Signals in Particle Detectors (1/2?)

Werner Riegler, CERN

CERN Detector Seminar, 5.9.2008

The principle mechanisms and formulas for signal generation in particle detectors are reviewed.

As examples the signals in parallel plate chambers, wire chambers and silicon detectors are discussed.

Lecture 1: Principles and Signal Theorems

Lecture 2: Signals in Solid State Detectors, Gas Detectors (Wire Chambers, GEMs, MICROMEGAs) and Liquid Calorimeters

Signals in Detectors

During the academic training lectures on particle detectors <u>http://indico.cern.ch/conferenceDisplay.py?confld=24765</u> a few slides on signal generation principles and signal theorems created quite a lot of questions and discussions.

It seems that there is a need for a discussion of signals in particle detectors.

Although the principles and formulas are well known since a long time, there exists considerable confusion about this topic.

This is probably due to different vocabulary in different detector traditions and also due to the fact that the signal explanations in many (or most !) textbooks on particle detectors are simply wrong.

Creation of the Signal

From a modern detector text book:

... It is important to realize that the signals from wire chambers operating in proportional mode are primarily generated by *induction* due to the moving charges rather than by the *collection* of these charges on the electrodes ...

... When a charged [...] particle traverses the gap, it ionizes the atoms [...]. Because of the presence of an electric field, the electrons and ions created in this process drift to their respective electrodes. The charge collected at these electrodes forms the [...] signal, in contrast to gaseous detectors described above, where the signal corresponds to the current *induced* on the electrodes by the drifting charges (ions). ...

These statements are completely wrong !

All signals in particle detectors are due to *induction* by moving charges. Once the charges have arrived at the electrodes the signals are 'over'.

Creation of the Signal

Charged particles leave a trail of ions (and excited atoms) along their path: Electron-lon pairs in gases and liquids, electron hole pairs in solids.

Photons from de-excitation are usually converted to electrons for detection.

The produced charges can be registered \rightarrow Position measurement \rightarrow Time measurement \rightarrow Tracking Detectors

Cloud Chamber:	Charges create drops \rightarrow photography.
Bubble Chamber:	Charges create bubbles \rightarrow photography.
Emulsion:	Charges 'blacked' the film.
Spark Chamber:	Charges produce a conductive channel that create a
-	discharge \rightarrow photography

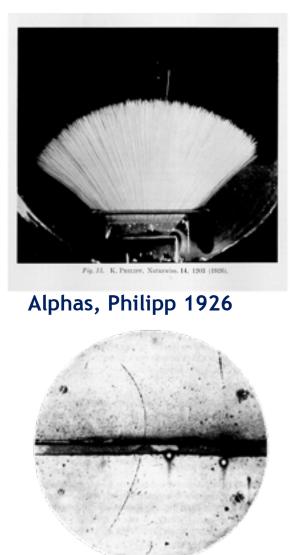
Gas and Solid State Detectors: Moving Charges (electric fields) induce electronic signals on metallic electrons that can be read by dedicated electronics.

àln solid state detectors the charge created by the incoming particle is sufficient (not exactly correct, in Avalanche Photo Diodes one produces avalanches in a solid state detector)

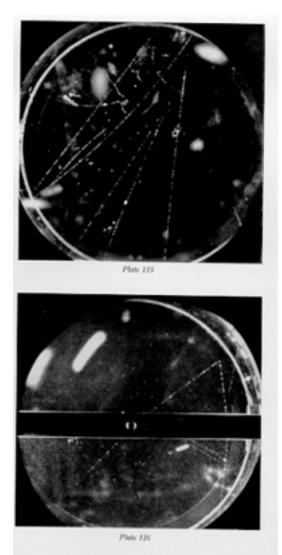
àln gas detectors (e.g. wire chamber) the charges are internally multiplied in order to provide a measurable signal.

Cloud Chamber, C.T.R. Wilson 1910

Charges act as condensation nuclei in supersaturated water vapor



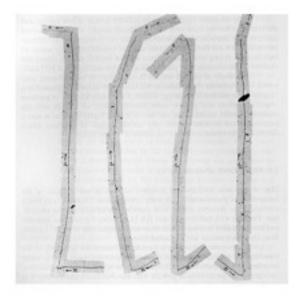
Positron discovery, Carl Andersen 1933



V- particles, Rochester and Wilson, 1940ies

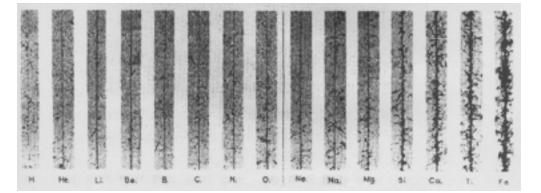
Nuclear Emulsion, M. Blau 1930ies

Charges initiate a chemical reaction that blackens the emulsion (film)



C. Powell, Discovery of muon and pion, 1947

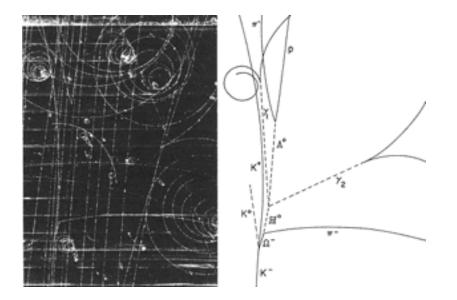
Kaon Decay into 3 pions, 1949



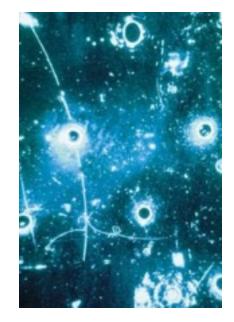
Cosmic Ray Composition W. Riegler, Particle Detectors

Bubble Chamber, D. Glaser 1952

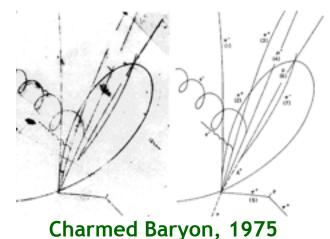
Charges create bubbles in superheated liquid, e.g. propane or Hydrogen (Alvarez)



Discovery of the W⁻ in 1964



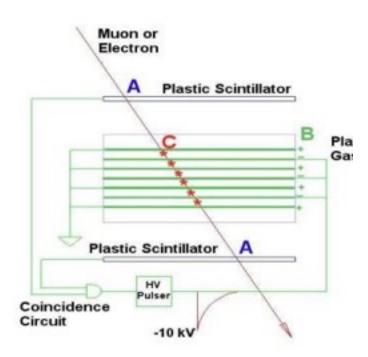
Neutral Currents 1973

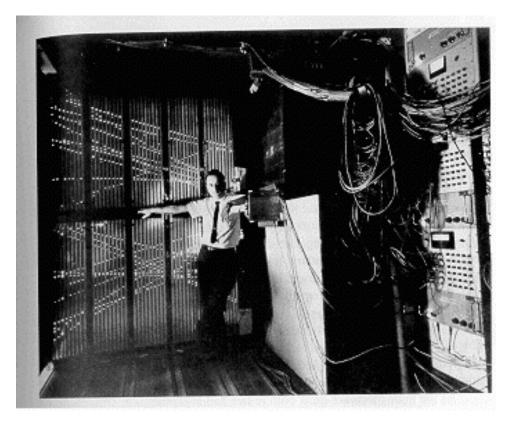


W. Riegler, Particle Detectors

Spark Chamber, 1960ies

Charges create 'conductive channel' which initiates a spark in case HV is applied.

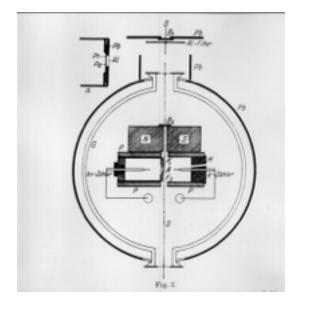




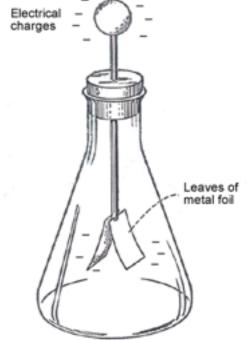
Discovery of the Muon Neutrino 1960ies

Tip Counter, Geiger 1914

Charges create a discharge of a needle which is at HV with respect to a cylinder.

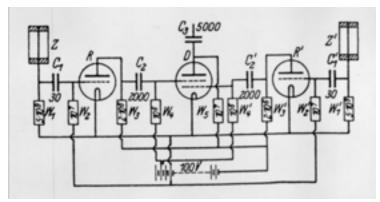


The needle is connected to an electroscope that can detect the produced charge.

