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INTRODUCTION 

 

In this dissertation the processing of signals from a drift chamber with a Field 

Programmable Gate Array (FPGA) is presented. In order to do this, the first step 

consists in describing the operation of drift chambers. As we shall see, drift chambers 

are general-purpose detectors used in high energy physics experiments which can 

track and identify charged particles. A drift chamber consists of a large volume of gas 

with instrumented wires held at different voltages. When charged particles move 

through the chamber, they ionize the gas particles. The electrons from these primary 

ionizations drift towards the wires held at high positive voltage, while the ions drift 

towards the grounded wires. The sense wires are very thin (~20μm), such that the 

strong electric field accelerates the electrons enough to cause further ionization near 

the sense wire. The new electrons ionize further into an avalanche, which is 

registered as an electronic signal on the sense wire. The signal pulses from all the 

wires are then collected and the particle trajectory is tracked with the cluster 

counting/timing technique [1].  

By identifying the number of ions clusters generated by a charged particle along its 

trajectory as well as the drift distance and time associated to each cluster, the cluster 

counting/timing technique allows to track the trajectory of a particle in a drift 

chamber. 

The peaks in the signal coming from the drift chamber correspond to the clusters 

generated by the particle, while the time difference between two peaks coincides with 

the time difference between the generation of the two clusters. 

The objective of this work is to use an FPGA in order to analyze in real-time the 

signals coming from a drift chamber. By finding the peaks and their timing, it is 

possible to reconstruct the trajectory of the particle in the drift chamber.  

An ADC is used to convert the analog signals in the digital domain. 
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Variants of a fast readout algorithm (CluTim) for identifying the peaks (in the 

digitized input signals) are implemented on the Nexys Video board which mounts an 

Artix-7 FPGA.    

FPGAs are integrated circuits, which are sets of circuits on a chip that are designed to 

be configured after manufacturing. An FPGA architecture consists of thousands of 

configurable logic blocks (CLBs) which includes look-up tables (LUTs), flip-flops 

(FFs) and multiplexers.  

When using FPGAs, the hardware of the device is programmed rather than writing 

software to run on a predefined processor. FPGAs are primarily programmed using 

hardware description languages (HDLs). 

A brief description of the hardware and software components used in this work is 

provided in chapter 2, while the peak-finding algorithm is described in the third 

chapter.  

In chapter 4 different FPGA designs are presented. Each design exploits a different 

FPGA architecture in order to implement the peak-finding algorithm.  

The architectures are created by using Vivado Design Suite, which is a software suite 

produced by Xilinx for synthesis and analysis of hardware description language 

(HDL) designs. 

As we will see, each FPGA design will progressively use less software resources in 

order to implement the peak-finding algorithm. The efficiency of each design is 

provided. 

A short final section contains the conclusions. 

This work was done in collaboration with I.N.F.N. Sezione di Lecce (via per 

Arnesano, I – 73100 Lecce, Italy).  
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1 DRIFT CHAMBERS AND CLUSTER 

COUNTING 

In this chapter an introduction on drift chambers and cluster counting is presented.  

 

1.1  Drift chambers 

 

A drift chamber is a particle tracking detector that measures the drift time of 

ionization electrons in a gas to calculate the spatial position of ionizing particles. 

Spatial resolution is achieved by measuring the time it takes for the electrons to reach 

the anode wire, measured from the instant that the ionizing particle traversed the 

detector.  

Drift chambers use an array of wires at high voltage (anodes), which run through a 

chamber with conductive walls held at ground potential (cathodes). The chamber is 

filled with a carefully chosen gas such that any ionizing particle that passes through 

the tube will ionize surrounding gaseous molecules. 

When a charged particle passes through a gas, it will interact electromagnetically 

with gas molecules creating electron/ion pairs along the path of the particle. The 

number of such pairs depends on the energy of the particle and the type of gas in the 

drift chamber. If an electric field is applied, the electrons will start to drift towards 

the positive electrode (anode wire), undergoing repeated collisions with the gas 

molecules. If the electric field near the anode is strong enough, an electron can 

acquire enough energy between collisions to knock an additional electron free from a 

gas molecule. This additional electron can then go on to ionize more gas molecules; 

in this way, an avalanche is formed in which the number of electrons increases 

exponentially. When this avalanche reaches the positive electrode, it gives rise to a 

measurable current, the size of which is proportional to the original number of ions 

created. An electron sitting in the gas far away from the anode will see a much 
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smaller electric field and will drift towards the anode with a velocity roughly 

proportional to the field. When it gets close to the anode, the electric field will start to 

rapidly increase, and the electron will initiate an avalanche. The fact that an electron 

drifts with a predictable speed towards the anode can be exploited in order to turn a 

measurement of the time an electron took to drift to the anode into a measurement of 

the distance of the original source particle from the anode itself. In this way, the drift 

chambers are able to provide accurate measurement of the position of a charged 

particle. 

Stacking several drift chambers permits to resolve a track of a charged particle [3]. 

 

Fig. 1 Schematic of a drift chamber. [2] 

 

In Fig. 1 the schematic of a drift chamber is shown: 

-  the cathode drift wires carry a negative voltage which varies from ground 

(close to the anode wire) to a high negative voltage (close to the field wire); 

- the anode wire is where electrons from ionized gas atoms will drift and be 

collected; 

- the field wires are there to keep the equipotential lines linear over a larger 

range. 

In order to track the particle, the time lag between the timing of the signal and the 

instant of particle passage is exploited. This time lag is related to the time the 

electrons from the ionization take to travel (drift) to the anode wire (Fig. 2).  



 

8 

 

 

Fig. 2 Tracking principle. [2] 

 

So, if the timing of the particle passage is determined with high precision, the time 

lag can be used to determine the exact position of the ionization with respect to the 

anode wire. The drift time tdrift formula is: 

 

𝑡𝑑𝑟𝑖𝑓𝑡 =  ∫
𝑑𝑠

𝑣𝑑𝑟𝑖𝑓𝑡(𝑥)

𝑎𝑛𝑜𝑑𝑒

𝑡𝑟𝑎𝑐𝑘

 

 

There are two basic schemes for drift chambers:  

- the method of constant drift field (Fig. 3a) giving a simple dependence for the 

drift distance d = tdrift · vdrift   with vdrift = const; 

- variable drift field (Fig. 3b) where the gas is chosen such that the drift velocity 

is independent of the drift field. 

 

 

Fig. 3 a) constant b) variable drift field. [2] 
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1.2  Drift and diffusion of electrons in gases 

 

The motion of an electron in the gas is due to two physical phenomena: drift and 

diffusion.  

The velocity due to drift can be determined from the mobility of a charge in a gas, 

which is given by vdrift = µE, where vdrift is the drift velocity, µ is the mobility and E is 

the electric field strength. In a uniform electric field, the electrons will drift with a 

constant velocity because the electrons collide frequently slowing them down, while 

the electric field accelerates them.  

Diffusion consists in the random motion caused by the thermal energy of the electron. 

The result is that after a time t, a collection of electrons originally distributed in a 

straight line at x = 0 will be distributed according to a Gaussian distribution.  

 

 

1.3  Ionization by charged particle 

 

The first ion that a charged particle creates in the gas is called the primary ionization. 

When the electron from the primary ionization is accelerated by the electric field, it 

will eventually gain enough energy to ionize other molecules of the gas. Then, these 

secondary ionizations can gain enough energy to cause further ionizations, and so on. 

This effect is called avalanche multiplication. The electric field is constant through 

most of the chamber, except very near to the anode wire, where its value is ∝ 1/r, 

where r is the radius of the wire. Thus, most avalanche multiplication takes place near 

the anode wire.  

When a charged particle goes through a gas, it loses energy because of two 

phenomena:  excitation and ionization:  

- in excitation, the particle passes a specific amount of energy to a gas molecule; 

- in ionization, the particle knocks an electron off the gas molecule, and leaves a 

positively charged ion. 
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 However only ionization generates signals in the drift chamber. In fact, the tracking 

of the particles is made using the ionization clusters left behind by the particle itself 

(Fig. 4).  

 

Fig. 4 Ionization clusters distribution along track. [2] 

 

The ionization clusters are produced by the coupling between the electrical field of 

the passing particle and the electrons of the gas molecules. In particular, the electrical 

field of the passing particle may have enough impact to kick out the electron of an 

atomic shell. This free electron may ionize again, and, in this case, it is considered as 

a new charged particle and is called δ-ray. The ionization left behind by these 

individual encounters, is called a cluster and the set of clusters represents the 

footprint of the charged particle, which will be detected in the drift chamber. 

As already mentioned, the peaks in the signal generated by the drift chamber 

correspond to the clusters generated by the particle, while the time difference 

between two peaks represents the time difference between the creation of the two 

clusters. A typical simulated waveform coming from the drift chamber is represented 

in figure 5. 
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Fig. 5 Typical simulated waveform. [1] 

 

As shown in figure 5, the time interval between two peaks is ̴ 1ns and the overall 

duration of the signal is about 100 ns. In order to track the trajectory of a particle it is 

crucial to detect and store the timing of the peaks. To do this, a resolution in the order 

of the nanosecond is needed. 
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2 COMPONENTS AND PROTOCOLS 
 

This chapter focuses on the hardware components and software tools that are used in 

the project. 

 

 

2.1  Field Programmable Gate Array - FPGA 

 

Since in this work an FPGA is used in order to process the signals coming from a 

drift chamber, this section presents the internal structure and the functioning of an 

FPGA.  

The Field Programmable Gate Array (FPGA) technology was first developed by Ross 

Freeman in 1985 who was among the founders of the company Xilinx. Today, Xilinx 

and Altera are the two largest FPGA manufacturers in the world. 

FPGAs are integrated circuits that a user can program to carry out one or more 

logical operations. The FPGA configuration is generally specified using a hardware 

description language (HDL), like that used for an application-specific integrated 

circuit (ASIC). FPGAs can be reprogrammed to desired application or functionality 

requirements after manufacturing. This feature distinguishes FPGAs from ASICs, 

which are custom manufactured for specific design tasks.  

FPGAs contain an array of configurable logic blocks (CLB) and a hierarchy of 

reconfigurable interconnects allowing blocks to be wired together. Logic blocks can 

be configured to perform complex combinational functions and they also include 

memory elements, which may be simple flip-flops or more complete blocks of 

memory.  
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Fig. 6 Internal structure of an FPGA. [10] 

 

As it is shown in figure 6, CLBs make up the main structure of the FPGA and they 

implement the user logic. Interconnects provide direction between the logic blocks to 

implement the user logic and the switch matrices provide switching between 

interconnects. Finally, I/O pads, used for the outside world to communicate with 

different applications, are implemented.  

In figure 7 the schematic of a logic cell (LC) inside a CLB is represented.  
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Fig. 7 Internal structure of logic cells (LC). [10] 

 

In a logic cell, usually there are one Lookup Table (LUT), one D Flip-Flop and one 

2-to-1 Mux (Fig. 7). The LUTs in the logic cell are small memories (RAM) that 

perform logic operations. Complex and massive programs are created as a result of 

the combination of thousands of Logic Cells. According to the program loaded on the 

FPGA, the interconnection of the logic cells is provided with matrix-shaped data 

paths and programmable switches [3].  

FPGAs are usually mounted on evaluation boards which consist of a printed circuit 

containing the support logic needed in order to simulate the behavior of the FPGA. 

On the FPGA board there are dedicated pins and user pins. There are 3 types of 

dedicated pins, divided according to the specific functions they perform in the FPGA:  

- configuration pins: used for downloading program onto the FPGA; 

- clock pins: special pins reserved for Clock signals;  

- power pins: which provide power and ground connection for the FPGA. 

User pins are standard I/O pins, and they are configurable. These pins are divided 

into three categories: Input, Output and Input/Output. Each I/O pin is connected to a 

single I/O cell in the FPGA. Power to I/O cells is provided by VCCIO (this voltage is 

used for feeding all I/O pins, except memory-related pins) [3]. 
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One or more LCs are grouped together in order to form a slice (Fig. 8). 

 

Fig. 8 Internal structure of a slice. [10] 

 

Finally, one or more slices are grouped together to form a CLB (Fig. 9). 

 

 
Fig. 9 Internal structure of a CLB. [10] 
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The processing inside the FPGA is synchronous, this means that the FPGA designs 

are ‘clock’ based and the D flip-flops in the FPGA change their state following the 

clock signal.  Moreover, the FPGAs can operate in parallel processing.  

 

FPGAs have gained rapid growth over the past decade because they are useful for a 

wide range of applications. Applications of FPGAs include digital signal processing, 

bioinformatics, device controllers, software-defined radio, random logic, ASIC 

prototyping, medical imaging, computer hardware emulation, integrating multiple 

SPLDs, voice recognition, cryptography, filtering and communication encoding and 

many more. 

 

 

2.1.1  Artix-7 FPGA and Nexys Video board 

 

The specific FPGA board used in this work is a Nexys Video board which mounts an 

Artix-7 FPGA (Fig. 10).   

 

Fig. 10 Nexys Video board. [4] 
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The Nexys Video board is a digital circuit development platform based on the latest 

Artix-7 Field Programmable Gate Array from Xilinx. It includes several built-in 

peripherals such as Ethernet, USB-UART, and a high bandwidth USB data transfer 

protocol. The Nexys Video also includes provisions for direct human interaction with 

a connector for USB-HID devices, an OLED display, and a vast assortment of 

switches, buttons, and LEDs. Moreover, the FMC and Pmod ports can be used to add 

any connection interface that the application demands. Nexys Video is programmed 

using Vivado Design Suite [4]. 

The Artix-7 FPGA is optimized for high performance logic, and offers more capacity, 

higher performance, and more resources than earlier designs [4]. Artix-7 200T 

features include:    

- 33,650 logic slices, each with 4 6-input LUTs and 8 flip-flops;  

- close to 13 Mbits of fast block RAM (3x more than the Nexys 4 DDR);  

- 10 clock management tiles, each with phase-locked loop (PLL);  

- 740 DSP slices;  

- internal clock speeds exceeding 450 MHz;  

- on-chip analog-to-digital converter (XADC);  

- up to 3.75Gbps GTP transceivers. 

