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In classical nonlinear field equations certain
classes of localized solutions are interpreted as
particle-like excitations, when they are related to
the existence of a topological index, which pre-
vents the decaying into a superposition of elemen-
tary wave-like particles. For this reason such so-
lutions are known as topological solitons. A great
variety of field models admitting topological soli-
tons have been studied (monopoles, skyrmions,
instantons and vortices), playing an important
role in High Energy Physics [1,24], General Rela-
tivity [4], as well as in Condensed Matter Physics
[7]. A special interest deserves a 3D static nonlin-
ear sigma model, called Skyrme - Faddeev model

[21], the free energy given by

SSF =

∫

d3x

[

1

4
ρ2

(

∂k~φ
)2

+H2
ik

]

,

Hik = ~φ ·
[

∂i~φ× ∂k~φ
]

, ~φ · ~φ = 1,

which it was proved [24] to be a special subcase
of the pure quantum SU (2)-Yang-Mills theory in
the infrared limit. Imposing the boundary condi-
tions lim|x|→∞ ~φ = (0, 0, 1) the homotopy group

of the theory results π3
(

S2
)

= Z and one can
conclude that all solutions of the E.-L. equations
are labelled by the integer Hopf index

Q =
1

16π2

∫

d3x εiklai∂kal,

where ak = −
εijk
4π

∫

S3

(xi−x′

i)Hij(x′)
[(xm−x′

m)2]
3/2 d

3x′, for suf-

ficiently rapid decreasing Hik at infinity. It pro-
vides the linking number of the pre-images of
two independent points on the target S2. Any
spherical symmetric solution has Q = 0. Nu-
merical calculations [32] have produced a com-
prehensive analysis of topological solitons with
1 ≤ Q ≤ 16, proving the existence of local
energy minima of knotted toroidal shape, pos-
sibly many times tangled (Q = 7 corresponds
to a trifoil knot). Global analytical considera-
tions [35] have shown the bounded from below
by SSF ≥ C π2 ρ |Q|3/4. Its main consequence
is that vortices of higher topological charge are

metastable configurations. Finally the character-
istic size of a generic but stable perturbation is
1
ρ ≤ Rknot ≤

√
2
ρ .

All those global analytic and numerical stud-
ies, however, do not clarify nor exploit the sym-
metries hidden in the systems. This is because
such a structure has not been sufficiently investi-
gated. Thus, our aim is to reveal which are the
symmetries of the systems, continuous and dis-
crete, conditional and generalized and we look for
hydrodynamical reductions and how they can be
used in order to extract informations about the
integrability of the system. Here we report the
results contained in the article [36].

We analyze the 4-dimensional relativistic gen-
eralization of the Skyrme - Faddeev model in
the space endowed with the pseudo-riemannian
metric diag (gi) = (+,−,−,−). We adopt the
stereographic complex variables S2 → C, namely

φ1 = w+w̄
ww̄+1 , φ2 = − i(w−w̄)

ww̄+1 , φ3 = 1−ww̄
ww̄+1 . The La-

grangian density is

Lw =

∑3
i=0 gi∂iw ∂iw̄

8π2 (1 + ww̄)
2 +

λ

∑3
i,j=0,i<j gi gj (∂iw ∂jw̄ − ∂jw ∂iw̄)

2

16π2 (1 + ww̄)
4 .

where λ = 16
ρ2 > 0 is the scaling parameter. Now,

from the point symmetries analysis of the Skyrme
- Faddeev model, the symmetry group reduces to

(

R
4
⋊ SO (3, 1)

)

⊗ SO (3)g .

The infinitesimal generators of the algebra group
are

ti = ∂i, ri,j = xi∂j − gigjx
j∂i,

w0 = −w∂w + w̄∂w̄, w± = w2±1
2 ∂w ± w̄2±1

2 ∂w̄,

with the commutation relations

[w+,w−] = w0, [w0,w±] = ∓
w∓
2
,

providing the non singular 3-parameter linear
fractional trasformation for w. One can prove
also that all those symmetries are variational
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symmetries for the model [41], then the Nöther
theorem provides the conserved currents: the
3-component linear and angular momenta and
the triplet of the gauge charges. They all in-
volve new λ contributions. All the above quan-
tities can be easily computed for the special so-
lution w = eipjxj with

∑

i gjpj = 0. But, be-
cause of the nonlinearity, one cannot infer sim-
ple conclusions for other solutions. To simplify
the problem one proceeds to a symmetry reduc-
tion [42]. This procedure is algorithmic and it
can performed by classifing the symmetry alge-

bra so (3, 1) ⊎
(

Span {ti} ⊕ so (3)g

)