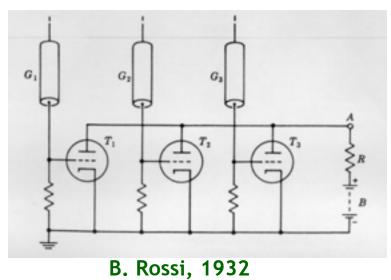


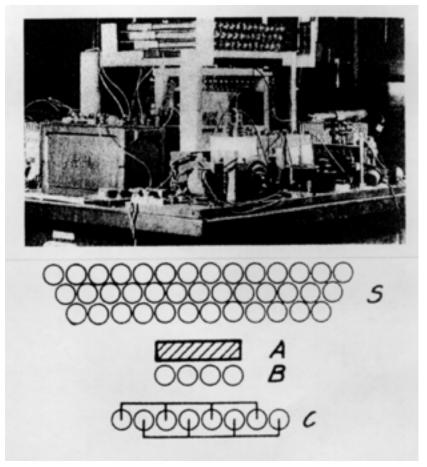
Electric Registration of Geiger Müller Tube Signals

Charges create a discharge in a cylinder with a thin wire set to HV. The charge is measured with a electronics circuit consisting of tubes \rightarrow electronic signal.



W. Bothe, 1928





Cosmic Ray Telescope 1930ies

7/31/15

W. Riegler, Particle Detectors

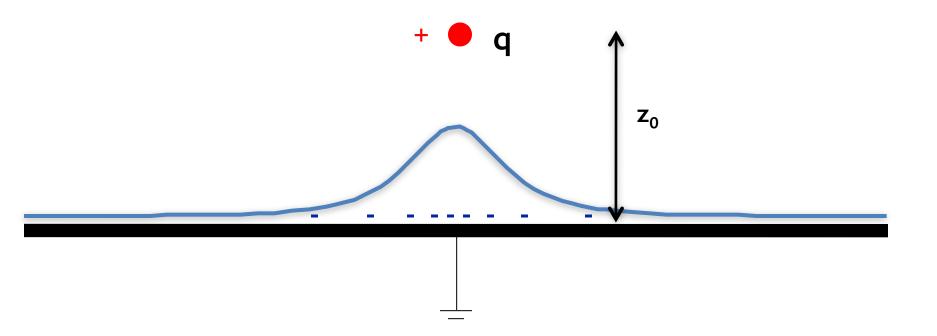
Ionization Chambers, Wire Chambers, Solid State Detectors

!The movement of charges in electric fields induces signal on readout electrodes (No discharge, there is no charge flowing from cathode to Anode) !



The Principle of Signal Induction on Metal Electrodes by Moving Charges

A point charge q at a distance z_0 above a grounded metal plate 'induces' a surface charge.



Electrostatics, Things we Know

Poisson Equation:

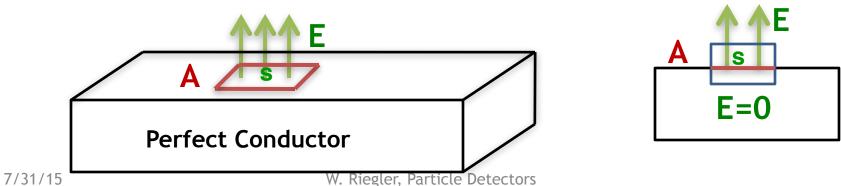
$$\Delta \varphi = -\frac{\rho}{\varepsilon_0} \qquad \vec{E} = -\vec{\nabla} \varphi$$

Gauss Law:

$$\oint \vec{E} \, d\vec{A} = \frac{1}{\varepsilon_0} \oint \rho \, dV$$

 \rightarrow Metal Surface: Electric Field is perpendicular to the surface. Charges are only on the surface. Surface Charge Density s and electric E field on the surface are related by

$$EA = \frac{1}{\varepsilon_0} \sigma A \qquad \rightarrow \qquad \sigma = \varepsilon_0 E$$

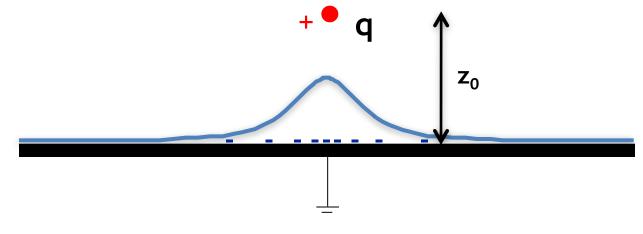


In order to find the charge induced on an electrode we therefore have to

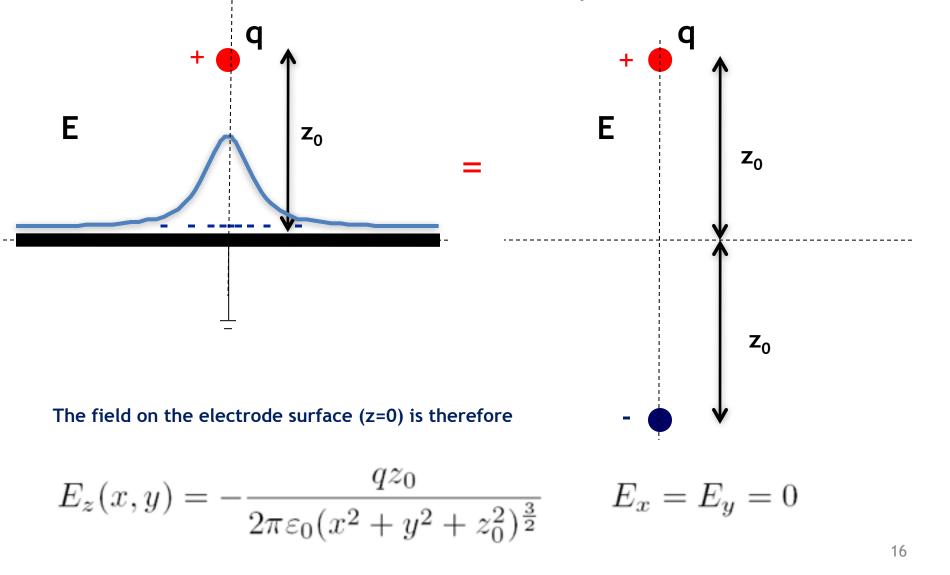
a)Solve the Poisson equation with boundary condition that j=0 on the conductor surface.

b)Calculate the electric field E on the surface of the conductor

c)Integrate e₀E over the electrode surface.



The solution for the field of a point charge in front of a metal plate is equal to the solution of the charge together with a (negative) mirror charge at $z=-z_0$.

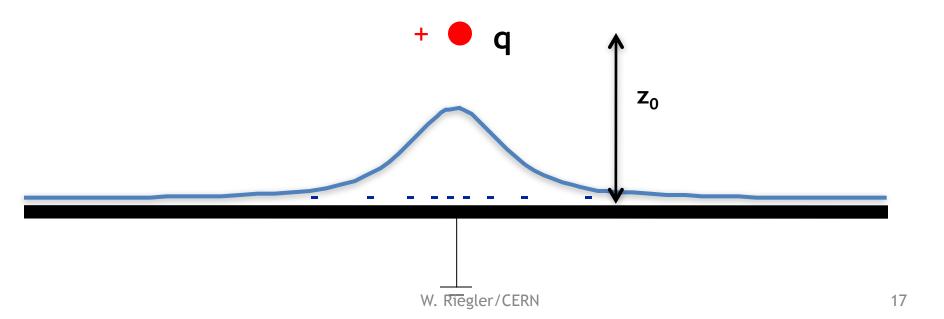


We therefore find a surface charge density of

$$\sigma(x,y) = \varepsilon_0 E_z(x,y) = -\frac{qz_0}{2\pi(x^2 + y^2 + z_0^2)^{\frac{3}{2}}}$$

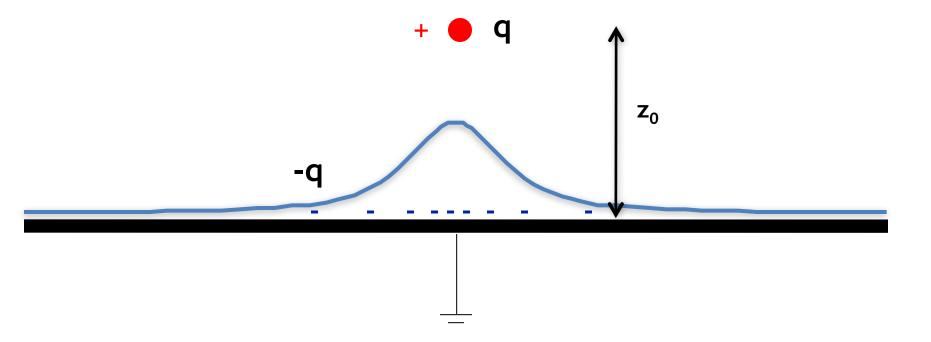
And therefore a total induced charge of

$$Q = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sigma(x, y) dx dy = -q$$

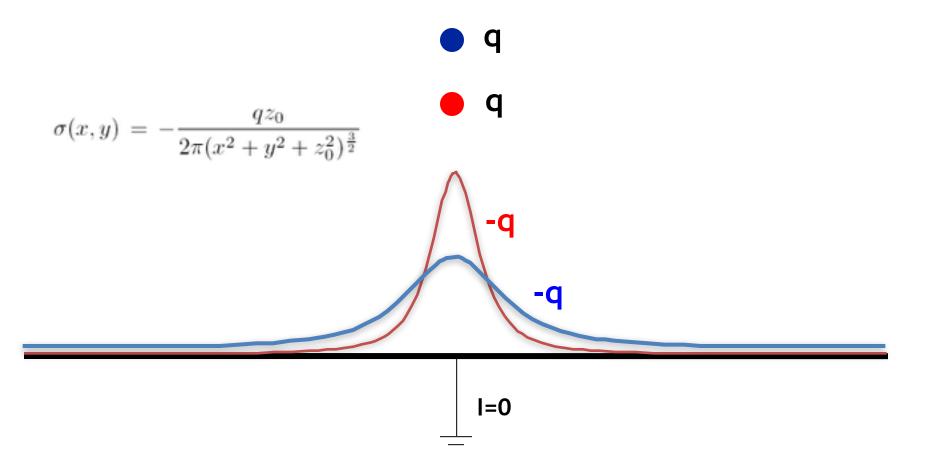


The total charge induced by a point charge q on an infinitely large grounded metal plate is equal to -q, independent of the distance of the charge from the plate.