 

 

2.2  The Microblaze core 

 

To enable the development of more powerful embedded solutions with the Xilinx 

FPGAs the company has provided a soft-core processor, Microblaze. The Microblaze 

CPU is a customizable 32-bit RISC microprocessor, optimized for implementation in 

Xilinx FPGAs [5]. Figure 11 shows a block diagram of the Microblaze processor 

core. 
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 Fig. 11 Microblaze Processor Block Diagram. [5] 

 

The Microblaze processor uses Big-Endian or Little-Endian format to represent data, 

depending on the selected endianness and it has 32 general purpose registers each of 

which can be made up of 32-bit or 64-bit and up to 16 special purpose registers, 

depending on configured options.  

Microblaze instructions execution are pipelined. For most instructions, each stage 

takes one clock cycle to complete. Consequently, the number of clock cycles 

necessary for a specific instruction to complete is equal to the number of pipeline 

stages, and one instruction is completed on every cycle in the absence of data, control 

or structural hazards. It is possible to have a 3, 5 or 8 stage pipeline.  

The Microblaze core is organized as a Harvard architecture with separate bus 

interface units for data and instruction accesses. Two memory interfaces are 

supported: Local Memory Bus (LMB), and the AMBA AXI4 interface or ACE 

interface. The LMB provides the access to the on-chip dual-port block RAM. The 
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AXI4 interface provides a connection to both on-chip and off-chip peripherals and 

memory. The ACE interface provides cache coherent connections to memory [6]. 

 

 

 

2.3 Universal Asynchronous Receiver-Transmitter - UART protocol 

 

In this work the serial communication between the FPGA and the PC is handled by 

the UART protocol (Fig. 12).  

 

 

 

Fig. 12 UART protocol. [11] 

 

In UART communication, two UARTs communicate directly with each other. The 

transmitting UART converts parallel data from a controlling device into serial form 

and transmits it in serial to the receiving UART, which converts the serial data back 

into parallel data for the receiving device. Only two wires are needed to transmit data 

between two UARTs.  

As one understands from their name, UARTs transmit data asynchronously, which 

means there is no clock signal to synchronize the output of bits from the transmitting 

UART to the sampling of bits by the receiving UART. Instead of a clock signal, the 

transmitting UART adds start and stop bits to the data packet being transferred. Both 

UARTs must operate at about the same baud rate.  
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The UART that will transmit data receives the data from a data bus. The data bus is 

used to send data to the UART by another device. Data is transferred from the data 

bus to the transmitting UART in parallel form. After the transmitting UART gets the 

parallel data from the data bus, it adds a start bit, a parity bit, and a stop bit, creating 

the data packet. Next, the data packet is put as output serially. The receiving UART 

reads the data packet bit by bit, then it converts the data back into parallel form and 

removes the start, parity and stop bits. Finally, the receiving UART transfers the data 

packet in parallel to the data bus on the receiving end. 

The Nexys Video includes a FTDI FT232R USB-UART bridge (attached to 

connector J13) that allows one to use PC applications to communicate with the board 

using standard Windows COM port commands. Serial port data is exchanged with 

the FPGA using a two-wire serial port (TXD/RXD) with no handshake signals. Two 

on-board status LEDs provide visual feedback on traffic flowing through the port: the 

transmit LED (LD13) and the receive LED (LD12) [4]. 

In figure 13 the connection between the Artix-7 FPGA and the UART on the Nexys 

Video board is shown.  

 

Fig. 13 Nexys Video FT232R connections. [4] 

  

 

2.4  Serial Peripheral Interface-SPI protocol  

 

The ADC SPI allows the user to configure the analog to digital converter for specific 

functions or operations through a structured register space provided inside the ADC. 

The SPI gives the user added flexibility and customization, depending on the 
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application. Addresses are accessed via the serial port and can be written to or read 

from the port. Memory is organized into bytes that can be further divided into fields 

[7]. In this section the functioning of the SPI protocol is presented. 

Serial peripheral interface (SPI) is one of the most widely used interfaces between 

microcontroller and peripheral ICs such as sensors, ADCs, DACs, shift registers, 

SRAM, and more. SPI is a synchronous, full duplex master-slave-based interface. 

Figure 14 represents the connections between the master and the slave in a SPI 

communication. 

 

Fig. 14 Connections between a master and a single slave. [8] 

 

The SPI interface presents four lines: 

- SCLK (Serial clock) where the clock is implemented; 

- MOSI (Master output slave input) where the master writes and the slave 

listens; 

- MISO (Master input slave output) where the master receives bits from the 

slave; 

- SS (slave select) used by the master in order to select a specific slave; the line 

is active low. 

The number of SS lines is equal to the number of slaves. In fact, if more than one 

slave is present, the SCLK, MISO and MOSI lines are in parallel for every slave (Fig. 

15). 
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Fig. 15 SPI connections with more than one slave. [12] 

 

The SPI interface can be represented as a shift register between the master and the 

slave (Fig. 16). 

 

Fig. 16 Connection between master and slave highlighting the internal shift registers. [12] 

 

Figure 16 shows in detail how the communication between master and slave is 

managed in the SPI protocol. The MSB of the master is connected to the LSB of the 

slave on the MOSI line, whereas the MSB of the slave is connected to the LSB of the 

master on the MISO line. On every clock cycle the MSB of the master shifts towards 

the LSB of the slave and simultaneously the MSB of the slave shifts towards the LSB 

of the master. So, after eight clock cycles the byte inside the master will be 

completely transferred to the slave and vice versa. 
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The transmitting modality is handled with two control bits: CPOL (clock polarity) 

and CPHA (clock phase). The CPOL bit determines on which edge of the clock the 

operations are made, whereas the CPHA bit determines the phase of the clock.  

 

 

2.5  Vivado Design Suite 

 

A key step in order to process the pulses coming from the drift chamber consists in 

developing and test the peak-finding algorithm on the Nexys Video board using the 

software Vivado Design Suite.  

The Vivado Design Suite is a software suite produced by Xilinx for synthesis and 

analysis of HDL designs. Vivado was launched in April 2012, and it is an integrated 

design environment (IDE) with system-to-IC level tools built on a shared scalable 

data model and a common debug environment. Vivado includes electronic system 

level (ESL) design tools for synthesizing and verifying C-based algorithmic IP; 

standards-based packaging of both algorithmic and RTL IP for reuse; standards-based 

IP stitching and systems integration of all types of system building blocks; and the 

verification of blocks and systems. The Vivado software includes [9]: 

- the Vivado High-Level Synthesis compiler, which enables C, C++ and 

SystemC programs to be directly targeted into Xilinx devices without the need 

to manually create RTL. Vivado 2014.1 introduced support for automatically 

converting OpenCL kernels to IP for Xilinx devices. OpenCL kernels are 

programs that execute across various CPU, GPU and FPGA platforms; 

- the Vivado Simulator which is a compiled-language simulator that supports 

mixed-language, Tcl scripts, encrypted IP and enhanced verification; 

- the Vivado IP Integrator which allows to quickly integrate and configure IP 

from the large Xilinx IP library; 

- the Vivado Tcl Store which is a scripting system for developing additional 

components to Vivado and can be used to add and modify Vivado’s 
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capabilities. Tcl is the scripting language on which Vivado itself is based. All 

Vivado’s underlying functions can be invoked and controlled via Tcl scripts. 

 

 

2.6  Advanced eXtensible Interface 4 (AXI4)   

 

Advanced eXtensible Interface 4 (AXI4) is a family of buses defined as part of the 

fourth generation of the ARM Advanced Microcontroller Bus Architecture (AMBA) 

standard. 

The AMBA specification defines 3 AXI4 protocols: 

- AXI4: a high-performance memory mapped data and address interface capable 

of burst access to memory mapped devices; 

- AXI4-Lite: a subset of AXI4, lacking burst access capability; has a simpler 

interface than the full AXI4 interface; 

- AXI4-Stream: a fast unidirectional protocol for transferring data from master 

to slave. 

Xilinx Vivado helps in the creation of custom IP with AXI4 interfaces. These can be 

connected to the Microblaze’s Processing System or to other devices.  

 

The AXI4 interface consists of five channels: Read Address (RA), Read Data (R), 

Write Address (AW), Write Data (W), and Write Response (B). An AXI4 read 

transaction using the Read Address and Data channels is shown in figure 17. 

Similarly, an AXI4 write transaction using the Write Address, Data, and Response 

channels is shown in figure 18 [14]. 
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Fig. 17 AXI4 read transaction [14]. 

 

 

Fig. 18 AXI4 write transaction [14]. 

 

Any AXI component has two global signals: the clock ACLK and an active-low 

asynchronous reset, ARESETN. All AXI4 signals are sampled on the rising edge of 

the clock and all signal changes must occur after the rising edge. All five transaction 

channels use the same VALID/READY handshake process to transfer address, data, 

and control information. This two-way flow control mechanism means that both the 

master and slave can control the rate at which the information moves between master 

and slave. The information source generates the VALID signal to indicate when the 

address, data or control information is available. The information destination 

generates the READY signal to indicate that it can accept the information. The 
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handshake completes if both VALID and READY signals in a channel are asserted 

during a rising clock edge [14].  

AXI4 is a burst-based protocol, meaning that there may be multiple data transfers for 

a single request. In AXI4, bursts can be of three types, selected by the signals 

ARBURST (for reads) or AWBURST (for writes) [15]: 

- FIXED; 

- INCR; 

- WRAP. 

In FIXED bursts, each beat within the transfer has the same address. This is useful 

for repeated access at the same memory location, such as when reading or writing a 

FIFO. 

In INCR bursts, on the other hand, each beat has an address equal to the previous one 

plus the transfer size. This burst type is commonly used to read or write sequential 

memory areas. 

WRAP bursts are like the INCR ones, as each transfer has an address equal to the 

previous one plus the transfer size. However, with WRAP bursts, if the address of the 

current beat reaches the “Higher Address boundary”, it is reset to the “Wrap 

boundary”. 

The AXI4-Lite is a subset of the AXI4 protocol, providing a register-like structure 

with reduced features and complexity. 

AXI4-Stream is designed to transport data streams of arbitrary width in hardware. 

Usually 32-bit bus width is used, which means that 4 bytes get transferred during one 

cycle. At 100MHz of programmable logic frequency on FPGAs this can create a 

throughput of magnitude of hundreds of megabytes per second depending on memory 

capabilities.  In AXI4-Stream TDATA width of bits is transferred per clock cycle. 

The transfer is started once sender signals TVALID, and the receiver responds with 

TREADY. TLAST signals the last byte of the stream (Fig. 19) [16]. 
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Fig. 19 Axi4-stream handshake. [16] 
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3 ALGORITHM DESCRIPTION 

 

In order to process the data coming from the drift chamber and the ADC, a VHDL 

code is implemented on Vivado Design Suite. The objective of the code consists in 

applying the cluster counting/timing technique. The following chapter describes how 

the CluTim algorithm works.  

 

 

3.1  The CluTim algorithm 

 

As already stated in chapter 1, when a charged particle passes through the gas inside 

a drift chamber, it leaves behind several clusters produced by the coupling between 

the electrical field of the passing particle and the electrons of the gas atoms. The set 

of clusters represents the footprint of the charged particle, which will be detected in 

the drift chamber.  

In order to apply the Cluster Counting/Timing technique it is necessary to identify the 

different peaks of the signal coming from the drift chamber and their time of arrival. 

In this way, the trajectory of the particle in the drift chamber can be reconstructed. 

The CluTim algorithm can be used in order to detect each peak and its timing 

information. In particular, the CluTim algorithm approach to find the peaks is based 

on derivatives, the first derivative calculates the singular points of the function, while 

the second derivative calculates whether the singular points are a maximum or a 

minimum based on the slope of the function. The flow chart of the algorithm is 

provided in figure 20. 
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Fig. 20 Flow chart of the CluTim algorithm. 

 

A peak is found when f, f’ and f’’ are above a threshold level defined according to 

r.m.s. noise of the signal function f, and when the time difference between contiguous 

peaks is larger than the time bin resolution. The first and second derivative of the 

digitized signal function f are calculated, and their value is compared to some 

thresholds related to the signal noise level [13]. The algorithm calculates the first and 

second derivative for each time bin i: 

 

𝑓′(𝑖) =  
𝑓(𝑖) − 𝑓(𝑖 − ∆𝑏)

∆𝑏
,      𝑓′′ = 𝑓′(𝑖) − 𝑓′(𝑖 − 1) 
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where ∆b is the number of bins over which the average value of i is calculated. The 

algorithm identifies the peaks corresponding to the ionization clusters, puts each peak 

amplitude and timing in a memory and sends the stored data when a trigger signal 

occurs [13]. A typical waveform with the found peaks is illustrated in figure 21. 

 

 

Fig. 21 A typical waveform where red markers identify the peaks recognized by the algorithm. [1] 

 

As already mentioned, the hardware setup includes an ADC connected to an FPGA. 

The ADC receives the analog pulses from the drift chamber and, after converting 

them into the digital domain, it sends them to the FPGA. If the data from the ADC 

were stored without preprocessing, this would present several disadvantages, such as 

[1]:  

- a time window of observation of the event greatly reduced, because the internal 

memory to the FPGA would be filled very quickly; 

-  a very long data transfer time from FPGA to PC for their postprocessing, due 

to the very large amount of data to be transferred; 

-  a very long time to postprocess data.    

 

All these issues can be resolved by using the CluTim algorithm, which performs a 

reduction and only the data useful for experimental purposes are stored because the 

CluTim processes the data in real time. In fact, the CluTim algorithm: 

- identifies, in the digitized signal, the peaks corresponding to the different 

ionization electrons; 

- stores each peak amplitude and timing in an internal memory; 

- sends the data stored to an external device when specific trigger signals occur. 
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In VHDL code the determination of a peak is done by relating the ith sampled bin to 

a number n of preceding bins [1].  

At every time instant ti, a string made of 16 samples SK,X (each sample is made up of 

12 bits which is the ADC resolution) is received; K is the sample number which 

ranges from 0 to 16 and X is the time at which the samples are present. The first step 

of the algorithm consists in calculating the functions D1K,X and D2K,X (which 

represent the first and second derivatives of the input signal, which are calculated as 

incremental differences) according to the following formulas: 

𝐷1𝐾,𝑋 = (
2 ∗ 𝑆𝐾,𝑋 − 𝑆𝐾−1,𝑋 − 𝑆𝐾−2,𝑋

16
∗ 3) 

 

𝐷2𝐾,𝑋 = (
2 ∗ 𝑆𝐾,𝑋 − 𝑆𝐾−2,𝑋 − 𝑆𝐾−3,𝑋

16
∗ 5) 

 

The value of D1K,X function provides an estimate of the variation of the amplitude of 

the ith sample compared to the (i-1)-th and (i-2)-th samples. Likewise, the D2K,X 

function calculates the variation of the amplitude of the ith sample with respect to the 

(i-2)-th and (i-3)-th samples. The 3 and 5 coefficients in the formulas are 

experimentally obtained, they are used in order to increase the value of D1K,X and 

D2K,X with respect to the noise level. In this way the algorithm can better recognize 

the peaks. 

