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Electromagnetic nuclear charge operator to one-loop order of ChPT
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One of the main advantages of the chiral ef-
fective field theory (χEFT) approach to nuclear
structure is its capability of a unified description
of interactions and currents: the latter can be
viewed at the same time as the Noether currents
of the global symmetries of strong interactions,
and as external (weakly coupled) sources. It is
then possible to describe electroweak processes
in few-nucleon systems in a fully consistent way,
with potentials and currents derived in the same
framework.
We have already developed in Ref. [1] a NN

potential and one- and two-body electromagnetic
currents up to one loop in the perturbative chiral
series, corresponding to the next-to-next-to-next-
to-leading order (N3LO). The calculation was
performed within the framework of time-ordered
perturbation theory, in order to clearly disentan-
gle two-nucleon reducible and irreducible contri-
butions: the former have to be discarded since
they are generated by the iteration of the dy-
namical (Lippmann-Schwinger) equation. In this
respect, particular care has to be taken in the
treatment of recoil corrections to the reducible
diagrams, since they produce subtle partial can-
cellations of the irreducible ones. Loop diagrams
are handled in dimensional regularization and the
renormalization program is consistently applied.
The above work has been extended in Ref. [2] to

derive systematically the two-nucleon electromag-
netic charge operator to the same accuracy. This
is not a trivial step, since it demands to address is-
sues related to the non-static contributions to the
one-pion-exchange and two-pion-exchange poten-
tials: the origin of such a complication is the fact
that the electromagnetic charge operator starts to
contribute at one order less than the correspond-
ing current operator, in the chiral counting. We
have therefore been lead to explore more precisely
the connection between the amplitudes calculated
in χEFT and the strong and electromagnetic po-
tentials, which are derived from it and are used in

quantum-mechanical formulations, based on the
Lippmann-Schwinger or Schroedinger equations.
Consider the perturbative expansion for the two-
nucleon scattering amplitude 〈f | T | i〉,

〈f | H1

∞
∑

n=1

(

1

Ei −H0 + i η
H1

)n−1

| i〉 , (1)

where | i〉 and | f〉 represent the initial and final
two-nucleon states of energy Ei = Ef , H0 is the
Hamiltonian describing free pions and nucleons,
andH1 is the Hamiltonian describing interactions
among these particles. The evaluation of this am-
plitude is carried out in practice by inserting com-
plete sets of H0 eigenstates between successive
terms of H1. Power counting is then used to orga-
nize the expansion in powers of p/Λχ ≪ 1, where
Λχ ≃ 1 GeV is the typical hadronic mass scale.
Notice that the expansion above contains both ir-
reducible and reducible contributions: the latter
stem from purely nucleonic intermediate states,
and are enhanced in the chiral counting since the
corresponding energy denominators involve only
nucleon kinetic energies ∼ O(p2). Unsuppressed
energy denominators are further expanded as

1

Ei − EI − ωπ

= −
1

ωπ

[

1 +
Ei − EI

ωπ

+ . . .

]

, (2)

where EI denotes the kinetic energy of the inter-
mediate two-nucleon state, and ωπ, generically,
the pion energies. The ratio (Ei − EI)/ωπ is
∼ O(p). As a result, the two-nucleon amplitude
admits the following expansion

T = T (0) + T (1) + T (2) + . . . , (3)

where T (n) ∼ O(pn). The needed two-nucleon
potential v has to be defined such that, when it-
erated in the Lippmann-Schwinger equation,

v + v G0 v + v G0 v G0 v + . . . , (4)

where G0 is the free two-nucleon propagator, it
leads to the T -matrix in Eq. (3), order by order
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in the power counting. Assuming that v has an
expansion

v = v(0) + v(1) + v(2) + . . . , (5)

where the yet to be determined v(n) is ∼ O(pn),
we obtain

v(0) = T (0) , (6)

v(1) = T (1) −
[

v(0) G0 v
(0)

]

, (7)

v(2) = T (2) −
[

v(0) G0 v
(0) G0 v

(0)
]

−
[

v(1) G0 v
(0) + v(0) G0 v

(1)
]

, (8)

v(3) = T (3) −
[

v(0) G0 v
(0) G0 v

(0) G0 v
(0)

]

−
[

v(1) G0 v
(0) G0 v

(0) + permutations
]

−
[

v(2) G0 v
(0) + v(0) G0 v

(2)
]

, (9)

where v(n) is the “recoil-corrected” two-nucleon
potential. As it appears, the very definition of
the potential at a given order involves the lower
orders potentials off the energy shell. This intro-
duces an ambiguity, concerning v(2) in our case,
which however has no observable consequences,
since the different possible choices leads to uni-
tarily equivalent potentials. This was observed
already in the 70s by Friar at the level of the one-
pion-exchange. We have therefore proved that
this holds also at the two-pion-exchange level in
the framework of the chiral expansion.

Analogously, the electromagnetic transition op-
erator can be expanded as

Tγ = T (−3)
γ + T (−2)

γ + T (−1)
γ + . . . , (10)

where T
(n)
γ is of order e pn (e is the electric

charge). The nuclear charge, ρ, and current, j,
operators follow from vγ = A0 ρ − A · j, where
Aµ = (A0,A) is the electromagnetic vector field,
and it is assumed that vγ has a similar expan-

sion as Tγ . The v
(n)
γ are then fixed from the re-

quirement that, when iterated in the Lippmann-
Schwinger equation, vγ matches Tγ order by order
in the chiral expansion. The chiral expansion for
the charge operator ρ starts with ρ(−3), and thus
we need a N4LO computation to achieve an accu-
racy of order ep, as done for the current. The rele-
vant diagram are shown in Figg. 1 and 2 We have
explicitly verified by direct computation that dif-
ferent off-shell extensions lead to different charge
operators, which however are unitarily equivalent,
related through the same unitary transformation
as the potentials. Thus, provided a consistent set
is adopted, predictions for physical observables,
such as the few-nucleon charge form factors, will
remain unaffected by the non-uniqueness associ-
ated with off-the-energy-shell effects. It is impor-
tant to stress that in the present work we have

(b) (c)(a) (d) (e)

Figure 1. Diagrams illustrating one- and two-body
charge operators entering at LO (e p−3), panel (a),
N2LO (e p−1), panels (b), (c) and (d), and N3LO
(e p0), panels (e). There are no NLO contributions.
Nucleons, pions, and photons are denoted by solid,
dashed, and wavy lines, respectively. The square in
panel (b) represents the (p/mN )2, or (v/c)2, relativis-
tic correction to the LO one-body charge operator,
whereas the solid circle in panel (e) is associated with
a γπN charge coupling of order eQ. Only one among
the possible time orderings is shown in panels (c), (d),
and (e).
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Figure 2. Diagrams illustrating one–loop charge op-
erators entering at N4LO (eQ), notation is as in
Fig. 1. Only one among the possible time orderings
is shown for each contribution.

only examined those off-the-energy-shell effects
relating to pion retardation which arise, in TOPT
amplitudes, from energy denominators contain-
ing pion (in addition to nucleon kinetic) energies.
There are, of course, additional non-static correc-
tions originating from the non-relativistic reduc-
tion of interaction vertices (generated by fully rel-
ativistic Lagrangians). It would be interesting to
explore the constraints, in the present χEFT set-
ting, that relativistic covariance and power count-
ing impose on these non-static terms of the po-
tentials and electromagnetic charge and current
operators.
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