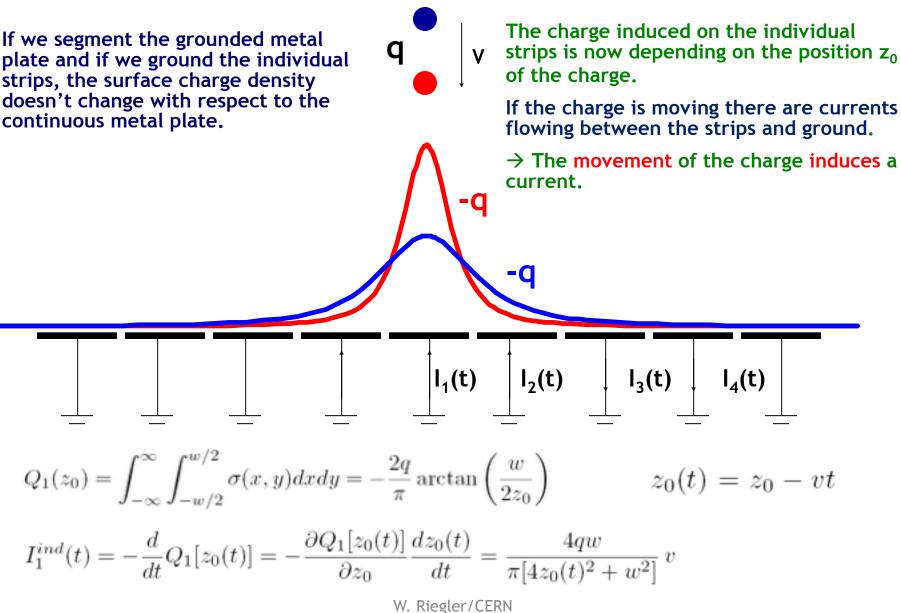
The surface charge distribution is however depending on the distance z_0 of the charge q.



Moving the point charge closer to the metal plate, the surface charge distribution becomes more peaked, the total induced charge is however always equal to -q.



Signal Induction by Moving Charges

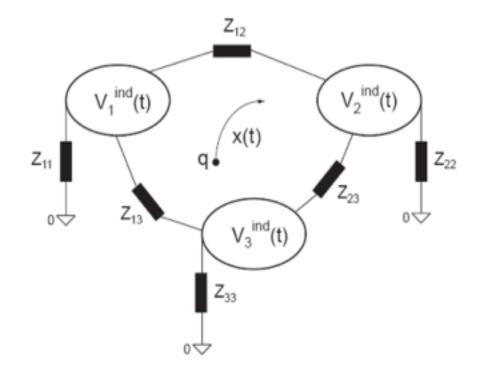


Formulation of the Problem

In a real particle detector, the electrodes (wires, cathode strips, silicon strips, plate electrodes ...) are not grounded but they are connected to readout electronics and interconnected by other discrete elements.

We want to answer the question:

What are the voltages induced on metal electrodes by a charge q moving along a trajectory x(t), in case these metal electrodes are connected by arbitrary linear impedance components ?

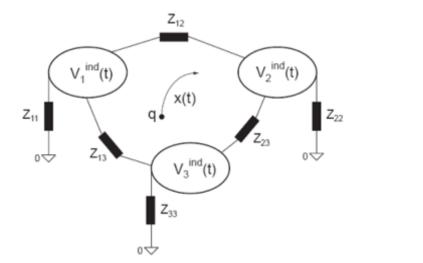


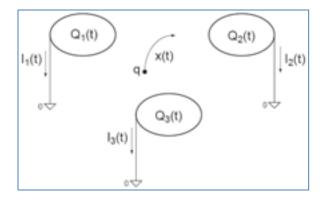
Formulation of the Problem

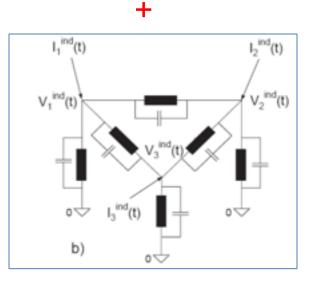
We will divide the problem into two parts:

We first calculate the currents induced on grounded electrodes.

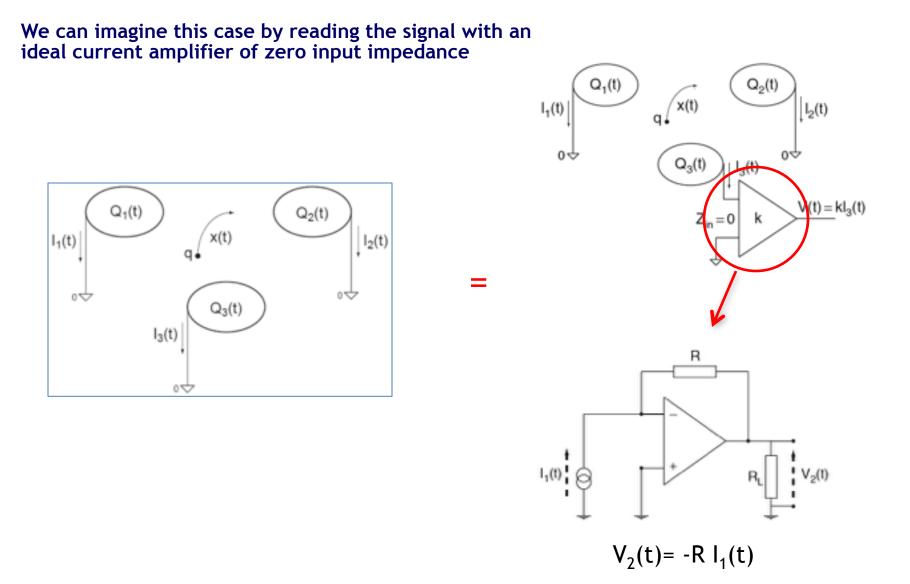
A theorem, that we will proof later, states that we then have to place these currents as ideal current sources on a circuit containing the discrete components and the mutual electrode capacitances



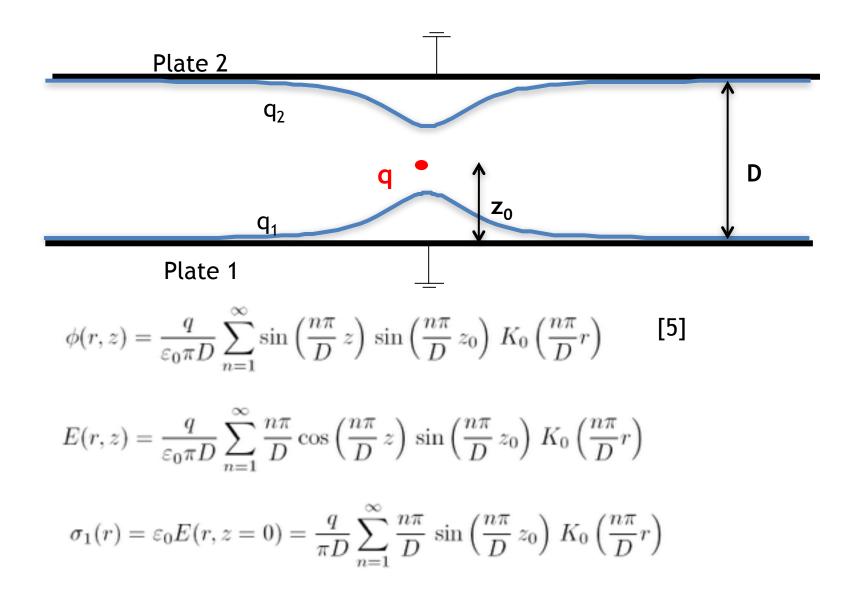




Currents on Grounded Electrodes

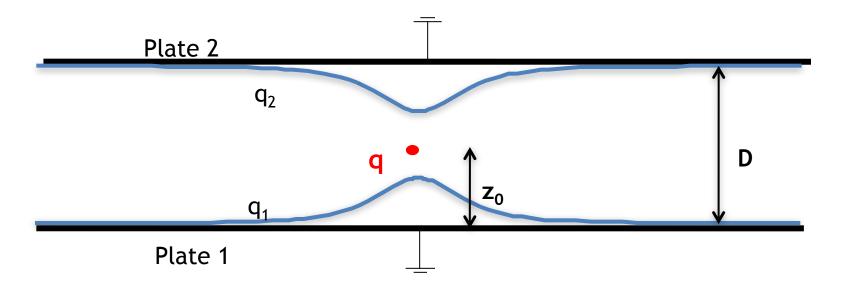


Parallel Plate Chamber



[5] C. Y. Fong, C. Kittel, Induced Charge on Capacitor Plates, Am. J. Phys. 35(1967)1091.