The values of the D1K,X and D2K,X functions are stored in a 16-element vector. In 

order to calculate the first three elements of the vector (D10,X, D11,X, D12,X, D20,X, 

D21,X, D22,X) it is necessary to use the last three samples of the previous 16 input 

word (S13,X-1, S14,X-1, S15,X-1). Therefore, a temporary storage is used to this purpose.  

In the second step, the values of D1K,X and D2K,X and the differences between D1K,X 

and D1K-1,X and between D2K,X and D2K-1,X are compared with respect to thresholds 

proportional to the level of noise present in the input signal. So, in order to calculate 

the first difference between D1K,X and D1K-1,X and between D2K,X and D2K-1,X, it is 
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necessary to temporarily store the last two elements of the previous 16-elements 

words (D114,X, D115,X, and D214,X, D215,X).  

If the D1K,X, D2K,X and the respective differences are above the threshold, the 

corresponding sample SK,X is temporarily stored in a MK,X element of a 16-word 

vector. The latter contains all the detected peaks. 

The third step consists in checking if there are no adjacent peaks. To this purpose, 

every element MK,X of the vector is analyzed. If the element MK,X contains a non-zero 

value, the two preceding locations (MK-1,X, MK-2,X) are assigned a zero value while the 

element MK,X is transferred into the memory. The procedure continues by scrolling all 

locations and sending all the effective maxima to the memory. A schematic 

explanation of the algorithm is shown in figure 22. 

 

 

Fig. 22 The CluTim algorithm. [1] 
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As already mentioned, the other information to be stored in addition to the maxima 

are the times at which the pulses are detected. Therefore, the time information is 

provided with a counter, the value of which is stored in a FIFO every time a peak is 

found. At every time instant tX, the value of the counter is updated. When a peak is 

found the Instant Time is calculated as follows: 

 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡 𝑇𝑖𝑚𝑒 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ∗ 16 + 𝐾𝑠𝑎𝑚𝑝𝑙𝑒 

 

where the time to be stored (counter) is multiplied by 16 in order to consider the 

correct ADC sampling rate and added to the sample number corresponding to the 

maximum found [1]. Figure 23 shows how the CluTim algorithm handles the timing 

information. 

 

 

Fig. 23 Timing information. [1] 

 

The memories are continuously filled as new peaks are found.  

For the algorithm to start, a trigger signal is needed. The trigger signal is generated 

by an external device when the particle is sent into the drift chamber. After the trigger 

signal is generated, the algorithm starts to compute the peaks. After some time, the 
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particle escapes from the drift chamber, so the algorithm stops and waits for another 

trigger signal.  

So, when a trigger signal occurs at time t0, indicating with T the observed time 

window, which coincides with the maximum drift time, the reading procedure is 

enabled and only the data related to the found peaks in the [t0, t0 + T] time interval 

are transferred to an external device [1]. 
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4 FPGA IMPLEMENTATION 
 

 

In this chapter different FPGA designs are presented. Each design exploits a different 

architecture in order to acquire the external analog signal and to find the peaks. The 

designs are created using the Vivado IP integrator feature, which allows the user to 

create complex system designs by instantiating and interconnecting IPs from the 

Vivado IP catalog on a design canvas. The IP Integrator converts the designer's block 

design into a synthesizable RTL description (Verilog or VHDL) and automates the 

implementation of the embedded system (from RTL to the bitstream-file). The 

external analog signal is generated with a waveform generator, then is passed both to 

an ADC connected to the FPGA and to an oscilloscope. Moreover, in order to see if 

the FPGA has correctly acquired the external signal, also a DAC has been connected 

to the FPGA. The output of the DAC is connected to the oscilloscope.  

 

4.1  Peak finding algorithm using the Microblaze Core 

 

In this section the first FPGA design is presented. In this design a simplified peak 

finding algorithm is entirely implemented on the Microblaze Core. The ADC and the 

DAC used in the experiments carried out are, respectively, the Digilent Pmod AD1 

and the Digilent Pmod DA1. In order to generate the external analog signal the HP 

8112A 50 MHz Pulse Generator is used. In order to check the input and the output 

signals of the FPGA a Tektronix TDS 3014B 100MHz Digital Phosphor Oscilloscope 

is used.  

 

4.1.1  Vivado implementation 

 

In this section the implemented design in Vivado is presented in figure 24, while in 

figure 25 the memory addresses of each component in the design are illustrated. In 
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order to create the block design illustrated in figure 24, it is necessary to include the 

“board files” of the FPGA board (Nexys Video) in the Vivado project: in this way 

Vivado will automatically assign each pin instantiated in the block design to the real 

pins of the FPGA board. Moreover, in order to instantiate the Pmod AD1 and the 

Pmod DA1 blocks, it is necessary to include the specific libraries in the Vivado 

project. This is because the Pmod AD1 and the Pmod DA1 blocks are not 

implemented in the standard Vivado IP catalog. 

  

 

Fig. 24 Implemented design in Vivado. 
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Fig. 25 Memory addresses of the implemented design. 

 

 

 

The Microblaze (microblaze_0) block in the implemented design represents the 

Microblaze Core which has already been described in section 2.2. As shown in figure 

24, the Microblaze IP core is connected to all the external peripherals via the AXI 

Interconnect block (microblaze_0_axi_periph) and it is connected to the memory via 

the AXI SmartConnect block (axi_smc). The Microblaze Core communicates with 

the AXI Interconnect IP via the M_AXI_DP interface which is the peripheral data 

interface, and it can be an AXI4-Lite or AXI4 interface. Conversely, the Microblaze 

IP communicates with the SmartConnect IP via the M_AXI_DC and the M_AXI_IC 

which are the data side cache AXI4 interface and the instruction side cache AXI4 

interface, respectively. 

The AXI Interconnect IP connects one or more AXI memory-mapped master devices 

to one or more memory-mapped slave devices. The AXI interfaces conform to the 

AMBA AXI version 4 specifications from ARM. The Interconnect IP is intended for 

memory-mapped transfers only; AXI4-Stream transfers are not applicable [19].  

Also the AXI SmartConnect IP core connects one or more AXI memory-mapped 

master devices to one or more memory-mapped slave devices, but the SmartConnect 

IP is more tightly integrated into the Vivado design environment to automatically 
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configure and adapt to connected AXI master and slave IP with minimal user 

intervention [17]. 

Moreover, the Microblaze Core is connected to the local memory block 

(microblaze_0_local_memory) via the DLMB and the ILMB which are respectively 

the data and instruction interfaces. The local memory is used for data and program 

storage, and it is implemented using the block RAM. The size of the local memory is 

parametrized and can be between 4 KB and 128 KB [18], in this project the local 

memory size is 8KB. 

Debug is facilitated by the Microblaze Debug Module (MDM). 

The DAC is instantiated by the PmodDA1_v1_0 block which is connected to the jb 

pin that represents the JB Pmod port of the Nexys Video board. Moreover, the Pmod 

DA1 is connected to the AXI Interconnect block via an AXI4-Lite interface which 

implements the SPI protocol. In this way the Microblaze Core is able to communicate 

with the DAC via the AXI Interconnect IP core.  

The ADC is instantiated by the PmodAD1_v1_0 block which is connected to the ja 

pin that represents the JA Pmod port of the Nexys Video board. The Pmod AD1 is 

connected to the AXI Interconnect block via an AXI4-Lite interface. So, the 

Microblaze can communicate with the ADC using the AXI Interconnect IP core.  

The Pmod ports are arranged in a 2x6 right-angle, 100-mil female connectors that 

mate with standard 2x6 pin headers. Each 12-pin Pmod connector provides two 

power pins (6 and 12), two ground pins (5 and 11), and eight logic signals. The VCC 

and Ground pins can deliver up to 1A of current [4]. Pin assignments for the Pmod 

I/O connected to the FPGA are shown in Figure 26. 

 

 

Fig. 26 Pmod ports of the Nexys Video board.[4] 
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The AXI GPIO block (axi_gpio_0) provides a general-purpose input/output interface 

to an AXI4-Lite interface. The AXI GPIO can be configured as either a single or a 

dual-channel device. The width of each channel is independently configurable [20]. 

In the design the AXI GPIO block is connected to the led_8bits pin which is 

connected to the 8 LEDs of the Nexys Video board, and it is also connected to the 

AXI Interconnect IP core with an AXI4-Lite interface in order to communicate with 

the Microblaze Core. This block has been only used to do some tests on the FPGA 

before launching the peak-finding algorithm. 

The last peripheral connected to the AXI Interconnect is the AXI UartLite IP core 

which instantiate an UART communication protocol, and it will be used to print the 

peaks on the UART port of the Nexys Video board. The AXI UartLite IP core is also 

connected to the usb_uart pin. 

The Processing System Reset IP core (rst_mig_7series_0_100M) provides a 

mechanism to handle the reset conditions for a given system. The core handles 

numerous reset conditions at the input and generates appropriate resets at the output. 

This core generates the resets based upon external or internal reset conditions [21]. In 

the design the Processing System Reset IP core is used to control the Memory 

Interface Generator (MIG 7 Series) IP core.  

The Memory Interface Generator (MIG 7 Series) IP core creates memory controllers 

for Xilinx’s FPGAs. MIG creates complete customized VHDL RTL source code, pin-

out and design constraints for the Nexys Video board, and script files for 

implementation and simulation. As figure 24 shows, the MIG 7 series block is 

connected to the ddr3_sdram pin which is connected to the external DDR3 memory 

of the Nexys Video. In fact, the Nexys Video board contains two external memories: 

a 512MByte volatile DDR3 memory and a 32MiByte nonvolatile Serial Flash device. 

The Nexys Video includes one Micron MT41K256M16HA-187E DDR3 memory 

component creating a single rank, 16-bit wide interface. It is routed to a 1.5V-

powered high range (HR) FPGA bank with 50 ohm controlled single-ended trace 

impedance. 50-ohm internal terminations in the FPGA are used to match the trace 
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characteristics. The MIG 7 Series IP core is also connected to the AXI SmartConnect 

with an AXI4-Lite interface in order to communicate with the MicroBlaze Core.  

The sys_clock and reset pins are connected respectively to the sys_clk_i and sys_rst 

ports of the MIG 7 Series block. The ui_clk port of the MIG 7 Series IP core, which 

represents a 100 MHz clock, is connected to all the clock ports of the other blocks. 

Before launching the synthesis, a constraints.xdc file has been created. An .xdc file 

allows the user to manually assign a specific port or a specific standard to a pin 

instantiated in the design. The constraints.xdc file contains the following line:       

set_property IOSTANDARD LVCMOS33 [get_ports sys_clock] 

which states that LVCMOS33 standard must be assigned to the sys_clock pin. This 

constraint was added because both the JB and the system clock pins are in the bank 

34 of the FPGA and all the components in the same bank must have the same 

LVCMOS standard.  

After creating the block design and the constraints file, an HDL wrapper must be 

created for the block design. This process translates the block design into a source 

file that can be read by the Vivado tools and is used to build the actual design.  

Once the HDL wrapper is created, the Vivado synthesis is launched. Synthesis is the 

process of transforming an RTL-specified design into a gate-level representation. 

After the Synthesis, all the pins in the block design are assigned to the real pins of the 

Nexys Video board (Fig. 27, 28, 29). 

 

 

Fig. 27 I/O pinout for the clock and the DDR3 RAM. 
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Fig. 28 I/O pinout for the JA and JB connectors. 

 

 

Fig. 29 I/O pinout for the GPIO, reset and the UART. 

 

After the synthesis is completed, the implementation of the design is run. Vivado 

implementation is the process of mapping the synthesized design to physical 

resources of the target device in order to create the implemented design. In the device 

window of Vivado it is possible to see both the placement results and the routing 

resources in the FPGA in order to implement the synthesized design (Fig. 30). 
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Fig. 30 Implemented design on the FPGA.  

 

After the implementation is completed, in order to program the FPGA, it is necessary 

to generate and load the bitstream into the FPGA. An FPGA bitstream is a file that 

contains the programming information for an FPGA. A Xilinx FPGA device must be 

programmed using a specific bitstream for it to behave as an embedded hardware 

platform.  

Once the bitstream file is generated the hardware is exported to Xilinx SDK in order 

to program the behavior of the Microblaze Core. 

