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First return time probability in correlated stationary signals
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The statistics of extreme values and return in-
tervals of extreme events is object of a renewed
and large attention in the recent literature [1–
14]. Many studies have concerned with long-term
correlated time series [3,4,7–9,15]. In particular,
Bunde et al. [3,4] and Kantz et al. [8,9] investi-
gated the effect of long-term correlations on the
statistics of return times of extreme values above
a given threshold. With the exception of Ref. [9],
these studies were based on numerical analyses
performed on time series of different nature and
they pointed out the existence of stretched expo-
nential distributions of return times [3,4,8]. How-
ever, as reported by other authors, a stretched
exponential distribution of return times does not
seem a general and universal property necessarily
associated with the existence of long-term corre-
lations [9,10,12,13].

Actually, here, we do not directly study the
distribution of return times above a given thresh-
old, but a closely related problem: the distribu-
tion of first return times at the threshold [17].
We notice that, though related, there is a differ-
ence between these two distributions. However,
we expect that this difference does not affect sig-
nificantly the asymptotic form of the PDFs. We
consider explicitly two cases: a stationary signal
with exponential decay of the correlations and
a stationary signal with long-term correlations.
The aim is to provide analytical expressions for
the PDF of first return times.

We consider the simplest model of stationary
correlated stochastic process on discrete times
tm = {∆t, 2∆t, . . . ,m∆t} with discrete and
equally spaced states, x, separated by a distance
∆x, i.e. the Ornstein-Uhlenbeck process given by:

xm+1 = ∆x

[
xm − kxm∆t+

√
D∆tξ

∆x

]
(1)

with [...] denoting the integer part while ξ is a
Gaussian zero mean and unitary variance noise.
If ∆t � 1/k and ∆x � √

D/k we can suppose
that the dynamics of this model is not so different
from the continuous case. This condition allows
us to use the solution of the continuous Fokker-
Planck equation:

∂tρ(x, t) = k∂x(xρ(x, t)) +
1
2
σ2∂2

xρ(x, t) (2)

with the initial condition:

ρ(x, 0) =
{

0 if |x− L| > ∆x/2
1/∆x if |x− L| < ∆x/2 (3)

where L is the level at which we want to compute
the first return time statistics. Let us call Pm(L)
the probability that xm is in the state L at time
m∆t and define as Φm(L) the probability to have
the first return in the state L after the time t =
m∆t, thus meaning that at time m∆t for the first
time |xm−L| < ∆x/2 given that for m = 0, |x0−
L| < ∆x/2. According to Ref. [16], we assume
that the condition of having a return after the
time j∆t does not change the formal dependence
of the probability to stay in L after a time (m−
j)∆t. This implies the following relation between
Pn(L) and Φm(L):

Pm(L) = δm,0 +
m∑

j=1

Φj(L)Pm−j(L). (4)

By defining the characteristic functions:

P (L, z) =
∞∑

m=0

zmPm(L); Φ(L, z) =
∞∑

m=1

zmΦm(L)(5)

it is easy to derive the equation:

Φ(L, z) = 1 − 1
P (L, z)

. (6)

By making use of the solution of Eq.(2) re-
ported in Ref.[18], after some algebra (see for de-
tails Refs. [19]) we are able to obtain the following
expression:

Φ(y, z) = 1−
{

1 + b′
∞∑

n=0

cnz exp(−kn∆t)
1 − z exp(−kn∆t)

}−1

(7)

with: y = L
√
k/D, cn = H2

n(y)/(2nn!), b′ =
∆x (k/πD)1/2 exp(−y2) and Hn(x) the physical
Hermite polynomials.

Let us now consider a continuous time process.
If ψ(t) is the probability density function of the
time intervals between two consecutive changes of
value of xm, following [16] we can write the first
return time Φ̄(y, t) as:

Φ̄(y, t) =
∞∑

n=1

Φn(y)ψn(t) (8)
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where ψn(t) is the probability for the occurrence
of n-th jump exactly at time t. By taking equally
spaced changes, ψ(t) = δ(t−∆t), by some calcu-
lations reported in Refs. [19], we obtain:

Φ̄(y, t) �
n∑

i=1

c̃i exp(−αit). (9)

where the expressions of c̃i and αi are given in
Refs. [19]. This development converges very
fastly and, with typical values of parameters, we
have a very reliable approximation also for low
values of n [19]. Fig.1 shows the good agreement
obtained with n = 5 for different values of y.

Now we consider a process with power law de-
caying correlation function. To this purpose we
use the subordination approach and we suppose
that the average distance between consecutive
changes in xm is always ∆t but that its variance
diverges due to the fact that the variable ∆t is
distributed according to a power law tail with ex-
ponent µ ∈]2, 3]. As a example we take:

ψ(t) = (µ−1)
[(µ− 2)∆t]µ−1

[(µ− 2)∆t+ t]µ
= (µ−1)

T µ−1

(T + t)µ

with T ≡ (µ − 2)∆t and 〈t〉 = ∆t with 〈. . .〉 de-
noting the average value. After some algebra (see
Ref. [19]) we obtain:

Φ(y, t) =
(µ− 2)(µ− 1)T µ−2

b(y)
.

[
1
tµ

+

(
1
b(y)

+
∞∑

n=1

cn
n

)
µ

tµ+1

]

It must be noted that besides the asymptotic be-
havior with tail exponent µ, we have a transient
with exponent µ+1. A discussion of these results
and of their implications can be found in [19,20].

Here we summarize them as follows: we have
obtained analytical expressions of the first return
time probability density function for two station-
ary correlated model processes. We have tested
these expressions by comparing them with nu-
merical simulations and we have found a good
agreement, suggesting that the approximations
performed to get the analytical expressions are
reasonable. Furthermore we have shown that in
a renewal model with power law tail of correla-
tions, the PDF of the first return times is itself a
power law and not a stretched exponential.
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Figure 1. First return time PDFs for different
values of y = L

√
k/D. The continuous lines are

calculated by numerical inversion of Eq.(9) with
n = 5, while symbols show the results of simu-
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