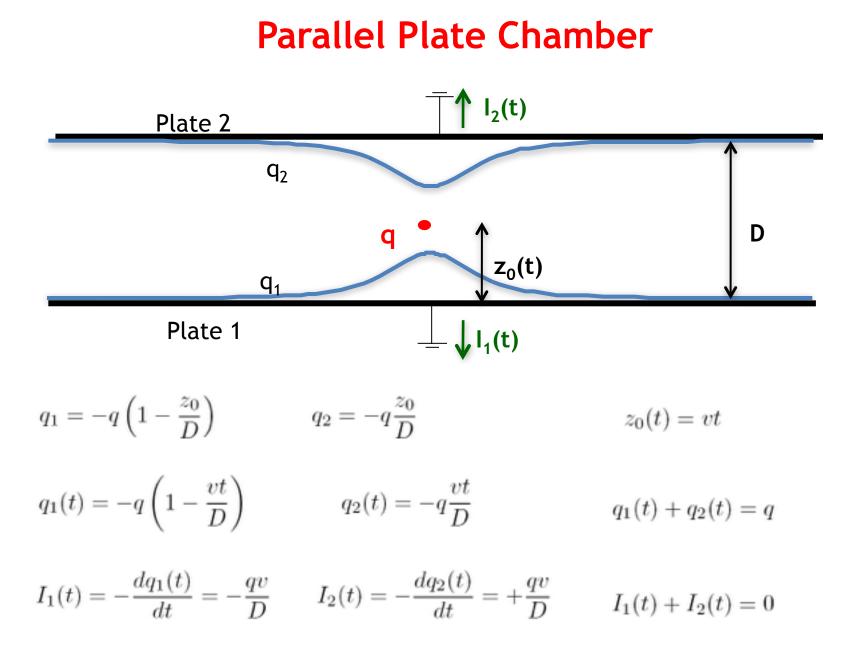
Parallel Plate Chamber



$$q_1 = \int_0^\infty 2r\pi\sigma(r)dr = \frac{q}{\pi D}\sum_{n=1}^\infty \frac{n\pi}{D}\sin\left(\frac{n\pi}{D}z_0\right)\int_0^\infty 2r\pi K_0\left(\frac{n\pi}{D}r\right)dr = \frac{2q}{\pi}\sum_{n=1}^\infty \frac{1}{n}\sin\left(\frac{n\pi}{D}z_0\right) = \frac{1}{\pi}\sum_{n=1}^\infty \frac{1}{n}\sin\left(\frac{n\pi}{D}z_0\right) = \frac{1}{\pi}\sum_{n=1}^\infty \frac{1}{n}\sin\left(\frac{n\pi}{D}z_0\right) = \frac{1}{\pi}\sum_{n=1}^\infty \frac{1}{n}\sum_{n=1}^\infty \frac{1}{n}\sin\left(\frac{n\pi}{D}z_0\right) = \frac{1}{\pi}\sum_{n=1}^\infty \frac{1}{n}\sum_{n=1}^\infty \frac{1}{$$

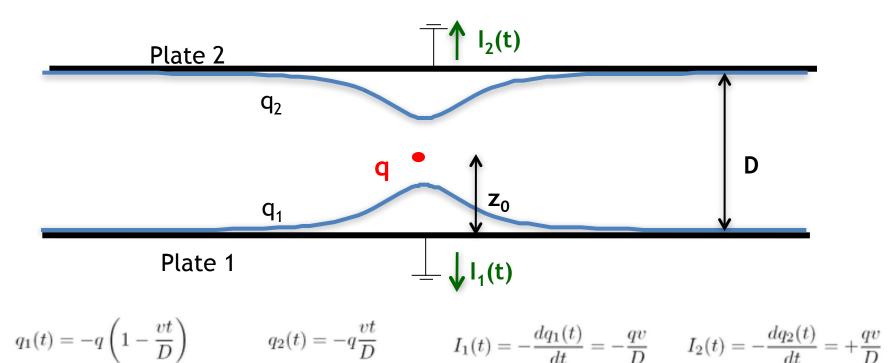
$$= -q \left(1 - \frac{z_0}{D}\right)$$
$$q_2 = \dots = -q \frac{z_0}{D}$$
$$q_1 + q_2 = -q$$

7/31/15



W. Riegler, Particle Detectors

Parallel Plate Chamber



The sum of all induced charges is equal to the moving charge at any time.

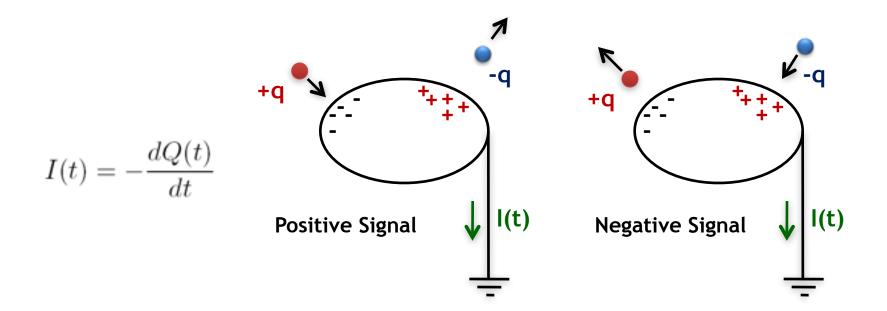
The sum of the induced currents is zero at any time.

The field calculation is complicated, the formula for the induced signal is however very simple - there might be an easier way to calculate the signals ?

\rightarrow Ramo-Schottky theorem !

7/31/15

Signal Polarity Definition



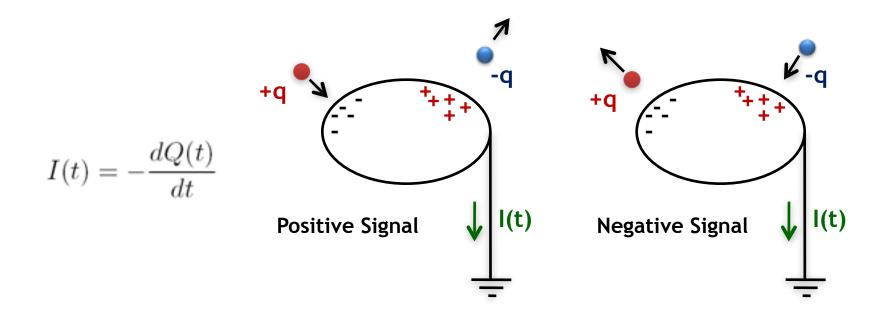
The definition of I=-dQ/dt states that the positive current is pointing away from the electrode.

The signal is positive if: Positive charge is moving from electrode to ground or Negative charge is moving from ground to the electrode

The signal is negative if: Negative charge is moving from electrode to ground or Positive charge is moving from ground to the electrode

7/31/15

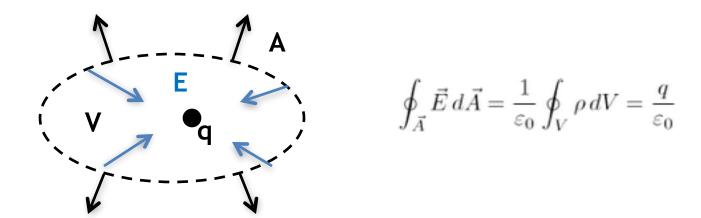
Signal Polarity Definition



By this we can guess the signal polarities:

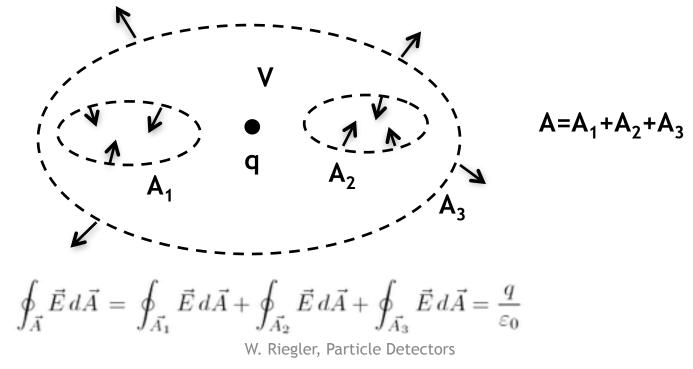
In a wire chamber, the electrons are moving towards the wire, which means that they attract positive charges that are moving from ground to the electrode. The signal of a wire that collects electrons is therefore negative.