 

 

4.1.2  Xilinx SDK implementation 

 

In this section the Vivado SDK code is presented. The Xilinx Software Development 

Kit (SDK) is an Integrated Development Environment (IDE) for development of 

embedded software applications targeted towards Xilinx embedded processors. SDK 

works with hardware designs created with Vivado Design Suite. The following C 

code programs the behavior of the Microblaze Core in the block design. 
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#include <stdio.h> 
#include "PmodAD1.h" 
#include "sleep.h" 
#include "xil_cache.h" 
#include "xil_io.h" 
#include "xil_types.h" 
#include "xparameters.h" 
#include "PmodDA1.h" 
 
#define max_size 20    //size of the array which stores the maxima 
#define samples 20    //number of samples on which the check is 
performed 
 
 
 
PmodDA1 myDevice1; 
PmodAD1 myDevice; 
const float ReferenceVoltage = 3.3; 
int i=0,k=0,count=0; 
float max[max_size]; 
float input_data; 
float current_max = 0.0; 
 
 
void DemoInitialize(); 
void DemoRun(); 
void DemoCleanup(); 
void EnableCaches(); 
void DisableCaches(); 
 
int main() { 
 
 EnableCaches(); 
 
 AD1_begin(&myDevice, XPAR_PMODAD1_0_AXI_LITE_SAMPLE_BASEADDR); 
 DA1_begin(&myDevice1, XPAR_PMODDA1_0_AXI_LITE_SPI_BASEADDR); 
 
 
 // Wait for AD1 to finish powering on 
 usleep(1); // 1 us (minimum) 
 
 AD1_RawData RawData; 
 AD1_PhysicalData PhysicalData; 
 
    while (1) { 
       if (count < samples){ 
        for(i = 0;i < samples; i++){ 
         AD1_GetSample(&myDevice, &RawData); 
         AD1_RawToPhysical(ReferenceVoltage, RawData, &PhysicalData); 
         DA1_WritePhysicalValue(&myDevice1, PhysicalData[0]); 
         input_data = PhysicalData[0]; 
 
         if (current_max < input_data){ 
                   current_max = input_data;} 
        } 
        max[count] = current_max; 
        current_max = 0.0; 
        count++; 
       } else { 
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       for (k = 0; k < samples; ++k) { 
            printf("max[%d] = %f\r\n",k , max[k]); 
        count = 0; 
           } 
       } 
    } 
 
   DemoCleanup(); 
   DemoCleanupDA1(); 
 
   return 0; 
} 
 
 
 
void DemoCleanup() { 
   DisableCaches(); 
} 
 
void DemoCleanupDA1() { 
   DA1_end(&myDevice); 
   DisableCaches(); 
} 
 
void EnableCaches() { 
#ifdef __MICROBLAZE__ 
#ifdef XPAR_MICROBLAZE_USE_ICACHE 
   Xil_ICacheEnable(); 
#endif 
#ifdef XPAR_MICROBLAZE_USE_DCACHE 
   Xil_DCacheEnable(); 
#endif 
#endif 
} 
 
void DisableCaches() { 
#ifdef __MICROBLAZE__ 
#ifdef XPAR_MICROBLAZE_USE_DCACHE 
   Xil_DCacheDisable(); 
#endif 
#ifdef XPAR_MICROBLAZE_USE_ICACHE 
   Xil_ICacheDisable(); 
#endif 
#endif 
} 

 

 

The header files "PmodAD1.h" and "PmodDA1.h" contain the specific variables and 

functions used by the PmodAD1 and the PmodDA1 in order to get the samples from 

the ADC and to send the samples to the DAC.  

The header file "xparameters.h" contains the variables in which all the memory 

addresses are stored. As already shown in section 4.1.1 each IP core in the block 
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design has a memory address. The "xparameters.h" file contains all the memory 

addresses of the IP cores connected to the Microblaze Core.    

The variables PmodDA1 myDevice1; and PmodAD1 myDevice; are respectively the DAC 

and the ADC.  

The functions AD1_begin(&myDevice, XPAR_PMODAD1_0_AXI_LITE_SAMPLE_BASEADDR); 

and DA1_begin(&myDevice1, XPAR_PMODDA1_0_AXI_LITE_SPI_BASEADDR); initialize the 

PmodAD1 and the PmodDA1 devices and they take as first argument the object to 

start and as second argument the memory address of the PmodAD1 and of the 

PmodDA1, respectively.  

The function AD1_GetSample(&myDevice, &RawData); captures the most recently read 

sample from the PmodAD1 IP core and stores it in the RawData variable. 

 

void AD1_GetSample(PmodAD1 *InstancePtr, AD1_RawData *RawDataPtr) { 
   u32 data; 
   data = Xil_In32(InstancePtr->BaseAddress); 
   (*RawDataPtr)[0] = data & AD1_DATA_MASK; 
   (*RawDataPtr)[1] = (data >> 16) & AD1_DATA_MASK; 
} 

 

The function AD1_RawToPhysical(ReferenceVoltage, RawData, &PhysicalData);converts an 

AD1 sample to a float value.  

 

void AD1_RawToPhysical(float ReferenceVoltage, AD1_RawData RawData, 
      AD1_PhysicalData *PhysicalDataPtr) { 
   float conversionFactor = ReferenceVoltage / ((1 << AD1_NUM_BITS) - 1); 
   (*PhysicalDataPtr)[0] = ((float) RawData[0]) * conversionFactor; 
   (*PhysicalDataPtr)[1] = ((float) RawData[1]) * conversionFactor; 
} 

The function DA1_WritePhysicalValue(&myDevice1, PhysicalData[0]); computes the 

integer value corresponding to the physical value by considering the reference value 

as the one corresponding to the maximum integer value (0xFF). If the integer value is 

within the accepted range (0 - 0xFF), this function writes the 12- bit value to the DA 

converter, by writing 8 bits to SPI, and returns the DACSPI1_ERR_SUCCESS 

message.  
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If the integer value is outside the allowed range, the function does nothing and 

returns the DACSPI1_ERR_VAL_OUT_OF_RANGE message. If the dReference 

function argument is missing, 3.3 value is used as reference value. Moreover, the 

DA1_WriteIntegerValue(PmodDA1 *InstancePtr, u8 bIntegerValue) function, if the value is 

inside the allowed range (0 - 0xFF), writes the 12 bits value to the DA converter, by 

writing 16 bits to SPI and returns the DACSPI1_ERR_SUCCESS status message. If 

the value is outside the allowed range, the function does nothing and returns the 

DACSPI1_ERR_VAL_OUT_OF_RANGE message. 

 

u8 DA1_WritePhysicalValue(PmodDA1 *InstancePtr, float dPhysicalValue) { 
   u8 status; 
   float dReference = 3.3; // The value corresponding to the maximum converter 
                           // value (reference voltage). If this parameter is 
                           // not provided, it has a default value of 3.3. 
 
   u8 wIntegerValue = dPhysicalValue * (float) (1 << DA1_SPI_NO_BITS) 
         / dReference; 
   status = DA1_WriteIntegerValue(InstancePtr, wIntegerValue); 
   return status; 
} 

u8 DA1_WriteIntegerValue(PmodDA1 *InstancePtr, u8 bIntegerValue) { 
   u8 recv[2]; 
   u8 bResult = 0; 
 
   recv[0] = DA1_SPI_CTRL_BYTE; 
   recv[1] = bIntegerValue; 
 
   if (bIntegerValue < 0 || bIntegerValue >= (1 << DA1_SPI_NO_BITS)) { 
      bResult = DA1_SPI_ERR_VAL_OUT_OF_RANGE; 
   } else { 
      XSpi_Transfer(&InstancePtr->DA1Spi, recv, recv, 2); 
   } 
   return bResult; 
}    

 

 

As it is shown in the code, the data transfer on the SPI interface is done with the 

XSpi_Transfer(&InstancePtr->DA1Spi, recv, recv, 2); function which transfers the 

specified data on the SPI bus. If the SPI device is configured to be a master, this 

function initiates bus communication and sends/receives the data to/from the selected 

SPI slave. If the SPI device is configured to be a slave, this function prepares the data 

to be sent/received when selected by a master. For every byte sent, a byte is received. 
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So, in the while(1) loop in the main(), each sample coming from the ADC is acquired 

and converted into a float variable. Every sample is stored in the input_data variable 

and confronted with the current max until the array which contains all the peaks 

(max[max_size]) is full. When the array max[max_size] is full the first ‘if’ statement 

is not verified so all the peaks found are printed on the UART. Once the array is 

printed the ‘count’ variable is set to 0, so a new array is computed. 

Once the SDK application is ready, it is launched on the hardware in order to test 

how the implemented design works.  

 

4.1.3  Hardware setup and results 

 

In this section the hardware setup and the experimental results are presented. As 

already mentioned, the FPGA board used in this project is a Nexys Video board 

which mounts an Artix-7 FPGA. The ADC used in this work is the Digilent 

PmodAD1 which is a two channel 12-bit analog-to-digital converter that features 

Analog Devices AD7476A. The AD7476A is a 12-bit successive-approximation 

analog to digital converter which contains a track-and-hold amplifier that can handle 

input frequencies in excess of 13 MHz. The PmodAD1 has a sampling rate of up to 1 

million samples per second (Fig. 31) [22]. 

 

 

Fig. 31 PmodAD1 [22] 



 

48 

 

 

The PmodAD1 communicates with the host board via an SPI-like communication 

protocol. The difference between the standard SPI protocol and this protocol is 

manifested in the pin arrangement on this Pmod. A typical SPI interface would 

expect a Chip Select, a Master-Out-Slave-In, a Master-in-Slave-Out, and a Serial 

Clock signal. However, with the two ADCs on this chip, both data lines (MOSI and 

MISO) are designed to operate only as outputs, making them both Master-In-Slave-

Out data lines.  

The PmodAD1 will provide its 12 bits of information to the system board through 16 

clock cycles with the first four bits consisting of four leading zeroes and the 

remaining 12 bits representing the 12 bits of the data with the MSB first. The first 

leading zero is clocked out on the falling edge of the CS signal with all the 

subsequent bits clocked out on the falling edge of the serial clock signal [22].  

The DAC used in this project is the Digilent PmodDA1 which is an 8-bit Digital-to-

Analog Converter module that can output up to four different analog signals 

simultaneously (Fig. 32) [23].   

 

Fig. 32 PmodDA1 [23] 

 

The PmodDA1 converts an 8-bit digital input signal to a corresponding analog output 

voltage ranging from 0 to Vdd. Each of the two AD7303s on this Pmod have two 8-

bit DACs allowing the user to select which DAC they want their stream of data to go 

through. Moreover, the AD7303 from Analog Devices operates at clock rates up to 

30 MHz, and it is compatible with the SPI interface standard. 
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The PmodDA1 communicates with the host board via an SPI-like communication 

protocol. The difference between the standard SPI protocol and this protocol is 

manifested in the pin arrangement on this Pmod. A typical SPI interface would 

expect a Chip Select, a Master-Out-Slave-In, a Master-in-Slave-Out, and a Serial 

Clock signal. However, with the two DACs on this chip, both of the data lines (MOSI 

and MISO) are designed to operate only as inputs, making them both Master-Out-

Slave-In data lines.  

The PmodDA1 will receive its 8 bits of information from the system board through 

16 clock cycles with first eight bits consisting of eight control bits and the remaining 

eight bits representing the 8 bits of the data with the MSB first. Each bit is received 

by the rising edge of the serial clock line. The function dictated by the first eight 

control bits is executed when the chip select line is brought high [23]. 

The output of the pulse generator is connected to the first channel of the oscilloscope 

and to the A0 pin of the PmodAD1 via a T connector. The PmodAD1 is connected to 

the JA connector of the Nexys Video board. The PmodDA1 is connected to the JB 

connector of the board, and the A1 output of the DAC is connected to the second 

channel of the oscilloscope. The UART port of the FPGA is connected to the COM7 

port of the PC. In this way, on the first channel of the oscilloscope the output of the 

pulse generator is displayed, whereas on the second channel of the oscilloscope the 

output of the DAC is shown. The hardware setup is shown in figure 33. 
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Fig. 33 Hardware setup. 

 

 

Next are some measurements carried out, which are obtained by changing the 

parameters on the pulse generator. As already shown in the SDK code, thanks to the 

infinite ‘while’ loop, the peaks are continuously printed on the COM7 port of the PC 

when the array that contains the peaks is full. The editable parameters of the pulse 

generator are the period (PER), the width (WID), the leading and trailing edge (LEE 

and TRE), the high level and the low level (HIL and LOL). Moreover, on the 

oscilloscope screen the time delay between channel 1 and channel 2 is displayed. 
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Fig. 34 ADC input and DAC output with: PER = 900 ms, WID = 70 ms, LEE = TRE = 50 ms, HIL 

= 0.5 V, LOL = -0.5V. 

 

 
Fig. 35 ADC input and DAC output with: PER = 800 ms, WID = 70 ms, LEE = TRE = 50 ms, HIL 

= 0.5 V, LOL = -0.5V. 
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Fig. 36 ADC input and DAC output with: PER = 700 ms, WID = 70 ms, LEE = TRE = 50 ms, HIL 

= 0.5 V, LOL = -0.5V. 

 

As shown in figure 36, by reducing the period of the analog input, a peak is missing 

in the output signal. This means that the FPGA setup was not able to acquire and 

process all the input peaks. By increasing the frequency of the input signal, more 

peaks will arrive at the input of the FPGA in the same amount of time. Therefore, the 

higher the frequency of the input signal, the higher the probability for the FPGA 

setup to miss some peaks. For this reason, a graph which relates the percentage 

efficiency to the period of the input signal has been calculated. An observation 

window of 40 peaks has been considered. By progressively reducing the period of the 

input analog signal, the acquired peaks are counted with respect to the 40 input peaks. 

The efficiency has been calculated with the following formula: 

 

𝐸𝑓𝑓(%) =  
𝑂𝑢𝑡𝑝𝑢𝑡 𝑝𝑒𝑎𝑘𝑠

𝐼𝑛𝑝𝑢𝑡 𝑝𝑒𝑎𝑘𝑠
× 100 

 

Of course, when the period is reduced, also the efficiency of the setup decreases. The 

efficiency versus the time delay between pulses is shown in the following picture: 
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Fig. 37 Efficiency versus time delay between pulses. 

 

As the graph shows, efficiency of setup becomes 50% when period is about 650 ms. 

When the period is less than 300 ms the algorithm is not able to find any peaks.  

 

4.2  Peak finding algorithm using Microblaze and a custom IP core 

 

 

In this section the second FPGA design is presented. In this design a simplified peak 

finding algorithm is implemented on the Microblaze Core and on a custom IP block 

created with the Vivado HLS tool. Given a specific number of ADC samples, the 

created custom IP core is capable of finding the peak among the received ADC 

samples. The ADC and the DAC used in the experiments carried out are, 

respectively, the Digilent PmodAD1 and the Digilent PmodDA1.  
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4.2.1  Vivado HLS implementation 

 

The Xilinx Vivado High-Level Synthesis (HLS) tool transforms a C specification 

into a register transfer level (RTL) implementation that can be synthesized into a 

Xilinx FPGA. It is possible to write specifications in C or C++ language and the 

FPGA provides a massively parallel architecture with benefits in performance, cost, 

and power over traditional processors [24].  

The custom IP core created on Vivado HLS calculates the peak among a given 

number of ADC samples. The implemented C++ code on Vivado HLS is presented: 

  float Max_finder_basic(float adc_sample, float current_max) 

{ 

    #pragma HLS INTERFACE s_axilite port=return 

    #pragma HLS INTERFACE s_axilite port=current_max 

    #pragma HLS INTERFACE s_axilite port=adc_sample 

 

    if(current_max < adc_sample) 

    { 

        current_max = adc_sample; 

    } 

    return current_max; 

} 

So, by comparing the incoming ADC sample with the current peak, this IP core 

calculates and updates the current peak at every iteration.  

