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1. Nonlinear Schrödinger systems

Equations of nonlinear Schrödinger (NLS) type
are prototypical nonlinear dispersive systems of
partial differential equations (PDEs) that play an
important role in both mathematics and physics.
NLS-type equations have been derived in such di-
verse fields as deep water waves, plasma physics,
nonlinear fiber optics, magnetic spin waves, etc.
Many dispersive, energy preserving systems give
rise, in appropriate limits, to the scalar NLS equa-
tion. In other physical applications, the governing
equation is the vector NLS (VNLS) system

iqt = qxx − 2ν‖q‖2q , (1)

where q(x, t) is an N -component complex-valued
vector function, ν = ±1 denotes the focus-
ing/defocusing cases as before, and ‖ · ‖ is the
standard Euclidean norm. Here and in the fol-
lowing the boldface font is used to denote vec-
tor/matrix functions, while the regular font will
be used to denote scalar functions.

Physically, VNLS systems arise under condi-
tions similar to those giving rise to NLS, when-
ever there are suitable multiple wavetrains mov-
ing with nearly the same group velocity. The
VNLS also models systems where the electromag-
netic field has more than one nonzero component.
For example, in optical fibers and waveguides, the
electric field has two nonzero polarization compo-
nents (which for plane waves are transverse to the
direction of propagation).

The VNLS system (1) with N = 2 was pro-
posed by Manakov in 1974 as an asymptotic
model governing the propagation of the electric
field envelope in waveguides. Accordingly, (1)
with N = 2 is commonly referred to as the Man-

akov system. Later, the system was also derived
as a model for optical fibers. In optics, the defo-
cusing case ν = 1 corresponds to the normal dis-
persion regime, while the focusing case ν = −1 to
the anomalous dispersion regime.

A number of variants of the NLS equation are
also solvable by the Inverse Scattering Transform
(IST) method, which is the nonlinear analogue of
the Fourier transform for solving the initial value
problem for linear PDEs.

The IST for NLS systems with non-zero bound-
ary conditions (NZBCs) is much less developed

than in the case of solutions which vanish rapidly
at spatial infinity. In particular, even though the
IST for the defocusing scalar NLS equation with
NZBCs as x → ±∞ was formulated in 1973 by
Zakharov and Shabat, the development of the IST
for the Manakov system with nondecaying poten-
tials remained an open problem for over thirty
years, and was only recently solved by us [1].

Already in the scalar case the IST with NZBCs
is significantly more complicated than in the case
of decaying potentials, due to the fact that the
spectral parameter of the associated block-matrix
scattering problem is an element of a two-sheeted
Riemann surface. However, one still has two com-
plete sets of analytic scattering functions, and the
IST can be carried out in a standard way.
When the number of components N > 1, how-
ever, additional complications arise: 2(N−1) out
of the 2(N+1) scattering eigenfunctions are not
analytic on either sheet of the Riemann surface,
and one must find a way to complete the ba-
sis. The 2-component case (Manakov system) is
somehow special. In [1] we have developed the
IST for the Manakov system with NZBCs us-
ing the adjoint scattering problem to construct
two additional analytic eigenfunctions. The in-
verse scattering problem can be formulated as a
generalized Riemann-Hilbert problem with poles
in the upper/lower half-planes of a suitable uni-
formization variable. This construction allowed
us to completely characterize the solitonic sector
of VNLS in the normal dispersion regime (i.e., in
the defocusing case).

The investigation of the soliton solutions is
of particular importance. The defocusing NLS
does not admit the usual “bell”-shaped soliton
solutions. It does, however, possess so-called
“dark solitons”. For the scalar defocusing NLS
with constant-amplitude BCs |q(x, t)| → q0 as
x → ±∞, these are localized dips of intensity
propagating on a background field of constant,
non-zero amplitude q0. In the Manakov system
with NZBCs, our study of the solitonic sector
revealed vector generalizations of the aforemen-
tioned dark solitons, exhibiting dark solitonic be-
havior in both components, as well as novel dark-
bright soliton solutions, which have one dark com-
ponent and one bright component. These dark-
bright soliton solutions had been previously ob-
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tained by direct methods, but had not been char-
acterized from a spectral point of view before.