Sum of Induced Charges and Currents



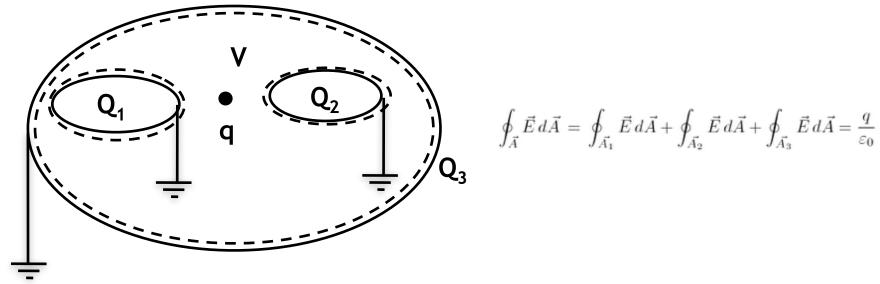
The surface A must be oriented towards the outside of the volume V.

7/31/15



30

Sum of Induced Charges and Currents



In case the surfaces are metal electrodes we know that

$$Q_{1} = -\oint_{\vec{A}_{1}} \varepsilon_{0}\vec{E}\,d\vec{A} \qquad Q_{2} = -\oint_{\vec{A}_{2}} \varepsilon_{0}\vec{E}\,d\vec{A} \qquad Q_{3} = -\oint_{\vec{A}_{3}} \varepsilon_{0}\vec{E}\,d\vec{A}$$

And we therefore have

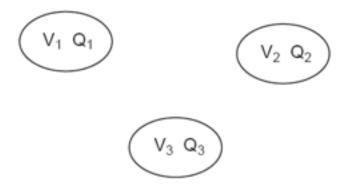
$$Q_1 + Q_2 + Q_3 = -q$$

In case there is one electrode enclosing all the others, the sum of all induced charges is always equal to the point charge.

The sum of all induced currents is therefore zero at any time !

7/31/15

Charged Electrodes



Setting the three electrodes to potentials V_1 , V_2 , V_3 results in charges Q_1 , Q_2 , Q_3 . In order to find them we have to solve the Laplace equation

$$\Delta \varphi = 0$$

with boundary condition

$$\varphi|_{\vec{A}_1} = V_1 \qquad \varphi|_{\vec{A}_2} = V_2 \qquad \varphi|_{\vec{A}_3} = V_3$$

And the calculate

$$Q_1 = \oint_{\vec{A}_1} -\vec{\nabla}\varphi \, d\vec{A} \qquad Q_2 = \oint_{\vec{A}_2} -\vec{\nabla}\varphi \, d\vec{A} \qquad Q_3 = \oint_{\vec{A}_3} -\vec{\nabla}\varphi \, d\vec{A}$$

W. Riegler, Particle Detectors

Green's Second Theorem

Gauss Law which is valid for Vector Field and Volume V surrounded by the Surface A:

$$\oint_{\vec{A}} \vec{E} \, d\vec{A} = \oint_{V} \vec{\nabla} \vec{E} \, dV$$

By setting

$$\vec{E} = \varphi \vec{\nabla} \psi \qquad \qquad \oint_{\vec{A}} \varphi \vec{\nabla} \psi \, d\vec{A} = \oint_{V} \vec{\nabla} \varphi \vec{\nabla} \psi \, dV + \oint_{V} \varphi \Delta \psi \, dV$$

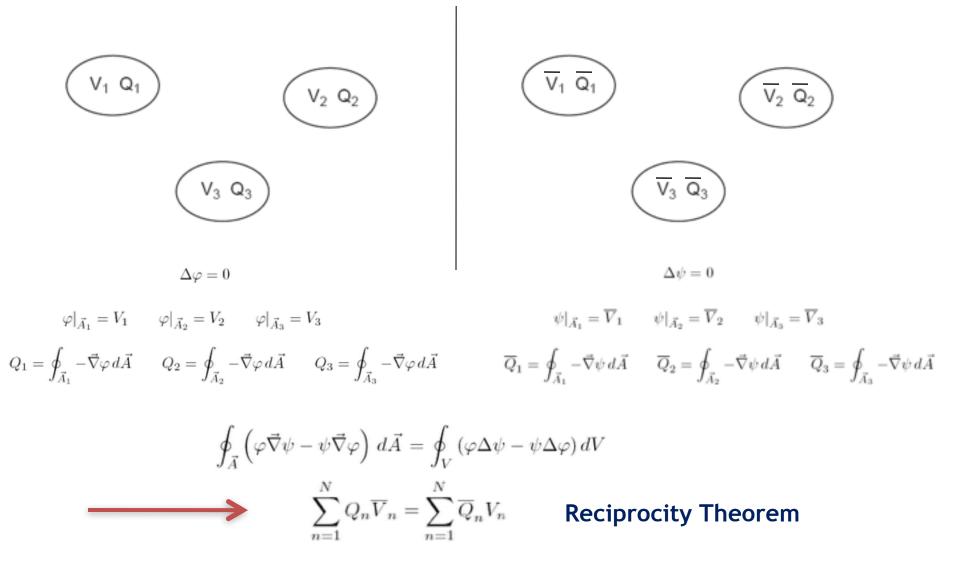
and setting

$$\vec{E} = \psi \vec{\nabla} \varphi \qquad \qquad \oint_{\vec{A}} \psi \vec{\nabla} \varphi \, d\vec{A} = \oint_{V} \vec{\nabla} \psi \vec{\nabla} \varphi \, dV + \oint_{V} \psi \Delta \varphi \, dV$$

and subtracting the two expressions we get Green's second theorem:

$$\oint_{\vec{A}} \left(\varphi \vec{\nabla} \psi - \psi \vec{\nabla} \varphi \right) d\vec{A} = \oint_{V} \left(\varphi \Delta \psi - \psi \Delta \varphi \right) dV$$

Green's Theorem, Reciprocity



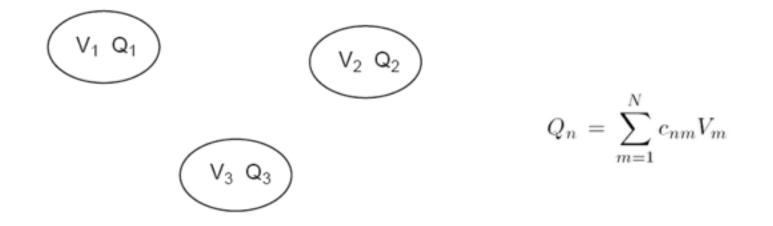
It related two electrostatic states, i.e. two sets of voltages and charges

7/31/15

W. Riegler, Particle Detectors

Electrostatics, Capacitance Matrix

From the reciprocity theorem it follows that the voltages of the electrodes and the charges on the electrodes are related by a matrix



The matrix c_{nm} is called the capacitance matrix with the important properties

 ΛI

N

$$c_{nm} = c_{mn}$$
 $c_{nm} < 0$ $\sum_{m=1}^{N} c_{nm} > 0$

7/31/15

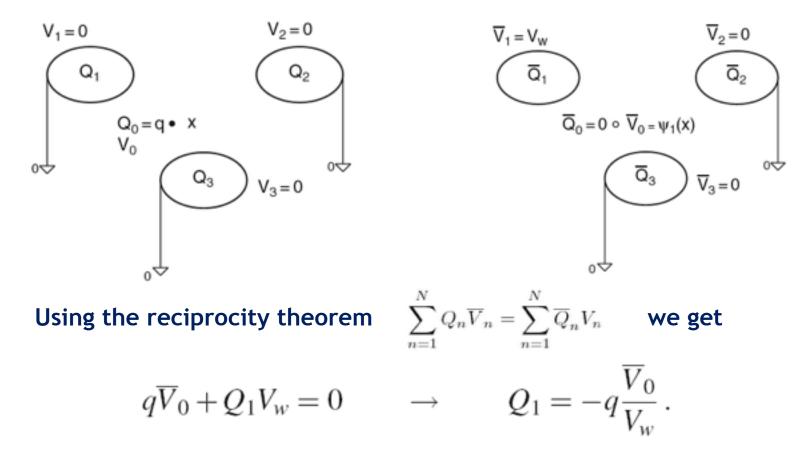
The capacitance matrix elements are not to be confused with the electrode capacitances of the equivalent circuit. They are related by

$$C_{nm} = -c_{nm} \quad n \neq m \qquad \qquad C_{nn} = \sum_{m=1}^{n} c_{nm}$$

35

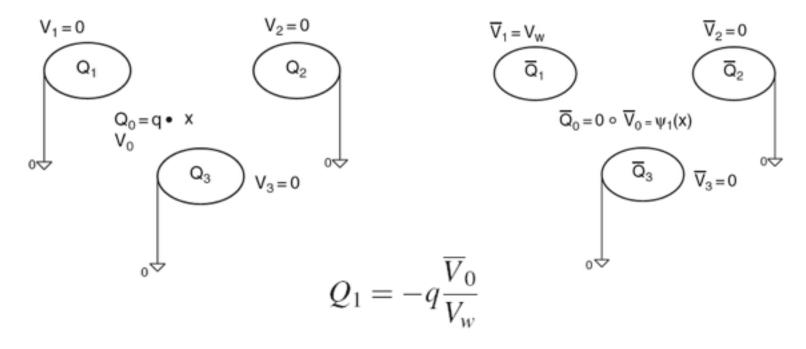
We assume three grounded electrodes and a point charge in between. We want to know the charges induced on the grounded electrodes. We assume the point charge to be an very small metal electrode with charge q, so we have a system of 4 electrodes with $V_1=0$, $V_2=0$, $V_3=0$, $Q_0=q$.