The HLS tool provides pragmas that can be used to optimize the design. The HLS 

INTERFACE pragma specifies how RTL ports are created from the function 

definition during interface synthesis. The AXI4 interfaces supported by Vivado HLS 

include the AXI4-Stream (axis), AXI4-Lite (s_axilite), and AXI4 master (m_axi) 

interfaces, which can be specified as follows [24]:  

- AXI4-Stream interface: it acts on input arguments or output arguments only, 

not on input/output arguments; 

- AXI4-Lite interface: it acts on any type of argument except arrays, it is 

possible to group multiple arguments into the same AXI4-Lite interface;  
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- AXI4 master interface: it acts on arrays and pointers (and references in C++) 

only; it is possible to group multiple arguments into the same AXI4 interface. 

In this Vivado HLS project, only AXI4-Lite interfaces are implemented. An AXI4-

Lite interface is implemented for the adc_sample port, the current_max port and the 

return port. In this way, the Microblaze Core is able to access the memory address of 

each port. The Microblaze Core can pass the ADC samples from the memory address 

of the PmodAD1 to the AXI4-Lite interface corresponding to the adc_sample port 

and it can get the computed peak by accessing the AXI4-Lite interface corresponding 

to the current_max port. The return port is declared as an AXI4-Lite interface so the 

custom IP core can be connected to the Microblaze Core via an AXI Interconnect IP.  

After writing the source code, it is necessary to test its behavior. This step is 

performed by writing the test bench: 

#include <stdio.h> 

#include <time.h> 

#include <stdlib.h> 

 

float Max_finder_basic(float adc_sample, float current_max); 

 

int main() 

{ 

    float adc_sample[20],current_max; 

    srand (time(NULL)); 

    int num_samples = 20; 

 

 

 

    for(int i=0;i<num_samples;i++) 

    { 

        adc_sample[i] = rand() % 100 * 0.01; 

         

        printf("adc_sample[%d] = %.02f\n",i,adc_sample[i]); 

    } 

 

    current_max = Max_finder_basic(adc_sample[0], 0.0); 

 

 

    for(int j=0;j<num_samples;j++) 

    { 

        current_max = Max_finder_basic(adc_sample[j], current_max); 

 

         

    } 

 

    printf("current_max = %.02f\n",current_max); 

} 
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After the test bench code is written, the C simulation must be launched in order to 

test the functioning of the IP block. The results of the C simulation are presented: 

 

INFO: [SIM 2] *************** CSIM start *************** 
INFO: [SIM 4] CSIM will launch GCC as the compiler. 
   Compiling ../../../../../../../AppData/Roaming/Xilinx/Vivado/test_core.cpp in debug 
mode 
   Generating csim.exe 
adc_sample[0] = 0.48 
adc_sample[1] = 0.10 
adc_sample[2] = 0.09 
adc_sample[3] = 0.93 
adc_sample[4] = 0.51 
adc_sample[5] = 0.77 
adc_sample[6] = 0.23 
adc_sample[7] = 0.18 
adc_sample[8] = 0.07 
adc_sample[9] = 0.60 
adc_sample[10] = 0.22 
adc_sample[11] = 0.40 
adc_sample[12] = 0.77 
adc_sample[13] = 0.11 
adc_sample[14] = 0.02 
adc_sample[15] = 0.39 
adc_sample[16] = 0.39 
adc_sample[17] = 0.10 
adc_sample[18] = 0.70 
adc_sample[19] = 0.22 
current_max = 0.93 
INFO: [SIM 1] CSim done with 0 errors. 
INFO: [SIM 3] *************** CSIM finish *************** 

 

 

After completing the C simulation, the C synthesis must be launched. The C 

synthesis is an automated design process that takes an abstract behavioral 

specification of a digital system and find a register-transfer level structure that 

realizes the given behavior. After the C synthesis is completed without errors, the 

C/RTL Cosimulation must be launched in order to verify the RTL output. Once the 

C/RTL Cosimulation is completed, the Export RTL tool packages the RTL into the 

desired IP output format.  

Now the created IP core can be added to the Vivado block design. 
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4.2.2  Vivado implementation 

 

In this section the implemented design in Vivado is presented (Fig. 38). The memory 

addresses of each IP block are illustrated in figure 39. In order to create the block 

design illustrated in figure 38, it is necessary to include the “board files” of the FPGA 

board (Nexys Video) in the Vivado project. In order to instantiate the PmodAD1 and 

the PmodDA1 blocks, it is necessary to include the specific libraries. Moreover, it is 

necessary to include the libraries of the Vivado HLS project in order to add the 

Max_finder_basic IP core to the block design. 

 

 

Fig. 38 Vivado implementation. 
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Fig. 39 Memory addresses.  

 

As shown in figure 38, the Microblaze core is connected to the AXI Interconnect, 

AXI SmartConnect, local memory, MDM in the same way as the Vivado 

implementation of the 4.1.1 section. 

The MIG 7 Series is connected to the AXI SmartConnect so it can communicate with 

the Microblaze IP, and to the ddr3_sdram pin as in 4.1.1. Also the Processor System 

Reset behaves as in the 4.1.1 design. 

The AXI GPIO, PmodAD1, PmodDA1 and AXI UARTlite peripherals are connected 

to the AXI Interconnect so they can communicate with the Microblaze IP, and to the 

led_8bits, ja, jb, usb_uart pins respectively, as in the 4.1.1 Vivado block design.   

The reset and sys_clk_i pins are connected in the same way as in the 4.1.1 section. 

The new feature introduced in this project is the Max_finder_basic IP core created in 

Vivado HLS. It is connected to the AXI Interconnect IP with the AXI4-Lite interface 

that has been implemented in Vivado HLS with the #pragma commands. So, the 

AXI4-Lite interface allows the Microblaze IP core to communicate with the custom 

IP block. In this way, the Microblaze IP can send the ADC samples to the custom IP 

block and can receive the computed peak trough the AXI4-Lite interface. 

For the same reasons as in the 4.1.1 section, a constraints.xdc file is needed with the 

following command: 
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set_property IOSTANDARD LVCMOS33 [get_ports sys_clock_i] 

Once the block design is verified, the HDL wrapper is created and the Vivado 

synthesis is launched. Since the pins used are the same as in the 4.1.1 Vivado 

implementation, the pinout is the same as the one in the 4.1.1 section.  

After the synthesis is completed, the implementation (Fig. 40) and the bitstream file 

are generated. Then the hardware is exported to the Xilinx SDK tool in order to 

program the Microblaze Core. 

 

 

Fig. 40 Implemented design. 

 

4.2.3  Xilinx SDK implementation 

 

In this section the SDK implementation is presented. The Microblaze Core is 

programmed with the following code: 

 

#include <stdio.h> 
#include "PmodAD1.h" 
#include "sleep.h" 
#include "xil_cache.h" 
#include "xil_io.h" 
#include "xil_types.h" 
#include "xparameters.h" 
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#include "PmodDA1.h" 
#include "xmax_finder_basic.h" 
 
#define max_size 20    //size of the array which stores the maxima 
#define samples 20    //number of samples on which the check is 
performed 
 
 
unsigned int float_to_u32(float val) 
{ 
 unsigned int result; 
 union float_bytes{ 
  float v; 
  unsigned char bytes[4]; 
 }data; 
 data.v = val; 
 result = (data.bytes[3]<<24) + (data.bytes[2]<<16) + (data.bytes[1]<<8) + 
(data.bytes[0]); 
 return result; 
} 
 
 
 
float u32_to_float(unsigned int val) 
{ 
 union{ 
  float val_float; 
  unsigned char bytes[4]; 
 }data; 
 
 data.bytes[3] = (val >> (8*3)) & 0xff; 
 data.bytes[2] = (val >> (8*2)) & 0xff; 
 data.bytes[1] = (val >> (8*1)) & 0xff; 
 data.bytes[0] = (val >> (8*0)) & 0xff; 
 return data.val_float; 
} 
 
 
PmodDA1 myDevice1; 
PmodAD1 myDevice; 
 
XMax_finder_basic max_finder_basic; 
XMax_finder_basic_Config *max_finder_basic_cfg; 
 
 
const float ReferenceVoltage = 3.3; 
int i=0,k=0,count=0; 
float max[max_size]; 
float input_data; 
float current_max = 0.0; 
 
 
void DemoInitialize(); 
void DemoRun(); 
void DemoCleanup(); 
void EnableCaches(); 
void DisableCaches(); 
 
int main() { 
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 EnableCaches(); 
 
 u32 current_max_32; 
 float current_max; 
 
 AD1_begin(&myDevice, XPAR_PMODAD1_0_AXI_LITE_SAMPLE_BASEADDR); 
 DA1_begin(&myDevice1, XPAR_PMODDA1_0_AXI_LITE_SPI_BASEADDR); 
 
 XMax_finder_basic_Initialize(&max_finder_basic, 
XPAR_XMAX_FINDER_BASIC_0_DEVICE_ID); 
 
 XMax_finder_basic_Set_current_max(&max_finder_basic, float_to_u32(0.0)); 
 current_max = u32_to_float(XMax_finder_basic_Get_return(&max_finder_basic)); 
 
 
 // Wait for AD1 to finish powering on 
 usleep(1); // 1 us (minimum) 
 
 AD1_RawData RawData; 
 AD1_PhysicalData PhysicalData; 
 
    while (1) { 
 
       if (count < samples){ 
        for(i = 0;i < samples; i++){ 
         AD1_GetSample(&myDevice, &RawData); 
         AD1_RawToPhysical(ReferenceVoltage, RawData, &PhysicalData); 
         DA1_WritePhysicalValue(&myDevice1, PhysicalData[0]); 
 
         XMax_finder_basic_Set_adc_sample(&max_finder_basic, 
float_to_u32(PhysicalData[0])); 
 
XMax_finder_basic_Set_current_max(&max_finder_basic, float_to_u32(current_max)); 
 
         XMax_finder_basic_Start(&max_finder_basic); 
 
         while(!XMax_finder_basic_IsDone(&max_finder_basic)); 
 
         current_max = 
u32_to_float(XMax_finder_basic_Get_return(&max_finder_basic)); 
        } 
        max[count] = current_max; 
        XMax_finder_basic_Set_current_max(&max_finder_basic, float_to_u32(0.0)); 
        count++; 
       } else { 
 
       for (k = 0; k < samples; ++k) { 
            printf("max[%d] = %f\r\n",k , max[k]); 
        count = 0; 
           } 
       } 
    } 
 
   DemoCleanup(); 
   DemoCleanupDA1(); 
 
   return 0; 
} 
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void DemoCleanup() { 
   DisableCaches(); 
} 
 
void DemoCleanupDA1() { 
   DA1_end(&myDevice); 
   DisableCaches(); 
} 
 
void EnableCaches() { 
#ifdef __MICROBLAZE__ 
#ifdef XPAR_MICROBLAZE_USE_ICACHE 
   Xil_ICacheEnable(); 
#endif 
#ifdef XPAR_MICROBLAZE_USE_DCACHE 
   Xil_DCacheEnable(); 
#endif 
#endif 
} 
 
void DisableCaches() { 
#ifdef __MICROBLAZE__ 
#ifdef XPAR_MICROBLAZE_USE_DCACHE 
   Xil_DCacheDisable(); 
#endif 
#ifdef XPAR_MICROBLAZE_USE_ICACHE 
   Xil_ICacheDisable(); 
#endif 
#endif 
} 
 

 

 

 

 

The PmodAD1 and the PmodDA1 are declared in the same way as in 4.1.2 and the 

functions used in order to get the samples from the ADC and to send the samples to 

the DAC are the same as in the 4.1.2 SDK application.  

The "xmax_finder_basic.h" header file is automatically created by the SDK tool, and it 

contains all the functions which can be used by the Microblaze to communicate with 

the Max_finder_basic IP core trough the AXI4-Lite interface. 

The first function needed is the XMax_finder_basic_Initialize(&max_finder_basic, 

XPAR_XMAX_FINDER_BASIC_0_DEVICE_ID); which initializes the Max_finder_basic IP core. 

The Microblaze is able to send the value of the most recently acquired sample to the 

Max_finder_basic IP core through the AXI4-Lite interface with the function 

XMax_finder_basic_Set_adc_sample(&max_finder_basic, float_to_u32(PhysicalData[0])); 
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When the function XMax_finder_basic_Get_return(&max_finder_basic) is called, the 

Max_finder_basic IP core sends the computed peak to the Microblaze processor. 

When the array max[max_size] (which contains all the peaks found) is full, the first 

‘if’ statement in the while(1) loop is not verified, so the entire array is printed on the 

UART port. When the array is printed, the ‘count’ variable is set to 0, so a new array 

is computed. 

Once the SDK application is ready, it is launched on the hardware in order to test 

how the implemented design works. 

 

4.2.4  Hardware setup and results 

 

The hardware setup is the same as the one in section 4.1.3. So, on the first channel of 

the oscilloscope the output of the waveform generator is displayed, whereas on the 

second channel of the oscilloscope the analog output of the PmodDA1 is shown.  

Next some measurements are carried out, which are obtained by changing the 

parameters on the pulse generator. As already shown in the SDK code, thanks to the 

infinite ‘while’ loop, the peaks are continuously printed on the COM7 port of the PC 

when the array that contains the peaks is full.  

 

By reducing the period of the analog input, some peaks are missing in the output 

signal. This means that the FPGA setup was not able to acquire and process all the 

input peaks. The graph which relates the period of the input signal with the efficiency 

is shown in the next picture. 
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Fig. 41 Efficiency versus time delay between pulses. 

 

As shown, efficiency is 50% for a period of pulses of about 500ms. When the period 

is less than 100 ms, the setup does not acquire any peaks. 

 

 

4.3 Peak finding algorithm using Microblaze and #pragma BRAMs 

 

In this section the third FPGA design is presented. In this design the simplified peak 

finding algorithm is implemented on a custom IP block created with the Vivado HLS 

tool. The Microblaze Core sends an array of 100 ADC samples to the custom IP core 

and receives the array which contains the 20 peaks found among the ADC samples. 

