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Contact interactions are a crucial ingredient of
the effective field theory (EFT) description of the
nuclear forces. Being associated with unknown
low-energy constants (LECs) it is important to
identify a minimal and complete set of such op-
erators: using an overcomplete set, containing
redundant operators, would artificially increase
the number of LECs, which could never be deter-
mined from observables. In Ref. [1] we concen-
trate on the constraints from relativistic covari-
ance at order p (parity-violating) and p2 (parity-
conserving) of the low-energy expansion. We
construct the most general hermitian Lagrangian
density allowed by invariance under transforma-
tions of the Lorentz group and by the discrete
symmetries of the strong interaction and perform
a non-relativistic reduction thereof. Up to the
considered orders, relativistic covariance is main-
tained in the latter process.
The relativistic Lagrangian is written in terms

of fermion fields containing both positive and
negative-energy components. (However, to the
extent that we are interested in the Lagrangians
up to O(p2), we can forget the negative energy
components.) It consists of products of fermion
bilinears with space-time structures

(ψ̄
←→
∂ µ1

...
←→
∂ µi

Γ1ψ)∂λ1
...∂λk

(ψ̄
←→
∂ ν1

...
←→
∂ νk

Γ2ψ),

(1)

where
←→
∂ = ∂−→− ∂←− and Γ1,2 are generic elements

of the Clifford algebra, that can be expanded in
the usual basis 1, γ5, γµ, γµγ5 and σµν , including
the metric and Levi-Civita tensors, ǫµνρσ (with
the convention ǫ0123 = −1). The Lorentz indices
on the partial derivatives are contracted among
themselves and/or with those in the Γ1,2. In the
parity-conserving sector, in order to have flavour
singlets, the flavour structure of the two bilin-
ears must be either 1 ⊗ 1 or τa ⊗ τa. However,
the latter needs not be considered, as it can be
eliminated by Fierz rearrangement. The flavour
structure is more complex in the parity-violating
sector. In this case the effective Lagrangian in-
cludes the electroweak current-current interaction

which gives rise to ∆I = 0, 1, 2 operators, I de-
noting the isospin.

Notice that the derivatives acting on the en-
tire fermion bilinear are suppressed in the chiral

counting, ∂ ∼ O(p), while
←→
∂ ∼ O(1) due to the

presence of the heavy fermion mass scale. There-
fore, at each chiral order, only a finite number of ∂
appears, while it is possible to have any number of
←→
∂ . The situation is not so troubling though: for

instance the contracted product
←→
∂ µ

←→
∂

µ

yields
a squared mass term (without derivatives) plus
a ∂µ∂

µ operator acting on the whole bilinear,
which is suppressed by O(p2). In general, no two
Lorentz indices inside a fermion bilinear can be
contracted with one another, except for the Levi-
Civita tensors and for the (suppressed) ∂2 acting
on the whole bilinear. This is due to the fact
that we can always make use of the fermion field
equations of motion to eliminate terms with /∂ψ
in favor of terms without derivatives.

The Lagrangian should be hermitian and in-
variant under C (charge conjugation) and P (par-
ity). While the hermiticity condition does not
impose any constraint, since one can always mul-
tiply the single bilinears by appropriate factors of
i, the C and P symmetry must be enforced.

Following these criteria a complete but non-
minimal set consisting of 54 P- and C-conserving
operators, denoted as Õi, is obtained.

The non-relativistic reduction of the Õi up to
terms of order Q2 is obtained starting from the
relativistic field

ψ(+)(x) =

∫
d3p

(2π)3
m

Ep

bs(p)u
(s)(p)e−ip·x, (2)

with normalizations,

{bs(p), b
†
s′(k)} =

Ep

m
δss′(2π)

3δ(3)(p− k),

ū(s)(k)u(s
′)(k) = δss′ ,

(3)

to the non-relativistic one,

N(x) =

∫
d3p

(2π)3
φ(s)b̃s(p)e

−ip·x, (4)

with φ(s) a two-component spin doublet, and the
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OS (N†N)(N†N)
OT (N†

σN) · (N†
σN)

O1 (N†
−→
∇N)2 + h.c.

O2 (N†
−→
∇N) · (N†

←−
∇N)

O3 (N†N)(N†
−→
∇

2N) + h.c.

O4 i (N†
−→
∇N) · (N†

←−
∇ × σN) + h.c.

