find an appropriate gray-value threshold
θ0 of the respiratory apparatus by analyzing the
image Hounsfield values. Using the θ0 value we
apply to the CT volume a simple-threshold 3D
Region Growing (RG) to obtain a binary mask of
the respiratory system. Voxels are included in the
grown region if their Hounsfield value is smaller
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than θ0. The external airways are subsequently
extracted and removed by a wavefront simulation
model under appropriate stop conditions, in or-
der to obtain a mask for lungs only. A RG algo-
rithm is then applied to grow separately the left
and the right lung mask after fixing the cases of
lung ”fusion” by identifying the fusion region and
by inserting a separation surface into the binary
mask. As a result of the whole process, we have a
pair of binary masks for the two lungs that do not
contain nodules or vessels. While the cavities due
to internal nodules and dense vessels can be eas-
ily filled up in the binary mask, more difficult is
the treatment of concavities due to juxta-pleural
nodules.

Detection of juxta-pleural candidate

nodules. In order to include juxta-pleural nod-
ules in the segmented volume we have to close the
concavities by using a concavity-patching method
that returns a smoothed lung border. The differ-
ence between the original border and the ”closed”
one gives the set of concavities. Among various
concavity-patching methods, we use the morpho-

logical closing and the alpha-hull. The morpho-
logical closing is the application of two consecu-
tive morphological operators called dilation and
erosion, both using the same structural element
(SE) (i.e. a disk with varying radius r). Moving
this SE onto the image, the morphological clos-
ing returns a lung with all the concavities being
closed. The α-hull [3] is a convex hull general-
ization, able to detect concavities, whose shape
depends on a curvature parameter α. Given a set
S of points in the plane, and a positive number
α, the α-hull of S is defined as the intersection
of all closed discs of radius 1/α that contain all
the points of S. By definition, the α-hull when
α=0 is the convex hull. The effect of calculating
the α-hull of a closed and dense spatial distribu-
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Figure 1. The automatically segmented lung border
in a chest CT slice after concavity detection at an
arbitrary α value (see text).

tion of points (such as the segmentation mask of
a lung CT slice) is the gradual closing of concav-
ities, depending on the value of α. In particular,
if the border of the binary mask has nested con-
cavities, the application of α-hull with increasing
values of α allows the identification of concavity
for different values of this parameter. This cre-
ates a natural hierarchy of the concavity that is
ordered with respect to α (see Fig.1).

Feature extraction. Now that a list of
concavities is available, we want to reduce the
number of False Positives (FPs) by rejecting the
concavities that are not related to juxta-pleural
nodules (natural concavities). This task can be
obtained by introducing a set of proper threshold
values acting on several features. We can dis-
tinguish among two big classes of features: the
geometrical and the texture ones. The most im-
portant geometrical features are: span that is
the length of a segment that joins the concavity
extremal points; depth that is the length of the
longest perpendicular segment defining the span;
boundary length that is the number of boundary
points composing the concavity profile; area that
is the number of pixels between the span seg-
ment and the concavity boundary. Other geo-
metrical features are depth over span, radius and
circularity. As for the features based on texture,
the most obvious is the average “gray-value” gray

mean. Other first-order features are related to the
gray-value histogram, namely grayStd, graySkew,
grayKurt and grayEntropy, referring to the stan-
dard deviation, skewness, kurtosis and entropy
respectively.

Classification. A supervised two-layer, 13-
input, 20-hidden-neurons, 1-output feed-forward
neural network, trained with gradient descent
learning rule with momentum, was chosen as the
classifier system. To calculate classification effi-
ciency for each of the concavity-patching meth-
ods, we define as true positives (TPs) the can-
didate nodules that meet the radiologist’s diag-

nosis (see next paragraph) according to the fol-
lowing condition: the Euclidean distance between
the centroid of the concavity, and the centroid of
a diagnosed nodule, is lower than 1.5rR, where
rR is the nodule radius according to the radi-
ologists. All other candidates are considered to
be false positives. The 1.5 factor takes into ac-
count the radius measurement uncertainty. The
Artificial Neural Network output, calculated on
the concavity list, is distributed in the range
[0,1]. By varying a decision threshold, and as-
signing target t=1 to candidates above threshold
(probably positive), and t=0 to candidates be-
low threshold (probably negative), sensitivity and
specifcity referred to the known diagnosis can be
calculated. The Receiver Operating Character-
istic (ROC) curve is then obtained by plotting
(for each threshold value) sensitivity versus [1-
specificity], thus giving the overall algorithm fig-
ure of merit.

Lung CT datasets and the annotation

protocol. Ground truths for clinical evalua-
tion of imaging systems, to be used as a ”gold
standard” for CAD system, are of crucial impor-
tance. The Lung Image Database Consortium
in America, the Cancer Action Project and the
ANODE09 2 initiative in Europe, are involved
in the challenge of creating standard databases.
MAGIC-5 is the first Italian project that fore-
sees a close collaboration with expert radiologists,
both for choosing and annotating lung cases, to-
gether with a statistical management of this data
towards the formation of a CT lung data bank.
Till now we collected about 300 scans, annotated
by expert radiologists using the LUNA (LUng
Nodule Annotation) automated tool, developed
within the collaboration, and a common annota-
tion protocol. It is then possible to test algo-
rithms on a large database and results can be
quantified.
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