Both the ADC samples array and the peaks array are implemented with a #pragma 

BRAM interface in the Vivado HLS block. The ADC and the DAC used in the 

experiments carried out are, respectively, the Digilent PmodAD1 and the Digilent 

PmodDA1. 
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4.3.1  Vivado HLS implementation 

 

In this section the Vivado HLS implementation is presented.  

void Max_finder_con_BRAM(float adc_data[100],float max_array[20]) 

{ 

#pragma HLS INTERFACE s_axilite port=return 

#pragma HLS INTERFACE bram port=max_array 

#pragma HLS INTERFACE bram port=adc_data 

 

    int count = 0, N = 20; 

    float current_max = 0.0; 

 

    while(count < 20) 

    { 

        for(int i = N - 20; i < N; i++) 

        { 

            if(current_max < adc_data[i]) 

                current_max = adc_data[i]; 

        } 

        max_array[count] = current_max; 

        count++; 

        N++; 

 

        if(N == 100) 

            break; 

    } 

} 

 
 

The implemented IP core receives 100 ADC samples and stores the 20 peaks in the 

max_array variable. Both the adc_data and the max_array are declared as a #pragma 

BRAM interface. This is a standard block RAM interface with data, address, chip-

enable, and write-enable ports. A BRAM interface is displayed as a single grouped 

port which can be connected to a Xilinx block RAM using a single point-to-point 

connection. In this way, the values of adc_data and max_array are automatically 

stored in two different block RAMs. 

The return port is declared as an AXI4-Lite interface so the Microblaze Core can 

communicate with the custom IP block via the AXI Interconnect. 

In order to launch the C simulation a test bench code is written. 

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

 

void Max_finder_con_BRAM(float adc_data[100],float max_array[20]); 

 

 

int main() 
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{ 

    float adc_data[100]; 

    float max_array[20]; 

 

    for(int i = 0; i < 100; i++) 

    { 

        adc_data[i] = rand() % 100 * 0.01; 

         

        printf("adc_data[%d] = %.02f\n",i,adc_data[i]); 

    } 

 

    Max_finder_con_BRAM(adc_data, max_array); 

 

    for(int j = 0; j < 20; j++) 

        { 

            printf("max_array[%d] = %.02f\n",j,max_array[j]); 

        } 

} 

  

After the C simulation is completed the C synthesis and the C/RTL Cosimulation are 

launched. Then the IP block is exported so it can be used in the Vivado block design. 

 

4.3.2  Vivado implementation 

 

In this section the implemented design in Vivado is presented (Fig. 42). The memory 

addresses of each IP block are illustrated in figure 43. In order to create the block 

design illustrated in figure 42, it is necessary to include the “board files” of the FPGA 

board (Nexys Video) in the Vivado project. In order to instantiate the PmodAD1 and 

the PmodDA1 blocks, it is necessary to include the specific libraries. Moreover, it is 

necessary to include the libraries of the Vivado HLS project in order to add the 

Max_finder_con_BRAM IP core to the block design. 
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Fig. 42 Vivado implementation. 

 

 
Fig. 43 Memory addresses. 
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As shown in figure 42 the Microblaze Core is connected to the AXI Interconnect, 

AXI SmartConnect, MDM and local memory as in the 4.1.1 project. 

The MIG 7 Series IP core is connected to the AXI SmartConnect and to the 

ddr3_sdram pin as in the 4.1.1 Vivado implementation. 

The peripherals PmodAD1, PmodDA1, AXI UARTlite and AXI GPIO are connected 

to the AXI Interconnect as in 4.1.1.  

The reset and the sys_clock_i pins are connected in the same way as in 4.1.1. 

The Processor System Reset is connected as in the 4.1.1 block design. 

The first new feature introduced in this project is the Max_finder_con_BRAM IP 

core which is connected to the AXI Interconnect with an AXI4-Lite interface so it 

can communicate with the Microblaze Core.  

As already mentioned, the adc_data and the max_array ports of the custom IP block 

created in Vivado HLS are declared as a BRAM interface, so they are both connected 

to a block RAM which will store the values contained in the arrays. The BRAMs in 

the design are instantiated as a two ports BRAMs; this is because one port is 

connected to the Max_finder_con_BRAM IP core, but the other port is connected to 

an AXI BRAM Controller. In this way, also the Microblaze Core can read and write 

to the BRAMs memory addresses. This is possible because the AXI BRAM 

Controllers are connected to the AXI SmartConnect with an AXI4-Lite interface 

which allows the Microblaze to communicate with both the BRAMs. 

In this way, the Microblaze IP can send the ADC samples to the BRAM associated 

with the adc_data port. Then, the Max_finder_con_BRAM custom IP block 

automatically reads the ADC samples from the adc_data BRAM interface and finds 

the peaks. The computed peaks are then stored in the second BRAM associated to the 

max_array BRAM interface. Using the AXI BRAM Controller, the Microblaze Core 

is able to read the peaks from the second BRAM and can print the entire max_array 

on the UART port. 

For the same reasons as in the section 4.1.1, a constraints.xdc file is needed with the 

following command: 
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set_property IOSTANDARD LVCMOS33 [get_ports sys_clock_i] 

Once the block design is verified, the HDL wrapper is created and the Vivado 

synthesis is launched. Since the used pins are the same as in the 4.1.1 project, except 

for the push_buttons_5bits pin, the pinout is the same as the one in the 4.1.1 with the 

addition of the D22, D14, C22, F15 and B22 pins which represent the on-board 

buttons of the Nexys Video board.  

After the synthesis is completed, the implementation (Fig. 44) and the bitstream file 

are generated. Then the hardware is exported to the Xilinx SDK tool in order to 

program the Microblaze Core. 

 

Fig. 44 Implemented design.  

 

 

4.3.3  Xilinx SDK implementation 

 

 

In this section the Xilinx SDK implementation in presented. 

 
#include <stdio.h> 
#include "PmodAD1.h" 
#include "sleep.h" 
#include "xil_cache.h" 
#include "xil_io.h" 
#include "xil_types.h" 
#include "xparameters.h" 
#include "PmodDA1.h" 
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#include "xmax_finder_con_bram.h" 
#include "xgpio.h" 
 
PmodDA1 myDevice1; 
PmodAD1 myDevice; 
const float ReferenceVoltage = 3.3; 
 
 
XMax_finder_con_bram max_finder; 
XMax_finder_con_bram_Config *max_finder_cfg; 
 
XGpio gpio; 
 
float *max_array = (float *) XPAR_BRAM_0_BASEADDR; 
float *adc_data = (float *) XPAR_BRAM_1_BASEADDR; 
 
 
unsigned int float_to_u32(float val) 
{ 
 unsigned int result; 
 union float_bytes{ 
  float v; 
  unsigned char bytes[4]; 
 }data; 
 data.v = val; 
 
 result = (data.bytes[3]<<24) + (data.bytes[2]<<16) + (data.bytes[1]<<8) + 
(data.bytes[0]); 
 return result; 
} 
 
 
 
 
void DemoInitialize(); 
void DemoRun(); 
void DemoCleanup(); 
void EnableCaches(); 
void DisableCaches(); 
void DemoCleanupDA1(); 
 
 
int main() 
{ 
 
 u32 btn; 
 
 EnableCaches(); 
 
  AD1_begin(&myDevice, XPAR_PMODAD1_0_AXI_LITE_SAMPLE_BASEADDR); 
  DA1_begin(&myDevice1, XPAR_PMODDA1_0_AXI_LITE_SPI_BASEADDR); 
 
 
  XMax_finder_con_bram_Initialize(&max_finder, 
XPAR_MAX_FINDER_CON_BRAM_0_DEVICE_ID); 
 
  XGpio_Initialize(&gpio, XPAR_AXI_GPIO_0_DEVICE_ID); 
 
  XGpio_SetDataDirection(&gpio, 2, 0xFFFFFFFF); 
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  // Wait for AD1 to finish powering on 
  usleep(1); // 1 us (minimum) 
 
  AD1_RawData RawData; 
  AD1_PhysicalData PhysicalData; 
 
     while (1) { 
 
 
     for (int i = 0; i < 100; i++){ 
      AD1_GetSample(&myDevice, &RawData); // Capture raw samples 
 
      // Convert raw samples into floats scaled to 0 - VDD 
      AD1_RawToPhysical(ReferenceVoltage, RawData, 
&PhysicalData); 
 
      //save the values coming from the ADC in the BRAM that 
contains the adc data 
      adc_data[i] = PhysicalData[0]; 
 
      DA1_WritePhysicalValue(&myDevice1, PhysicalData[0]); 
    
     } 
 
     XMax_finder_con_bram_Start(&max_finder); 
 
     while(!XMax_finder_con_bram_IsDone(&max_finder)); 
 
 
     btn = XGpio_DiscreteRead(&gpio, 2); 
 
     if (btn != 0){ 
      for(int j = 0; j < 20; j ++) 
      { 
       printf("max_array[%d] = %.02f\n",j,max_array[j]); 
      } 
     } 
     } 
 
    DemoCleanup(); 
    DemoCleanupDA1(); 
 
    return 0; 
} 
 
 
 
void DemoCleanup() { 
   DisableCaches(); 
} 
 
void DemoCleanupDA1() { 
   DA1_end(&myDevice); 
   DisableCaches(); 
} 
 
void EnableCaches() { 
#ifdef __MICROBLAZE__ 
#ifdef XPAR_MICROBLAZE_USE_ICACHE 
   Xil_ICacheEnable(); 
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#endif 
#ifdef XPAR_MICROBLAZE_USE_DCACHE 
   Xil_DCacheEnable(); 
#endif 
#endif 
} 
 
void DisableCaches() { 
#ifdef __MICROBLAZE__ 
#ifdef XPAR_MICROBLAZE_USE_DCACHE 
   Xil_DCacheDisable(); 
#endif 
#ifdef XPAR_MICROBLAZE_USE_ICACHE 
   Xil_ICacheDisable(); 
#endif 
#endif 
} 

 

In order to write and read from the two BRAMs in the design, the Microblaze Core 

needs two pointers to the memory base addresses of the two BRAMs. In the 

implemented SDK application, the pointers: float *max_array = (float *) 

XPAR_BRAM_0_BASEADDR; float *adc_data = (float *) XPAR_BRAM_1_BASEADDR; point 

respectively to the memory base address of the BRAM associated to the max_array 

port and to the BRAM associated to the adc_data port of the 

Max_finder_con_BRAM IP block.   

The first step in the main() function is the initialization of the PmodAD1, the 

PmodDA1, the AXI GPIO and the Max_finder_con_BRAM IP blocks.  

Then, the Microblaze Core gets the samples from the PmodAD1 and converts them in 

float variables. At the same time the samples coming from the PmodAD1 are stored 

in the adc_data pointer (in this way the BRAM connected to the adc_data port is 

filled with the ADC samples, since the adc_data variable points to the memory 

address of the BRAM).  

When the Max_finder_con_BRAM IP block is started, it reads the values in the 

BRAM connected to the adc_data port, it calculates the peaks, and it stores them in 

the BRAM connected to the max_array port. So, since the max_array pointer points 

to the memory address of the BRAM connected to the max_array port, the 

Microblaze Core prints the values (which are the 20 peaks found) stored in the 

BRAM connected to the max_array port. 
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So, when the button is pressed, the peaks are printed on the UART port of the Nexys 

Video FPGA 

 

4.3.4  Hardware setup and results 

 

In this section the hardware setup and the results are presented. The hardware setup is 

the same as the 4.1.3 section. So, on the first channel of the oscilloscope the output of 

the waveform generator is displayed, while on the second channel of the oscilloscope 

the analog output of the PmodDA1 is shown.  

Next are some measurements carried out, which are obtained by changing the 

parameters on the pulse generator. As already shown in the SDK code, thanks to the 

infinite ‘while’ loop, the peaks are continuously printed on the COM7 port of the PC 

when any button of the FPGA board is pressed.  

 

The efficiency versus the time delay for this design is shown in the next picture. 

 

 

Fig. 45 Efficiency versus time delay between pulses. 
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A 50% efficiency corresponds to a period of 400 ms. When the period is below 10 

ms, no peaks are found by the setup. 

 

 

4.4 Peak finding algorithm using Microblaze and an AXI DMA 

 

In this section the fourth FPGA design is presented. In this design the peak finding 

algorithm is implemented on a custom IP block created with the Vivado HLS tool. 

The Microblaze Core shifts the ADC samples from the PmodAD1 to the DDR3 

memory. Then the DMA transfers the ADC samples to the custom IP core through an 

AXI4-Stream interface. Once the ADC samples are sent to the custom IP block, the 

peaks are calculated and stored in a BRAM memory with a BRAM interface. After 

that, the ADC samples are sent back to the DDR3 memory by the AXI DMA using 

an AXI4-Stream interface. Finally, the Microblaze Core prints the peaks from the 

BRAM memory on the UART port. The ADC and the DAC used in the experiments 

carried out are, respectively, the Digilent PmodAD1 and the Digilent PmodDA1.  

 

4.4.1  Vivado HLS implementation 

 

In this section the Vivado HLS implementation is presented. This time also a header 

file is created in order to define a new variable called ‘my_data’ which is a struct 

with two arguments: a float value which represents the ADC sample and a boolean 

value that represents the TLAST signal which is crucial for the AXI DMA IP core.  

struct my_data{ 

  float data; 

  bool last; 

}; 

Below the source code is presented. 

#include <hls_stream.h> 

#include <ap_axi_sdata.h> 

#include "core_demo.h" 

 

void max_find_DMA(hls::stream<my_data> &inStream, hls::stream<my_data> 

&outStream, float max[20]) 
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{ 

#pragma HLS INTERFACE bram port=max 

#pragma HLS INTERFACE s_axilite port=return 

#pragma HLS INTERFACE axis port=inStream 

#pragma HLS INTERFACE axis port=outStream 

 

    float current_max = 0.0; 

 

 

    for(int j = 0; j < 20; j++){ 

        for(int i = 0; i < 20; i++){ 

#pragma HLS PIPELINE 

 

        my_data valIn = inStream.read(); 

        my_data valOut; 

 

        if(current_max < valIn.data) 

            current_max = valIn.data; 

 

 

        valOut.data = valIn.data; 

        valOut.last = valIn.last; 

 

 

        outStream.write(valOut); 

        } 

 

        max[j] = current_max; 

        current_max = 0.0; 

 

    } 

} 

 

 

The inStream and outStream ports are declared as an AXI4-Stream interface. The 

inStream port receives data from the AXI DMA, whereas the outStream port sends 

the data back to the AXI DMA. The AXI4-Stream interfaces use the my_data struct. 

The max array is declared as a BRAM interface, in this way the IP core fills the 

BRAM memory with the peaks found.  

The #pragma HLS PIPELINE command reduces the initiation interval for a function or loop 

by allowing the concurrent execution of operations. The peaks are obtained by 

comparing the incoming ADC sample with the current max.  

The return port is declared as an AXI4-Lite interface so the Microblaze Core can 

communicate with the custom IP block via the AXI Interconnect. 