We can now assume another set of voltages and charges where we remove the charge from electrode zero, we put electrode 1 to voltage V_w and keep electrodes 2 and 3 grounded.



W. Riegler, Particle Detectors

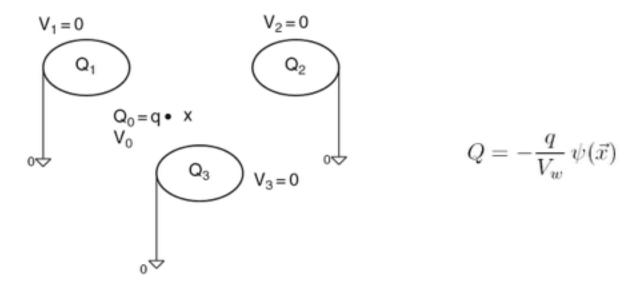
Induced Charge



The voltage $\overline{V_0}$ is the voltage of the small uncharged electrode for the second electrostatic state, and because a small uncharged electrode is equal to having no electrode, $\overline{V_0}$ is the voltage at the place x of the point charge in case the charge is removed, electrode 1 is put to voltage V_w and the other electrodes are grounded.

We call the potential y(x) the weighting potential of electrode 1.

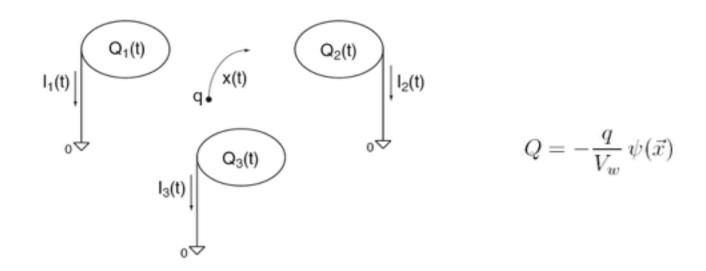
Induced Charge



The charge induced by a point charge q at position x on a grounded electrode can be calculated the following way: One removes the point charge, puts the electrode in question to potential V_w while keeping the other electrodes grounded.

This defines the potential 'weighting potential' y(x) from which the induced charge can be calculated by the above formula.

Induced Current, Ramo Schottky Theorem



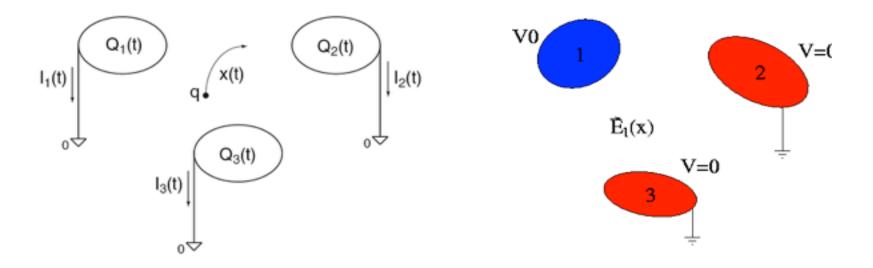
In case the charge is moving along a trajectory x(t), the time dependent induced charge is

$$Q(t) = -\frac{q}{V_w} \psi\left(\vec{x}(t)\right)$$

And the induced current is

$$I(t) = -\frac{dQ}{dt} = \frac{q}{V_w} \,\vec{\nabla}\psi\left(\vec{x}(t)\right) \,\frac{d\vec{x}(t)}{dt} = -\frac{q}{V_w} \,\vec{E}\left(\vec{x}(t)\right) \,\vec{v}(t)$$

Induced Charge



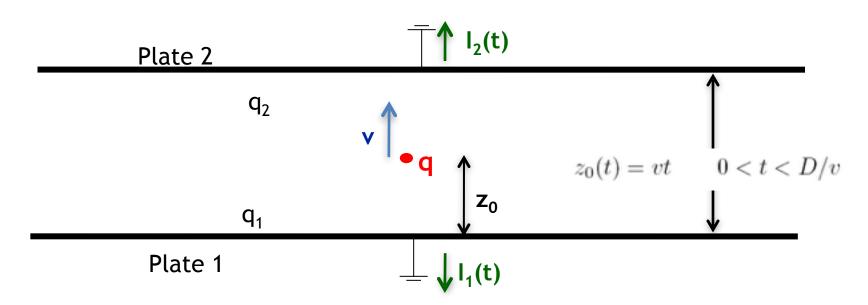
The current induced on a grounded electrode n by a moving point charge q is given by

$$I_n(t) = = -\frac{q}{V_w} \vec{E_n} \left(\vec{x}(t) \right) \vec{v}(t)$$

Where the weighting field En is defined by removing the point charge, setting the electrode in question to potential Vw and keeping the other electrodes grounded.

Removing the charge means that we just have to solve the Laplace equation and not the Poisson equation !

Parallel Plate Chamber



Weighting field E_1 of plate 1: Remove charge, set plate1 to V_w and keep plate2 grounded

$$E_1 = \frac{V_w}{D}$$

Ì

Weighting field E_2 of plate 2: Remove charge, set plate2 to V_w and keep plate1 grounded

$$E_2 = -\frac{V_w}{D}$$

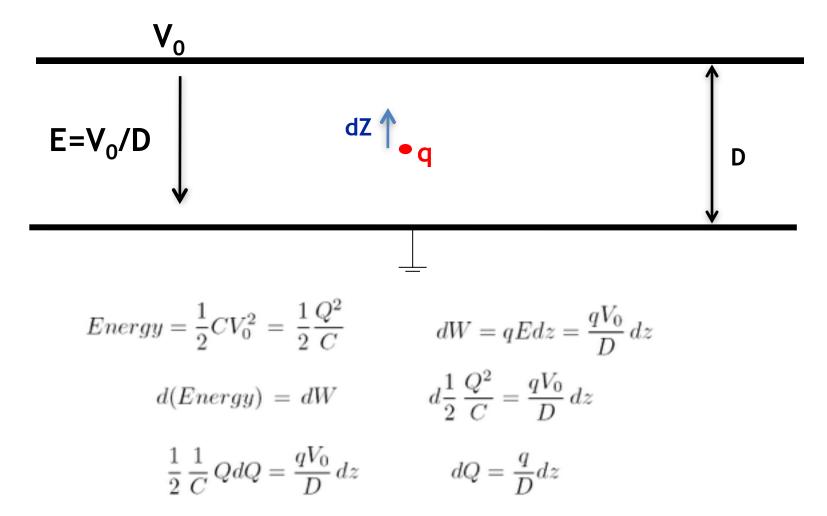
So we have the induced currents

$$I_1 = -\frac{q}{V_w} \frac{V_w}{D} E_1 v = -\frac{qv}{D} \qquad I_2 = -\frac{q}{V_w} \frac{V_w}{D} E_2 v = \frac{qv}{D}$$

7/31/15

W. Riegler, Particle Detectors

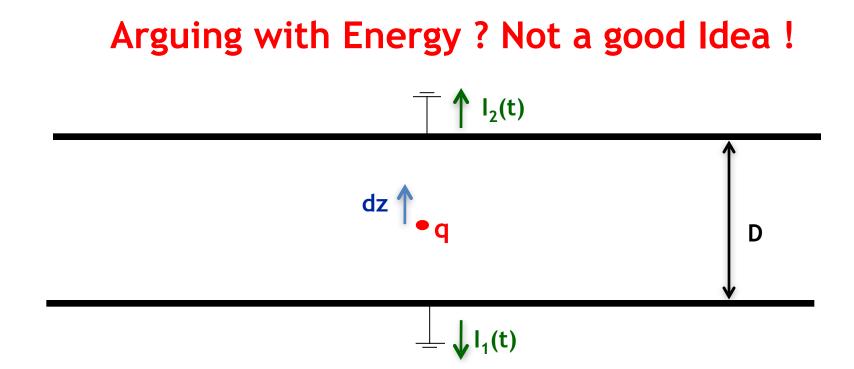
Arguing with Energy ? Not a good Idea !



This argument gives the correct result, it is however only correct for a 2 electrode system because there the weighting field and the real field are equal. In addition the argument is very misleading.

7/31/15

W. Riegler, Particle Detectors



An induced current signal has nothing to do with Energy. In a gas detector the electrons are moving at constant speed in a constant electric field, so the energy gained by the electron in the electric field is lost into collisions with the gas, i.e. heating of the gas.

In absence of an electric field, the charge can be moved across the gap without using any force and currents are flowing.

The electric signals are due to induction !

