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Nonlinear Schrödinger systems with nonzero boundary conditions
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1Dipartimento di Fisica, Università del Salento and Sezione INFN, Lecce - Italy

Department of Mathematics, University of Colorado at Colorado Springs - USA
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Equations of nonlinear Schrödinger (NLS) type
are prototypical nonlinear dispersive systems of
partial differential equations (PDEs) that play an
important role in both mathematics and physics.
NLS-type equations have been derived in such di-
verse fields as deep water waves, plasma physics,
nonlinear fiber optics, magnetic spin waves, etc.
Many dispersive, energy preserving systems give
rise, in appropriate limits, to the scalar NLS equa-
tion. In other physical applications, the governing
equation is the vector NLS (VNLS) system

iqt = qxx − 2ν‖q‖2q , (1)

where q(x, t) is an N -component complex-valued
vector function, ν = ±1 denotes the focus-
ing/defocusing cases as before, and ‖ · ‖ is the
standard Euclidean norm. Here and in the fol-
lowing the boldface font is used to denote vec-
tor/matrix functions, while the regular font will
be used to denote scalar functions.
Physically, VNLS systems arise under condi-

tions similar to those giving rise to NLS, when-
ever there are suitable multiple wavetrains mov-
ing with nearly the same group velocity. The
VNLS also models systems where the electromag-
netic field has more than one nonzero component.
For example, in optical fibers and waveguides, the
electric field has two nonzero polarization compo-
nents (which for plane waves are transverse to the
direction of propagation).
The VNLS system (1) with N = 2 was pro-

posed by Manakov in 1974 as an asymptotic
model governing the propagation of the electric
field envelope in waveguides. Accordingly, (1)
with N = 2 is commonly referred to as the Man-

akov system. Later, the system was also derived
as a model for optical fibers. In optics, the defo-
cusing case ν = 1 corresponds to the normal dis-
persion regime, while the focusing case ν = −1 to
the anomalous dispersion regime.
A number of variants of the NLS equation are

also solvable by the Inverse Scattering Transform
(IST) method, which is the nonlinear analogue of
the Fourier transform for solving the initial value
problem for linear PDEs.
The IST for NLS systems with non-zero bound-

ary conditions (NZBCs) is much less developed

than in the case of solutions which vanish rapidly
at spatial infinity. In particular, even though the
IST for the defocusing scalar NLS equation with
NZBCs as x → ±∞ was formulated in 1973 by
Zakharov and Shabat, the development of the IST
for the Manakov system with nondecaying poten-
tials remained an open problem for over thirty
years, and was only recently solved by us [1].

Already in the scalar case the IST with NZBCs
is significantly more complicated than in the case
of decaying potentials, due to the fact that the
spectral parameter of the associated block-matrix
scattering problem is an element of a two-sheeted
Riemann surface. However, one still has two com-
plete sets of analytic scattering functions, and the
IST can be carried out in a standard way.
When the number of components N > 1, how-
ever, additional complications arise: 2(N−1) out
of the 2(N+1) scattering eigenfunctions are not
analytic on either sheet of the Riemann surface,
and one must find a way to complete the ba-
sis. The 2-component case (Manakov system) is
somehow special. In [1] we have developed the
IST for the Manakov system with NZBCs us-
ing the adjoint scattering problem to construct
two additional analytic eigenfunctions. The in-
verse scattering problem can be formulated as a
generalized Riemann-Hilbert problem with poles
in the upper/lower half-planes of a suitable uni-
formization variable. This construction allowed
us to completely characterize the solitonic sector
of VNLS in the normal dispersion regime (i.e., in
the defocusing case).

The investigation of the soliton solutions is
of particular importance. The defocusing NLS
does not admit the usual “bell”-shaped soliton
solutions. It does, however, possess so-called
“dark solitons”. For the scalar defocusing NLS
with constant-amplitude BCs |q(x, t)| → q0 as
x → ±∞, these are localized dips of intensity
propagating on a background field of constant,
non-zero amplitude q0. In the Manakov system
with NZBCs, our study of the solitonic sector
revealed vector generalizations of the aforemen-
tioned dark solitons, exhibiting dark solitonic be-
havior in both components, as well as novel dark-
bright soliton solutions, which have one dark com-
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ponent and one bright component. These dark-
bright soliton solutions had been previously ob-
tained by direct methods, but had not been char-
acterized from a spectral point of view before.

The formulation of the IST for the multi-
component (N > 2) vector NLS system with non-
zero boundary conditions was addressed most re-
cently [2]. In this paper, we developed the IST
for the defocusing vector NLS equation with an
arbitrary number of components, with nonzero
boundary conditions at infinity. The technique
we successfully applied to the 2-component VNLS
does not admit an obvious generalization to an ar-
bitrary number of components. In order to com-
plete the basis of analytic eigenfunctions for the
general multicomponent scattering problem, in
[2] we generalize the approach suggested by Beals,
Deift and Tomei (1988) for general scattering and
inverse scattering on the line, but developed un-
der the assumption of vanishing boundary condi-
tions. The key step is the introduction of a fun-
damental tensor family as solutions of a suitable
scattering problem associated to the given one, in
such a way that each tensor is sectionally analytic
on the cut Riemann surface. Then we show that
it is possible to algorithmically reconstruct the
fundamental matrices of solutions of the scatter-
ing problem from the fundamental tensors, and
to establish their analyticity properties.

In [3] we then used the IST machinery to inves-
tigate soliton interactions in 2-component VNLS.
We have determined the long-time behavior of
dark-dark and dark-bright solutions before and
after any interactions, and obtained the shifts in
the phases and in the soliton centers associated
to the interactions.

The results will be relevant from the point of
view of physical applications, and they will pro-
vide a valuable insight in the study of the in-
teraction of vector solitons with more than 2-
components, which we are currently pursuing, as
well as in the effort of extending the IST to more
general nonzero boundary conditions, which we
plan to address in the near future.
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Figure 1. One dark-dark + one dark-bright soli-
tons: |qj(x, t)|

2 is plotted for j = 1 (left) and
j = 2 (right). Here the dark and bright parts of
the solitons are not separated in different compo-
nents, i.e., both components of q+ are nonzero.

Figure 2. One dark-dark + one dark-bright soli-
tons: |qj(x, t)|

2 is plotted for j = 1 (left) and
j = 2 (right). Here the dark and bright parts
of the solitons are separated in different compo-
nents, e.g., q+ = (q0, 0)
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