In order to launch the C simulation a test bench code is written. 

#include <hls_stream.h> 

#include <ap_axi_sdata.h> 

#include "core_demo.h" 
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#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

 

void max_find_DMA(hls::stream<my_data> &inStream, hls::stream<my_data> 

&outStream, float max[20]); 

 

int main() 

{ 

    float max[20]; 

 

    hls::stream<my_data> inputStream("input_stream"); 

    hls::stream<my_data> outputStream("output_stream"); 

 

    for(int i = 0; i < 400; i++) 

        { 

            my_data valIn; 

            valIn.data = (rand() % 100) * 0.01; 

            printf("In[%d] is %f\n",i,valIn.data); 

            inputStream << valIn; 

        } 

 

 

    max_find_DMA(inputStream, outputStream, max); 

 

 

        for(int j = 0; j < 400; j++) 

        { 

            my_data valOut; 

            outputStream.read(valOut); 

            printf("Out[%d] is %f\n",j,valOut.data); 

        } 

 

        for(int idx = 0; idx < 20; idx++) 

            { 

                printf("max[%d] = %f\n",idx,max[idx]); 

            } 

 

    return 0; 

} 

 

 

After the C simulation is completed the C synthesis and the C/RTL Cosimulation are 

launched. Then the IP block is exported so it can be used in the Vivado block design. 

 

4.4.2  Vivado implementation 

 

In this section the implemented design in Vivado is presented (Fig. 46). The memory 

addresses of each IP block are illustrated in figure 47. In order to create the block 

design illustrated in figure 46, it is necessary to include the “board files” of the FPGA 

board (Nexys Video) in the Vivado project. In order to instantiate the PmodAD1 and 
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the PmodDA1 blocks, it is necessary to include the specific libraries. Moreover, it is 

necessary to include the libraries of the Vivado HLS project in order to add the 

Max_find_dma IP core to the block design. 

 

 

Fig. 46 Vivado implementation. 

 

 

Fig. 47 Memory addresses. 

 

As shown in figure 46 the Microblaze Core is connected to the AXI Interconnect, 

AXI SmartConnect, MDM and local memory as in the 4.1.1 project. 
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The MIG 7 Series IP core is connected to the AXI SmartConnect and to the 

ddr3_sdram pin as in the 4.1.1 Vivado implementation. 

The peripherals PmodAD1, PmodDA1, AXI UARTlite and AXI GPIO are connected 

to the AXI Interconnect as in 4.1.1.  

The reset and the sys_clock_i pins are connected in the same way as in 4.1.1. Also, 

the Processor System Reset is connected as in the 4.1.1 block design. 

The first new feature introduced in this project is the AXI Direct Memory Access 

(DMA). The AXI Direct Memory Access (AXI DMA) IP core provides high-

bandwidth direct memory access between the AXI4 memory mapped and AXI4-

Stream IP interfaces [25]. The AXI DMA is connected to the AXI Interconnect via an 

AXI4-Lite interface, so the Microblaze Core is able to communicate with the DMA 

IP core. Moreover, the AXI DMA is connected to the AXI SmartConnect with two 

different interfaces: 

- M_AXI_MM2S: master memory mapped to stream, which takes the data from 

the DDR3 memory and shifts them to the Max_find_dma IP core; 

- M_AXI_S2MM: stream to memory mapped, which takes the data from the 

custom IP core and transfers them directly to the DDR3 memory. 

The AXI DMA core is connected to the Max_find_dma IP core with two AXI4-

Stream interfaces:  

- S_AXIS_S2MM, which takes the data from the IP core to the DMA; 

- M_AXIS_MM2S, which transfers the data from the DMA to the IP core. 

As already mentioned, the IP block created on Vivado HLS implements a BRAM 

interface for the max port. So, a block RAM is connected to the max_PORTA 

interface. An AXI BRAM Controller is also used so the Microblaze Core can read 

and write on the BRAM memory. In this way, the Microblaze processor can write the 

samples coming from the PmodAD1 to the DDR3 memory, the DMA can read the 

data from the DDR3 and can send them to the Max_find_dma IP block (which 

calculates and stores the peaks in the BRAM memory). Finally, the Microblaze can 
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read the peaks stored in the BRAM through the AXI BRAM Controller and print 

them on the UART port.  

For the same reasons as in section 4.1.1, a constraints.xdc file is needed with the 

following command: 

set_property IOSTANDARD LVCMOS33 [get_ports sys_clock_i] 

Once the block design is verified, the HDL wrapper is created and the Vivado 

synthesis is launched. Since the pins used are the same as in the 4.3.1 project, the 

pinout is the same as the one in the 4.3.1.  

After the synthesis is completed, the implementation (Fig. 48) and the bitstream file 

are generated. Then the hardware is exported to the Xilinx SDK tool in order to 

program the Microblaze Core. 

 

Fig. 48 Implemented design. 

 

4.4.3  Xilinx SDK implementation 

 

In this section the SDK application is presented. 

 
#include <stdio.h> 
#include "xil_printf.h" 
#include "PmodAD1.h" 
#include "sleep.h" 
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#include "xil_cache.h" 
#include "xil_io.h" 
#include "xil_types.h" 
#include "xparameters.h" 
#include "PmodDA1.h" 
#include "xgpio.h" 
#include "xaxidma.h" 
#include "xmax_find_dma.h" 
 
#define SIZE_ARR 400 
float inStreamData[SIZE_ARR]; 
 
//DMA addresses 
#define MEM_BASE_ADDRESS 0x81000000 
#define TX_BUFFER_BASE (MEM_BASE_ADDRESS + 0x00100000) 
#define RX_BUFFER_BASE (MEM_BASE_ADDRESS + 0x00300000) 
 
#define MAX_ARR 20 
//Pointer to the BRAM controller 
float *max_vec = (float *) XPAR_AXI_BRAM_CTRL_0_S_AXI_BASEADDR; 
 
 
PmodAD1 myDevice; 
PmodDA1 myDevice1; 
const float ReferenceVoltage = 3.3; 
 
XAxiDma axiDMA; 
XAxiDma_Config *axiDMA_cfg; 
 
//declaration of the custom IP block 
XMax_find_dma max_find; 
XMax_find_dma_Config *max_find_cfg; 
 
void EnableCaches(); 
void DisableCaches(); 
void initPeripherals(); 
 
 
int main() 
{ 
 
 EnableCaches(); 
 
 AD1_begin(&myDevice, XPAR_PMODAD1_0_AXI_LITE_SAMPLE_BASEADDR); 
 DA1_begin(&myDevice1, XPAR_PMODDA1_0_AXI_LITE_SPI_BASEADDR); 
 
 AD1_RawData RawData; 
 AD1_PhysicalData PhysicalData; 
 
  initPeripherals(); 
 
  //pointers to the DMA TX and RX addresses 
  float *m_dma_buffer_TX = (float*) TX_BUFFER_BASE; 
  float *m_dma_buffer_RX = (float*) RX_BUFFER_BASE; 
 
  XGpio gpio; 
  u32 btn; 
 
  XGpio_Initialize(&gpio, XPAR_AXI_GPIO_0_DEVICE_ID); 
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  XGpio_SetDataDirection(&gpio, 2, 0xFFFFFFFF); // set BTN GPIO channel tristates 
to All Input 
 
  XMax_find_dma_Start(&max_find); 
 
 while(1){ 
 
  btn = XGpio_DiscreteRead(&gpio, 2); 
 
  if (btn != 0){ 
   for( int i = 0; i < SIZE_ARR; i++) 
 
   { 
    // Capture raw samples 
    AD1_GetSample(&myDevice, &RawData); 
 
    // Convert raw samples into floats scaled to 0 - VDD 
    AD1_RawToPhysical(ReferenceVoltage, RawData, 
&PhysicalData[0]); 
 
    inStreamData[i] = PhysicalData[0]; 
     
 
    DA1_WritePhysicalValue(&myDevice1, inStreamData[i]); 
   } 
 
   //Flush the chache of the buffers 
   Xil_DCacheFlushRange((u32)inStreamData,SIZE_ARR*sizeof(float)); 
   Xil_DCacheFlushRange((u32)m_dma_buffer_RX,SIZE_ARR*sizeof(float)); 
 
   //The DMA passes the values of inStreamData from the DDR memory to 
the custom IP block 
  
 XAxiDma_SimpleTransfer(&axiDMA,(u32)inStreamData,SIZE_ARR*sizeof(float),XAXIDMA_D
MA_TO_DEVICE); 
 
   //The DMA passes the received data from the custom IP block to the 
DDR memory back 
  
 XAxiDma_SimpleTransfer(&axiDMA,(u32)m_dma_buffer_RX,SIZE_ARR*sizeof(float), 
XAXIDMA_DEVICE_TO_DMA); 
  
 Xil_DCacheInvalidateRange((u32)m_dma_buffer_RX,SIZE_ARR*sizeof(float)); 
 
   for(int k = 0; k < MAX_ARR; k++) 
   { 
    //print the array which contains the peaks 
    printf("max[%d] = %.02f\n",k,max_vec[k]); 
   } 
  } 
 } 
 
 DisableCaches(); 
    return 0; 
} 
 
 
void EnableCaches() { 
#ifdef __MICROBLAZE__ 
#ifdef XPAR_MICROBLAZE_USE_ICACHE 
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   Xil_ICacheEnable(); 
#endif 
#ifdef XPAR_MICROBLAZE_USE_DCACHE 
   Xil_DCacheEnable(); 
#endif 
#endif 
} 
 
void DisableCaches() { 
#ifdef __MICROBLAZE__ 
#ifdef XPAR_MICROBLAZE_USE_DCACHE 
   Xil_DCacheDisable(); 
#endif 
#ifdef XPAR_MICROBLAZE_USE_ICACHE 
   Xil_ICacheDisable(); 
#endif 
#endif 
} 
 
 
void initPeripherals() 
{ 
 axiDMA_cfg = XAxiDma_LookupConfig(XPAR_AXIDMA_0_DEVICE_ID); 
 
 if(axiDMA_cfg) 
  { 
   int status = XAxiDma_CfgInitialize(&axiDMA,axiDMA_cfg); 
   if(status != XST_SUCCESS) 
   { 
    printf("failed\n"); 
   } 
  } 
 
 
 max_find_cfg = XMax_find_dma_LookupConfig(XPAR_MAX_FIND_DMA_0_DEVICE_ID); 
 
  if(max_find_cfg) 
   { 
    int status1 = 
XMax_find_dma_CfgInitialize(&max_find,max_find_cfg); 
    if(status1 != XST_SUCCESS) 
    { 
     printf("failed\n"); 
    } 
   } 
} 

 

At first the memory addresses of the DMA and a pointer to the BRAM base address 

are defined. Then the PmodAD1, the PmodDA1 and the AXI GPIO are initialized. 

With the function initPeripherals(); the DMA and the Max_find_dma IP core are 

initialized. In the while(1) loop, a trigger signal is given when any on-board button is 

pressed. After the button is pushed, the Microblaze Core gets the ADC samples, 

converts them in float variables and sends them to the DAC. At the same time, the 
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samples coming from the PmodAD1 are stored in the inStreamData array, which is 

passed from the DDR3 to the DMA with the function XAxiDma_SimpleTransfer (&axiDMA, 

(u32)inStreamData, SIZE_ARR*sizeof(float), XAXIDMA_DMA_TO_DEVICE);. The AXI DMA 

then transfers automatically the ADC samples to the Max_find_dma IP core which 

computes the peaks and stores them in the BRAM memory via the BRAM interface. 

Then, the ADC samples are transferred back from the custom IP core to the DDR3 by 

the AXI DMA with the function XAxiDma_SimpleTransfer(&axiDMA, (u32)m_dma_buffer_RX, 

SIZE_ARR*sizeof(float), XAXIDMA_DEVICE_TO_DMA);. Then the Microblaze Core prints the 

peaks found (which have been stored in the BRAM) on the UART port. 

 

 

4.4.4  Hardware setup and results 

 

In this section the hardware setup and the results are presented. The hardware setup is 

the same as the 4.1.3 section. So, on the first channel of the oscilloscope the output of 

the waveform generator is displayed, while on the second channel of the oscilloscope 

the analog output of the PmodDA1 is shown.  

Next are some measurements carried out, which are obtained by changing the 

parameters on the pulse generator. As already shown in the SDK code, thanks to the 

infinite ‘while’ loop, the peaks are continuously printed on the COM7 port of the PC 

when any button of the FPGA board is pressed.  

Efficiency versus time delay is shown in the next picture. 
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Fig. 49 Efficiency versus time delay between pulses. 

 

A 50% efficiency is provided with a 250 ms period of the input signal. Efficiency 

drops when the period is less than 500 ms, and when the period is less than 1 ms the 

setup misses all the input peaks.  

 

4.5 Peak finding algorithm implemented in hardware   

 

In this section the fifth FPGA design is presented. In this design the simplified peak 

finding algorithm is entirely implemented on a custom IP block created with the 

Vivado HLS tool. The custom IP core gets the ADC samples directly from the ADC 

memory address without using resources of the Microblaze Core. Then, the custom 

IP block calculates the peaks and sends them directly to the DDR3 memory without 

using CPU software resources. The Microblaze Core just converts the ADC samples 

and the peaks found in readable values and prints them. The ADC and the DAC used 
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in the experiments carried out are the Digilent PmodAD1 and the Digilent 

PmodDA1, respectively. In order to generate the external analog signal a trimmer is 

used. In order to check the output signals of the FPGA an Arduino UNO 

microcontroller is used. 

 

4.5.1 Vivado HLS implementation 

 

In this section the Vivado HLS implementation is presented. 