Total Induced Charge

If a charge is moving from point x_0 to point x_1 , the induced charge is

$$Q_n^{ind} = \int_{t_0}^{t_1} I_n^{ind}(t) dt = -\frac{q}{V_w} \int_{t_0}^{t_1} E_n[x(t)] \dot{x}(t) dt = \frac{q}{V_w} [\psi_n(x_1) - \psi_n(x_0)]$$

If a pair of charges +q and -q is produced at point x_0 and q moves to x_1 while -q moves to x_2 , the charge induced on electrode n is given by

$$Q_n^{ind} = \int_{t_0}^{t_1} I_n^{ind}(t) dt = \frac{q}{V_w} [\psi_n(x_1) - \psi_n(x_2)]$$

If the charge q moves to electrode n while the charge -q moves to another electrode, the total induced charge on electrode n is q, because the y_n is equal to V_w on electrode n and equal to zero on all other electrodes.

In case both charges go to different electrodes the total induced charge is zero.

After ALL charges have arrived at the electrodes, the total induced charge on a given electrode is equal to the charge that has ARRIVED at this electrode.

Current signals on electrodes that don't receive a charge are therefore strictly bipolar.7/31/15W. Riegler, Particle Detectors44

Induced Charge, 'Collected' Charge

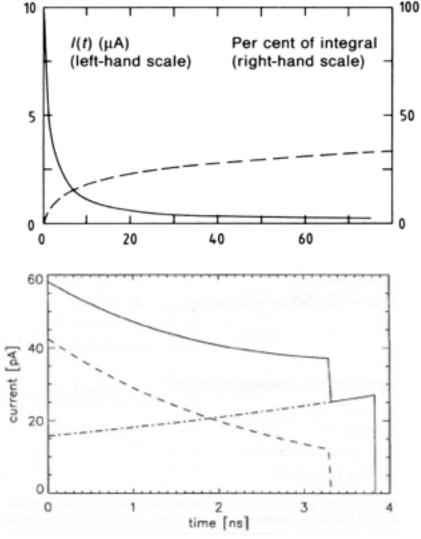
The fact that the total induced charge on an electrode, once ALL charges have arrived at the electrodes, is equal to the actual charge that has ARRIVED at the electrode, leads to very different 'vocabulary for detectors in different detectors.

In wire chambers the ions take hundreds of microseconds to arrive at the cathodes. Because the electronics 'integration time' is typically much shorter than this time, the reality that the signal is 'induced' is very well known for wire chambers, and the signal shape is dominated by the movement of the ions.

The longer the amplifier integration time, the more charge is integrated, which is sometimes called 'collected', but it has nothing to do with collecting charge from the detector volume ...

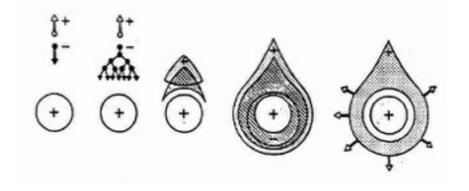
In Silicon Detectors, the electrons and holes take only a few ns to arrive at their electrodes, so e.g. for typical 'integration times' of amplifiers of 25ns, the shape is dominated by the amplifier response. The peak of the amplifier output is the proportional to the primary charge, and all the charge is 'collected'

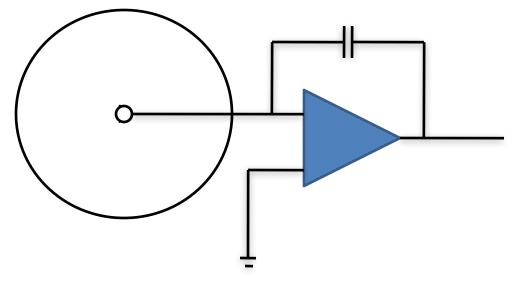
Still, the signal is not due to charges entering the amplifier from the detector, it is due to induction by the moving charge. Once the charge has actually arrived at the electrode, the signal is over !



Total Induced Charge

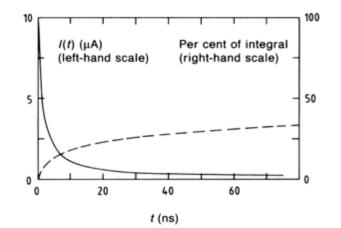
Imagine avalanche in a drift tube, caused by a single electron. Let's assume that the gas gain is 10^4 . We read out the wire signal with an ideal integrator





The 10^4 electrons arrive at the wire within <1ns, so the integrator should instantly see the full charge of -10^4 e₀ electrons ?

No ! The ions close to the wire induce the opposite charge on the wire, so in the very beginning there is zero charge on the integrator and only once the lons have moved away from the wire the integrator measures the full $-10^4 e_0$



Signal Calclulation in 3 Steps

What are the signals induced by a moving charge on electrodes that are connected with arbitrary linear impedance elements ?

1) Calculate the particle trajectory in the 'real' electric field.

2) Remove all the impedance elements, connect the electrodes to ground and calculate the currents induced by the moving charge on the grounded electrodes.

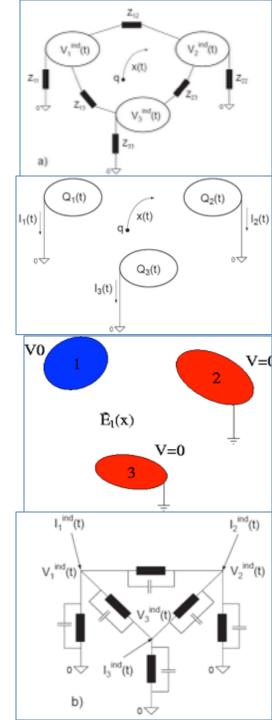
The current induced on a grounded electrode by a charge q moving along a trajectory x(t) is calculated the following way (Ramo Theorem):

One removes the charge q from the setup, puts the electrode to voltage V_0 while keeping all other electrodes grounded. This results in an electric field $E_n(x)$, the Weighting Field, in the volume between the electrodes, from which the current is calculated by

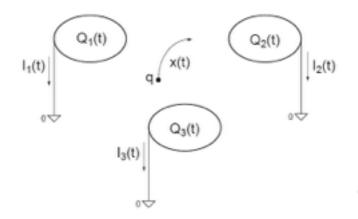
$$I_n(t) = -\frac{q}{V_0} \vec{E_n}[\vec{x}(t)] \frac{d\vec{x}(t)}{dt} = -\frac{q}{V_0} \vec{E_n}[\vec{x}(t)] \vec{v}(t)$$

3) These currents are then placed as ideal current sources on a circuit where the electrodes are 'shrunk' to simple nodes and the mutual electrode capacitances are added between the nodes. These capacitances are calculated from the weighting fields by

$$c_{nm} = \frac{\varepsilon_0}{V_w} \oint_{A_n} E_m(x) dA$$
 $C_{nn} = \sum_m c_{nm}$ $C_{nm} = -c_{nm}$ $n \neq m$



General Signal Theorems

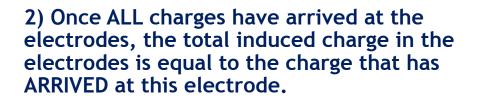


The following relations hold for the induced currents:

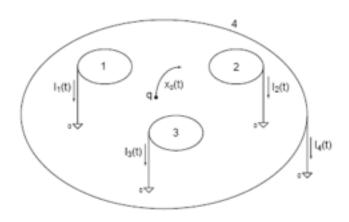
1) The charge induced on an electrode in case a charge in between the electrode has moved from a point x_0 to a point x_1 is

$$Q_n^{ind} = \int_{t_0}^{t_1} I_n^{ind}(t)dt = -\frac{q}{V_w} \int_{t_0}^{t_1} \boldsymbol{E}_n[\boldsymbol{x}(t)] \dot{\boldsymbol{x}}(t)dt = \frac{q}{V_w} [\psi_n(\boldsymbol{x}_1) - \psi_n(\boldsymbol{x}_0)]$$

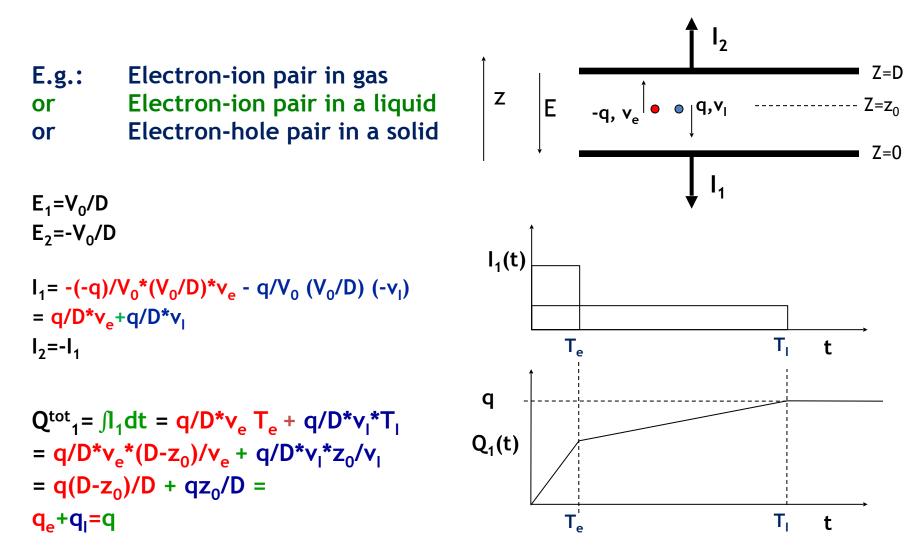
and is independent on the actual path.