O5 i (N†N)(N†
←−
∇ · σ ×

−→
∇N)

O6 i (N†
σN) · (N†

←−
∇ ×

−→
∇N)

O7 (N†
σ ·
−→
∇N)(N†

σ ·
−→
∇N) + h.c.

O8 (N†σj
−→
∇kN)(N†σk

−→
∇jN) + h.c.

O9 (N†σj
−→
∇kN)(N†σj

−→
∇kN) + h.c.

O10 (N†
σ ·
−→
∇N)(N†

←−
∇ · σN)

O11 (N†σj
−→
∇kN)(N†

←−
∇jσkN)

O12 (N†σj
−→
∇kN)(N†

←−
∇kσjN)

O13 (N†
←−
∇ · σ

−→
∇jN)(N†σjN) + h.c.

O14 2 (N†
←−
∇σj ·

−→
∇N)(N†σjN)

Table 1
Operators entering the LO (Q0) and N2LO (Q2) con-
tact interactions. The left (right) arrow on ∇ indi-
cates that the gradient acts on the left (right) field.
Normal-ordering of the field operator products is un-
derstood. In fact this list is redundant, as the rela-
tions O7 + 2O10 = O8 + 2O11 and O4 +O5 −O6 = 0
may be shown to hold.

operators b̃s(p) ≡
√
m/Epbs(p), according to

ψ(+)(x) =

(
1 + ∇2

8m2

−iσ·∇
2m

)
N(x) + o(p2). (5)

Partial integrations and use of the fields’ equa-
tions of motion to eliminate time derivatives al-
low to express them as linear combinations of the
operator basis Oi, defined in Table 1.

As a result, a complete basis of operators can
be defined as

OS + (O1 +O3 +O5 +O6)/(4m
2)

OT − (O5 +O6 −O7 +O8 + 2O12 +O14)/(4m
2)

O1 + 2O2

2O2 +O3

O9 + 2O12

O9 +O14

O5 −O6

O7 + 2O10

O7 +O8 + 2O13

(6)

consisting of 2 leading (of order Q0) and 7 sub-
leading (Q2) operators.

For the PV Lagrangian we consider hermitean,
P odd, and CP even products of a pair of bilin-
ears. In this case, isoscalar, isovector and isoten-
sor operators have to be constructed, however, so
that the total electric charge be conserved (that

is, the terms must commute with the third com-
ponent of the isospin operator, Tz). Let us denote
with τ0 the 2× 2 identity matrix and τ the Pauli
matrices acting on the flavour degrees of freedom.
Then the most general product of fermion bilin-
ears can be written as

Õk
AB =

4∑

a,b=0

F k
ab(ψ τaΓ1 ψ) (ψ τbΓ2 ψ) , (7)

where Γ1 and Γ2 stand for an element of the Clif-
ford algebra plus a generic combination of four-

gradients (both
←→
∂ λ and/or ∂λ). There are six

possible choices for the coefficients F k
ab, as de-

tailed in Table 2.

k F k
ab C

1 δa,0δb,0 +
2 δa,b − δa,0δb,0 +
3 δa,3δb,0 + δa,0δb,3 +
4 δa,3δb,0 − δa,0δb,3 +
5 δa,1δb,1 + δa,2δb,2 − 2δa,3δb,3 +
6 i [δa,1δb,2 − δa,2δb,1] −

Table 2
Possible choices for the coefficients F k

ab. In the last
column, the transformation properties of the opera-
tors under charge conjugation (C) are reported.

Note that for k = 1, 2 the resulting operator is
isoscalar, for k = 3, 4, 6 isovector, and for k = 5
isotensor. In the last column, the transformation
properties of the six operators under charge con-
jugation (C) are reported (clearly all of them are
even under parity and hermitean conjugation).
Since the products of bilinears considered now
should be odd under parity, they must be odd also
under charge conjugation. Following the criteria
laid out in Ref. [2], a complete but non-minimal
set consisting of 58 P-odd and C-odd operators
contributing to the order O(Q), denoted as ÕPV

i .
The non-relativistic reductions of the 58 oper-

ators can be performed using Eq. (5). At O(Q)
they are expressed as linear combinations of 10
non-relativistic operators. Using Fierz relations
for the Pauli matrices it is possible to show that
there are only five O(q) PV contact terms, as al-
ready found in Ref. [3].
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