#include <stdlib.h> 

#include <inttypes.h> 

#include <string.h> 

 

#define MAX_ARRAY_SIZE 5    //size of the max array 

#define NUM_SAMPLES 20      //window of sample that are checked 

 

void max_find_ADC(uint16_t *adc_addr, uint16_t *out) 

{ 

 

#pragma HLS INTERFACE m_axi depth=5 port=out offset=slave bundle=OUT_BUS 

#pragma HLS INTERFACE m_axi depth=1 port=adc_addr offset=slave bundle=ADC_BUS 

#pragma HLS INTERFACE s_axilite port=return 

 

    static uint16_t input_data[1]; 

    static uint16_t current_max = 0; 

    static uint8_t count = 0; 

    static uint8_t max_count = 0; 

    static uint16_t max[MAX_ARRAY_SIZE]; 

 

 

    memcpy(&input_data,adc_addr,sizeof(uint16_t)); 

 

    if(current_max < input_data[0]) 

        current_max = input_data[0]; 

 

    if(count == NUM_SAMPLES - 1) 

    { 

        max[max_count] = current_max; 

        count = 0; 

        current_max = 0; 

        if(max_count == MAX_ARRAY_SIZE - 1) 

        { 

            max_count = 0; 

            memcpy(out,max,MAX_ARRAY_SIZE*sizeof(uint16_t)); 

 

        } else { 

            max_count++; 

        } 

    } else { 

        count ++; 

    } 

} 
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The ports of the implemented IP core are the adc_addr, which will be connected to 

the memory address of the PmodAD1 through the AXI Interconnect IP core, and the 

out port which will be connected to the DDR3 memory through the AXI 

SmartConnect IP. The adc_addr port is declared as a 16 bits variable because the 

PmodAD1 converts the analog input in a digital output of 32 bits divided into two 16-

bits segments. Since the PmodAD1 has two analog to digital converters (A0->D0 and 

A1->D1) the first 16 bits segment represents the digital value coming from the D0 

channel and the following 16 bits represent the digital value of the D1 channel. So, 

since in this project the ADC samples are taken directly from the PmodAD1 IP core, 

its data format must be respected. The adc_addr and the out ports are declared as an 

AXI4-Master interface; in this way they can directly access the data contained in the 

memory addresses connected to the interface. With the BUNDLE option it is possible 

to rename the AXI4-Master ports in the visual representation of the IP block in 

Vivado. In this way, the AXI4-Master ports will be named m_axi_ADC_BUS and 

m_axi_OUT_BUS in the IP block.  

The return port is declared as an AXI4-Lite interface so the Microblaze Core can set 

the PmodAD1 and the DDR3 memory addresses in order to be accessed by the AXI4-

Master interfaces.  

The input_data variable is declared as a two element array because the C++ code 

written in Vivado HLS is then transformed in hardware, and in hardware 

programming each accessed variable needs to have specified dimensions. 

The variables are declared as static, so they maintain the previous value at every new 

iteration. 

With the ‘memcpy’ command, the data from the memory address connected to the 

AXI4-Master interface is copied to the variable passed as the first argument of the 

function. 

In order to launch the C simulation a test bench code is written. 

#include <stdlib.h> 

#include <inttypes.h> 

#include <string.h> 

#include <stdio.h> 
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#include <time.h> 

#include <malloc.h> 

 

void max_find_ADC(uint16_t *adc_addr, uint16_t *out); 

 

 

#define MAX_ARRAY_SIZE 5    //size of the max array 

#define NUM_SAMPLES 20      //window of sample that are checked 

 

 

int main() 

{ 

 

    uint16_t *adc_addr; 

    uint16_t *out; 

 

    adc_addr = (uint16_t*) malloc(sizeof(uint16_t)*64); 

    out = (uint16_t*) malloc(sizeof(uint16_t)*64); 

 

 

    for(int i = 0; i < (MAX_ARRAY_SIZE * NUM_SAMPLES); i++)     //in this for 

loop the variable "i" ranges from 0 to MAX_ARRAY_SIZE * NUM_SAMPLES 

    { 

        adc_addr[0] = rand() % 100 + 20; 

        printf("adc_addr[%d] = %lu\n",i,adc_addr[0]); 

        max_find_ADC(adc_addr,out); 

    } 

 

    for(int i = 0; i < MAX_ARRAY_SIZE; i++) 

        { 

            printf("out[%d] = %lu\n",i,out[i]); 

        } 

    return 0; 

} 

After the C simulation is completed the C synthesis and the C/RTL Cosimulation are 

launched. Then the IP block is exported so it can be used in the Vivado block design. 

 

4.5.2  Vivado implementation 

 

In this section the implemented design in Vivado is presented (Fig. 50). The memory 

addresses of each IP block are illustrated in figure 51. In order to create the block 

design illustrated in figure 50, it is necessary to include the “board files” of the FPGA 

board (Nexys Video) in the Vivado project. In order to instantiate the PmodAD1 and 

the PmodDA1 blocks, it is necessary to include the specific libraries. Moreover, it is 

necessary to include the libraries of the Vivado HLS project in order to add the 

Max_finder_adc IP core to the block design. 
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Fig. 50 Vivado implementation. 

 

 

Fig. 51 Memory addresses. 

 

As shown in figure 50 the Microblaze Core is connected to the AXI Interconnect, 

AXI SmartConnect, MDM and local memory as in the 4.1.1 project. 

The MIG 7 Series IP core is connected to the AXI SmartConnect and to the 

ddr3_sdram pin as in the 4.1.1 Vivado implementation. 
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The peripherals PmodAD1, PmodDA1, AXI UARTlite and AXI GPIO are connected 

to the AXI Interconnect as indicated in 4.1.1.  

The reset and the sys_clock_i pins are also connected in the same way as in 4.1.1. 

The Processor System Reset is connected as in the 4.1.1 block design. 

The Max_find_adc IP core is connected to the AXI interconnect output with an 

AXI4-Lite interface, so it can communicate with the Microblaze IP core as the 

previous custom IP cores. But, as already mentioned in the HLS project, the 

Max_find_adc IP core has two AXI4-Master interfaces: 

- m_axi_ADC_BUS interface, which is connected to the input of the AXI 

Interconnect IP core; so, this interface can directly take the samples from the 

PmodAD1 IP core without using software resources; 

- m_axi_OUT_BUS interface, which is connected to the input of the AXI 

SmartConnect IP core; so, this interface can directly write the calculated peaks 

to the DDR3 memory without using software resources. 

The System ILA IP core is connected to the AXI4-Master interfaces for debug 

purposes. 

For the same reasons as in section 4.1.1, a constraints.xdc file is needed with the 

following command: 

set_property IOSTANDARD LVCMOS33 [get_ports sys_clock_i] 

Once the block design is verified, the HDL wrapper is created and the Vivado 

synthesis is launched. Since the pins used are the same as in section 4.3.1 project, the 

pinout is the same as the one in section 4.3.1.  

After the synthesis is completed, the implementation (Fig. 52) and the bitstream file 

are generated. Then the hardware is exported to the Xilinx SDK tool in order to 

program the Microblaze Core. 
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Fig. 52 Implemented design.  

 

4.5.3  Xilinx SDK implementation 

 

In this section the SDK implementation is presented. 

#include <stdio.h> 
#include "platform.h" 
#include "xil_printf.h" 
#include "xparameters.h" 
#include "PmodAD1.h" 
#include "sleep.h" 
#include "xil_cache.h" 
#include "xil_io.h" 
#include "xil_types.h" 
#include "xmax_find_adc.h" 
#include "PmodDA1.h" 
 
#define MEM_BASE_ADDRESS 0x80000000 
#define TX_BUFFER_BASE (MEM_BASE_ADDRESS + 0x00100000) 
#define RX_BUFFER_BASE (MEM_BASE_ADDRESS + 0x00300000) 
 
 
u32 *Mem = (u32*) TX_BUFFER_BASE; 
u16 Mem16; 
float memf; 
 
u32 adc; 
u16 adc16; 
float adcf; 
 
PmodAD1 AD1; 
PmodDA1 DA1; 
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const float ReferenceVoltage = 3.3; 
 
XMax_find_adc max_find; 
 
float conversionFactor = ReferenceVoltage / ((1 << AD1_NUM_BITS) - 1); 
 
 
 
int main() 
{ 
    init_platform(); 
 
    AD1_begin(&AD1, XPAR_PMODAD1_0_AXI_LITE_SAMPLE_BASEADDR); 
    DA1_begin(&DA1, XPAR_PMODDA1_0_AXI_LITE_SPI_BASEADDR); 
 
    XMax_find_adc_Initialize(&max_find, XPAR_MAX_FIND_ADC_0_DEVICE_ID); 
 
    XMax_find_adc_Set_adc_addr(&max_find, XPAR_PMODAD1_0_AXI_LITE_SAMPLE_BASEADDR); 
 
    XMax_find_adc_Set_out_r(&max_find, TX_BUFFER_BASE); 
 
    while(1){ 
    XMax_find_adc_Start(&max_find); 
    while(!XMax_find_adc_IsDone(&max_find)); 
 
    for(int i = 0; i < 100; i++) 
    { 
     adc = Xil_In32(XMax_find_adc_Get_adc_addr(&max_find)); 
     adc16 = adc & AD1_DATA_MASK; 
     adcf = adc16 * conversionFactor; 
     printf("%d: adc = %f\n",i,adcf); 
    } 
 
 
    for(int i = 0; i < 5; i++) 
    { 
     Mem16 = Mem[i] & AD1_DATA_MASK; 
     memf = Mem16 * conversionFactor; 
     printf("mem[%d] = %f\n",i,memf); 
     DA1_WritePhysicalValue(&DA1, memf); 
      
    } 
} 
 
 
    cleanup_platform(); 
    return 0; 
} 

As we can see in the SDK code, the Microblaze just initializes the PmodAD1, the 

PmodDA1 and the Max_find_adc IP core. Then, the CPU sets the memory addresses 

for the AXI4-Master interfaces. The adc_addr AXI4-Master interface is connected to 

the PmodAD1 memory base address; the out AXI4-Master interface is connected to 

the DDR3 memory base address plus a 0x00100000 offset. The memory offset is 
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added in order not to affect the project code written in the first part of the DDR3 

memory. 

In the while(1) loop the ADC samples are converted and printed just to check the 

functioning of the PmodAD1. Finally, the peaks are printed from the DDR3 memory 

which is pointed by the mem pointer.   

The crucial aspect of this project is that the software resources of the Microblaze 

CPU are used neither to transfer the ADC samples to the Max_find_adc IP core nor 

to calculate the peaks, because this process takes place in hardware by the custom IP 

core created in Vivado HLS. The Microblaze Core is used only to check the results. 

 

4.5.4  Hardware setup and results 

 

In this section the hardware setup is presented (Fig. 53). 

 

 

Fig. 53 Hardware setup.  
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In this hardware setup the PmodAD1 is connected to the JA connector of the Nexys 

Video board while the PmodDA1 is connected to the JB connector. The analog input 

signal is passed to the A0 pin of the PmodAD1, and it is changed with a trimmer 

placed on the bread board. The A1 output pin of the DAC is connected to the A0 

analog pin of the Arduino UNO microcontroller which is connected to the COM3 

port of the PC. The UART port of the FPGA board is connected to the COM7 port. 

Next are some results which are the values printed on the COM7 port by the FPGA. 

As shown in the SDK code the printed values on the UART port are the ADC 

samples and the calculated peaks. 

 

 

Fig. 54 ADC samples acquired by the FPGA and found peaks printed on the COM7 port. 
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Fig. 55 ADC samples acquired by the FPGA and found peaks printed on the COM7 port. 

 

 

Fig. 56 ADC samples acquired by the FPGA and found peaks printed on the COM7 port. 

 

Finally, some measurements are conducted using the same hardware setup as the 

previous projects. The Efficiency versus time delay between pulses is shown in figure 

57. 
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Fig. 57 Efficiency versus time delay between pulses. 

 

As the graph shows, an efficiency of 50% is obtained for about 1 ms period. When 

the period of the input signal is below 1 ms, the graph starts to drop and by the time 

the input period is of the order of 0.5 ms, the setup misses almost all the input peaks. 

 

4.6  Efficiency comparison  

 

Finally, in order to compare the efficiency of each design, all the efficiency graphs 

are superimposed (Fig. 58). 
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Fig. 58 Superimposition of the efficiency graphs. 

 

As shown in the graph, the project presented in section 4.5 appears to be the most 

efficient, while the project presented in section 4.1 is the less efficient. The projects 

presented in section 4.2, 4.3 and 4.4 show an intermediate performance with respect 

to the other designs.  
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CONCLUSIONS 

In this work, a peak-finding algorithm implemented on different FPGA architectures 

has been presented. Each design allows the processing of the input data in real time, 

thus reducing the amount of data to be stored since only the useful data (such as the 

peaks and their amplitudes) are saved in the internal memory of the FPGA. 

Moreover, each design uses progressively less software resources, thus making the 

peak-finding algorithms more and more efficient.  

By comparing the efficiency graph of each design, the FPGA implementation of 

section 4.5 appears to be the most efficient one with respect to how many peaks are 

acquired in relation to the increasing frequency of the input signal.  

As shown in the efficiency graphs, the implemented FPGA designs are able to 

acquire the input peaks when the distance between two peaks is in the order of the 

milliseconds. As already mentioned in the first chapter, the time interval between two 

peaks in a signal coming from a drift chamber filled with a “slow” gas is in the order 

of 1 nanosecond. Therefore, the FPGA setups implemented in this work provide 

preliminary results since the implemented architectures start to fail to acquire the 

input peaks when the time interval between two peaks is in the order of hundreds of 

milliseconds. So, the provided FPGA setups are not suited to be used in a real 

application.  

A big limitation for the efficiency of each FPGA design is the used hardware. In fact, 

an acquisition chain is represented in figure 59. 

 

 

 

Fig.59 Acquisition chain for a drift chamber. [1] 
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As figure 59 shows, the setup includes an amplifier and an ADC to get the signal 

from the drift chamber, then the signals are processed by the FPGA and the found 

peaks are sent to the PC. Instead, in the presented hardware setups, the output signal 

is sent to a DAC in order to be displayed on the oscilloscope, slowing down the peak 

acquisition. Moreover, the used ADC and DAC are low-cost devices. 

Another big limitation of the implemented designs is how the ADC sends the data to 

the FPGA. The PmodAD1 gets the signal from the wave generator and serially sends 

the samples to the FPGA using the SPI protocol. Of course, serially sending the 

samples to the FPGA is not the optimal way to acquire the input signal. By using an 

ADC which parallelly sends the samples to the FPGA, the efficiency of the designs 

would drastically improve.    

The topic addressed in this dissertation leaves a lot of room for future developments. 

Ideas for future work include:  

- the progressive elimination of the Microblaze IP core; in this way the 

implemented FPGA design could work without a microcontroller;  

- the use of an ADC which exploits parallel communication to send the samples 

to the FPGA; 

- implementing more elaborated/efficient peak-finding algorithms on the FPGA; 

- storing not only the amplitude of the peaks found, but also the timing 

information by adding new IP cores to the block design in Vivado such as an 

AXI Timer IP core.      
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