The formulation of the IST for the multi-
component (N > 2) vector NLS system with non-
zero boundary conditions was addressed most re-
cently [2]. In this paper, we developed the IST
for the defocusing vector NLS equation with an
arbitrary number of components, with nonzero
boundary conditions at infinity. The technique
we successfully applied to the 2-component VNLS
does not admit an obvious generalization to an ar-
bitrary number of components. In order to com-
plete the basis of analytic eigenfunctions for the
general multicomponent scattering problem, in
[2] we generalize the approach suggested by Beals,
Deift and Tomei (1988) for general scattering and
inverse scattering on the line, but developed un-
der the assumption of vanishing boundary condi-
tions. The key step is the introduction of a fun-
damental tensor family as solutions of a suitable
scattering problem associated to the given one, in
such a way that each tensor is sectionally analytic
on the cut Riemann surface. Then we show that
it is possible to algorithmically reconstruct the
fundamental matrices of solutions of the scatter-
ing problem from the fundamental tensors, and
to establish their analyticity properties.

2. Kadomtsev-Petviashvili equations

The theory of integrable systems in more than
one spatial dimension is extremely rich and com-
plex. One of the prototypical (2+1)-dimensional
integrable systems is the Kadomtsev-Petviashvili:
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Here σ2 = ∓1, and the two variants of the KP
equation are called KPI and KPII, respectively.
The KP equation, which is a generalization of
the well-known KdV equation to two spatial di-
mensions, is a universal model for small ampli-
tude, weakly two-dimensional waves in the long
wavelength regime, and as such it arises in dis-
parate physical settings. Like KdV, the KP equa-
tions admit rational, solitonic, periodic and quasi-
periodic solutions.

The one-soliton solutions of KP are one-
dimensional structures exponentially localized
along a direction in the (x, y)-plane, and therefore
called line soliton. Generalization to N -soliton
solutions also exist, and have recently attracted
a great deal of attention since it has been shown
that the KPII solitons possess an unexpectedly
rich structure. Indeed, there is a large variety of
multisoliton solutions for KPII, many of which ex-
hibit nontrivial spatial interaction patterns, reso-
nances and web structures. In general, such solu-
tions consist of unequal numbers of line solitons

as y → −∞ and y → ∞. Moreover, the directions
of the line solitons as y → ∞ are not necessarily
the same as those along y → −∞, even when the
numbers of asymptotic line solitons as y → ±∞
coincide.

Since line solitons do not vanish at infinity
along rays corresponding to the directions of the
solitons, the issue of boundary conditions plays a
crucial role in the study of these equations as well.
Indeed, the inclusion of multi-soliton solutions of
KP within the framework of the IST is a compli-
cated, long-standing open problem on which we
have worked for a number of years.

Despite their apparent similarities, the two ver-
sions of KP have markedly different properties.
For instance, spatial interaction patterns as the
ones described above for KPII are not found for
KPI solitons. Besides, the choice of sign is critical
for the stability properties of the one-dimensional
line solitons with respect to small transverse per-
turbations: KPII solitons are stable, while KPI
solitons are not. The sign of the coefficient is also
critical in the development of the IST scheme for
solving the IVP, due to the fact that the scat-
tering problem associated to KPI is the nonsta-
tionary Schrödinger equation (with the transverse
space variable y playing the role of time), while
KPII is related to the perturbed heat equation.

Even though the KP equations have been
known to be integrable for over three decades,
the study of their initial value problem via the
IST is not yet complete. In fact, the standard
approach to the spectral theory of the scatter-
ing operators, based on integral equations for the
Jost solutions, fails for potentials that are not de-
caying at space infinity, and therefore solitons are
excluded in this approach. Our research on the
subject has dealt with the development of a new
mathematical technique, the so-called extended
resolvent approach, which allows one to extend
the spectral transform for KP equations (and pos-
sibly for other nonlinear 2 + 1-dimensional equa-
tions relevant for physical applications) to the
case of potentials that are not decaying along a
finite number of directions in the plane (ray-type
potentials). The extended resolvent proved to be
an effective foundation for the proper generaliza-
tion of the IST method. Indeed, in this frame-
work we have been able to obtain some general
results for the IST with ray-type potentials.

In [4], we used twisting transformations to
study the existence and uniqueness of the ex-
tended resolvent in detail in the case of solutions
with N line solitons as y → −∞ and one line
soliton as y → ∞.

The rich structure of KPII solitons has been
explored so far by using a variety of ap-
proaches: dressing methods, Bäcklund transfor-
mations, twisting transformations, τ -functions,
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etc. All these approaches proved to be useful
in order to display different properties of KPII
solitons and of the eigenfunctions of the associ-
ated scattering problem. In [5], we established
the explicit correspondence among different ap-
proaches for constructing multisoliton solutions
of the KPII equation and elucidated some hidden
invariance properties of these solutions.
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