. It provides

a list of representatives of the different conju-
gacy classes up to dimension 3, which posses
orbits of co-dimensions ≤ 3 in space-time, pre-
cisely i) 1-dimensional splitting s.a. : t0, r12,
t3, r12 + αw0, α ∈ R; ii) 1-dimensional non
splitting s.a. : r12 ± t3; iii) 2-dimensional s.a.
: {t0, t3}, {t3, t1}, {t0, r12}, {t0, r12 ± t3} and
{t0, r12 + αw0} for any α ∈ R ; iv) 3-dimensional
splitting s.a. : so (3)rot , {t0, t3, t1}. The reduc-
tion with respect t0 leads to static solutions, thus
further space reduction are 2- or 3- dimensional.
Pure 1- and 2- dimensional space reductions lead
to solutions with infinite energy. Moreover, in 2
dimensions the nonlinear-σ models is completely
integrable [43]. The reduction induced by spa-
cial so (3) has the 2D spheres as generic orbits.
But also the fields w, w̄ enjoy of the same sym-
metry algebra, then one can establish an isomor-
phism between the two set of rotations, leading
to the so-called hedghog solutions [1], expressed

by w = eiφ tan
(

θ
2

)

, or equivalently as ~φ = ~r
r .

Finally, let us consider the special case
{t0, r12 + αw0} for α ∈ R. The invariants are
r, θ, weiαφ, w̄e−iαφ. Any invariant solution is of
the form wα = e−iαφW (r, θ) for a certain func-
tion W , which can be put as W = tan (ψ (θ)) +
i cot (χ (r)) sec (ψ (θ)). Continuity and differen-
tiability in θ = 0, π imply ψ (θ) = mθ for m ∈
Z. Continuity of the azimuthal rotations implies
α = n ∈ Z. Then ~φ · ~σ = U σ3 U

†, where

U = exp [iχ (r)~ν (ϑ, ϕ) · ~σ] ,

~ν = (sinmϑ cosnϕ, sinmϑ sinnϕ, cosmϑ) .

This is the group theoretical derivation of the well
known axisymmetric ansatz for skyrmions [28,35].
Since the map ~ν : S

2 → S
2, covers mn times

the sphere, the corresponding Hopf charge is Q =
mn. In the case m = n = 1, one obtains the
energy functional for the static configurations

E =
∫∞
0

(

r2χ′2 + 2 sin2 χ
(

λχ′2 + 1
)

+

λ sin4 χ
r2

)

dr,

leading to the equation
(

r2 + 2λ sin2 χ
)

χ′′ + 2rχ′ +

sin 2χ

(

λχ′2 − 1− λ
sin2 χ

r2

)

= 0,

with the supplementary boundary conditions
χ → π for r → 0. The above boundary prob-
lem does not admit analytic solutions. Setting
the value of the scaling parameter λ = 1, we have
found a new approximation

χ (r) = 2 arcsin (g (r)) ,

g (r) =
1 + a1r + a2r

2

1 + a1r + b2r2 + b3r3 + b4r4
,

a1 = 0.216, a2 = 0.230, b2 = 0.752, b3 =
−0.018, b4 = 0.302, which are determined by a
minimization of E [χ], differing by ≈ 10−2% from
the numerical calculations. The above expression
are sufficiently simple to be manipulated into adi-
abatic interactions of two of such excitations. The

Figure 1. Blu: numerical solution, Green: our ap-

proximation, Red: quasi-linear approximation, Or-

ange: Atiyah-Manton ansatz.

idea of compensating the space rotation with a
simultaneous rotation in the field can be applied
also to discrete (Platonic) subgroups of the space
rotations [1]. They are described by the Klein
Polynomials [44] in the complex plane, specify-
ing all rational maps in the Riemannian sphere
invariant under linear fractional transformations.
The new ansatz for maps ~ν : S2 → S

2 and field is

~νR =
1

1 + |R|
2

(

R+ R̄, i
(

R̄−R
)

, 1− |R|
2
)

,

w (r, z, z̄) =
(1− |R|2) + i(1 + |R|2) cotχ (r)

2R̄
,

leading to the radial energy for χ (r)

E =

∫ ∞

0

(

Ir2χ′2 + 2 sin2 χ
(

λB1χ
′2 + B2

)

+

λJ sin4 χ
r2

)

dr,
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and to the she equation of motion as aboe ex-
cept for the coefficients I, B1, B2 and J , which
are completely defined in terms of R dans its
derivatives. In particular one proves the relation
B1 = B2 = N (the baryonic number) and we built
the following table:

R (z) N I J

z 1 1 1

z2 2 0.644 3.956

z3−
√
3iz√

3iz2−1
3 1 13.577

z4+2
√
3iz2+1

z4−2
√
3iz2+1

4 1.172 25.709

z7−7z5−7z2−1
z7+7z5−7z2+1 7 1 60.868

Note that R (z) = z corresponds to the usual ax-
isymmetric hedgehog ansatz discussed in the pre-
vious section.
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