3) In case there is one electrode enclosing all the others, the sum of all induced currents is zero at any time.



Signals in a Parallel Plate Geometry



The total induced charge on a specific electrode, once all the charges have arrived at the electrodes, is equal to the charge that has arrived at this specific electrode.

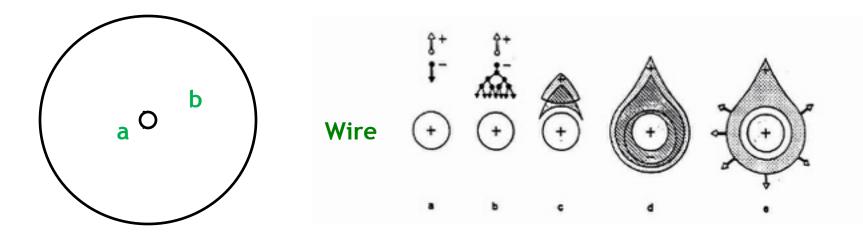
Wire Chamber Signals

Wire with radius (10-25 μ m) in a tube of radius b (1-3cm):

$$E(r) = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{r} = \frac{V_0}{\ln\frac{b}{a}} \frac{1}{r}, \qquad V(r) = \frac{V_0}{\ln\frac{b}{a}} \ln\frac{r}{a},$$

Electric field close to a thin wire (100-300kV/cm). E.g. V_0 =1000V, a=10 μ m, b=10mm, E(a)=150kV/cm

Electric field is sufficient to accelerate electrons to energies which are sufficient to produce secondary ionization \rightarrow electron avalanche \rightarrow signal.



Wire Chamber Signals

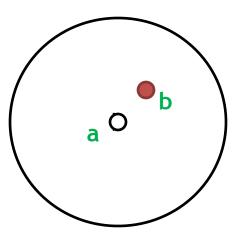
The electrons are produced very close to the wire, so for now we assume that N_{tot} ions are moving from the wire surface to the tube wall

$$E(r) = rac{\lambda}{2\piarepsilon_0}rac{1}{r} = rac{U}{\lnrac{b}{a}r}, \qquad V(r) = rac{U}{\lnrac{b}{a}} \lnrac{r}{a},$$

lons move with a velocity proportional to the electric field.

 $v = \mu E$

$$\frac{dr(t)}{dt} = \mu \frac{U}{r(t)\ln(b/a)} \quad \rightarrow \quad r(t) = a\sqrt{1 + \frac{t}{t_0}} \qquad t_0 = \frac{a^2\ln(b/a)}{2\mu U}$$



Weighting Field of the wire: Remove charge and set wire to V_w while grounding the tube wall.

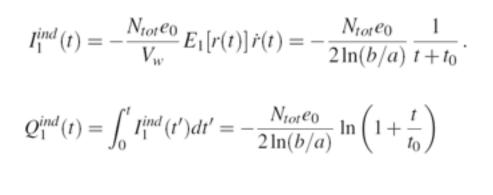
$$E_1(r) = \frac{V_w}{r\ln(b/a)}$$

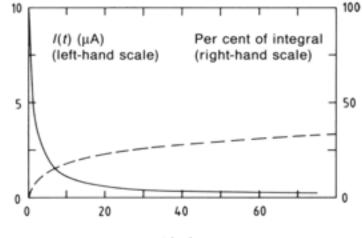
The induced current is therefore

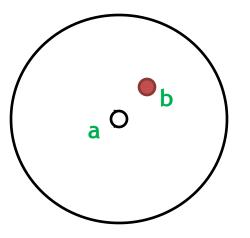
$$I_1^{ind}(t) = -\frac{N_{tot}e_0}{V_w}E_1[r(t)]\dot{r}(t) = -\frac{N_{tot}e_0}{2\ln(b/a)}\frac{1}{t+t_0}.$$

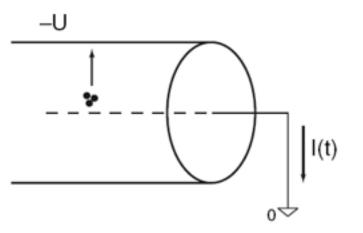
W. Riegler, Particle Detectors

Wire Chamber Signals

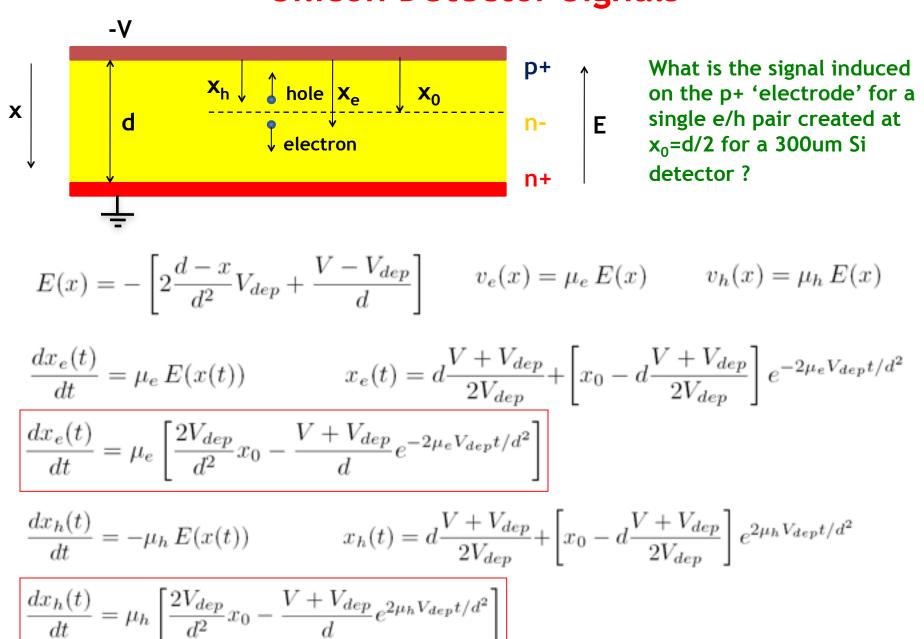








Silicon Detector Signals



53

Silicon Detector Signals

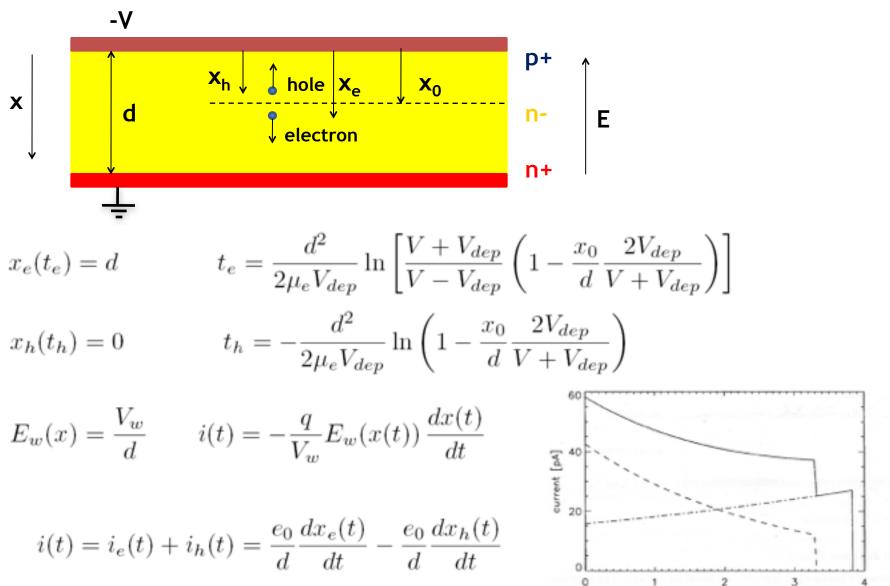
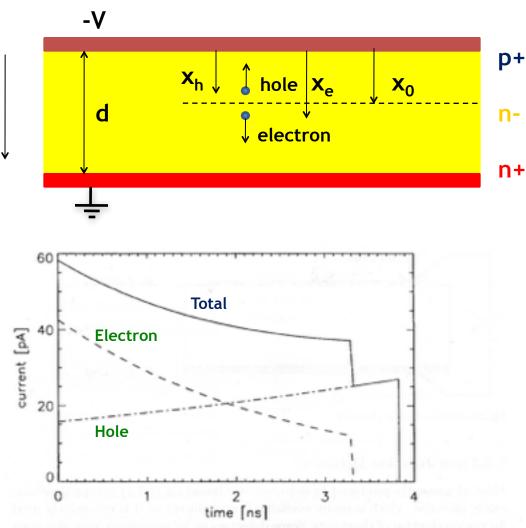


Fig.5.4. Signal current formation induced by the separation of an electron-hole pair in the electric field of the space-charge region of the detector. The electron-hole pair is ereated in the center plane of a slightly (20%) overdepleted diode (see Example 5.2). Plotted are the electron-induced (dashed line), hole-induced (dash-dot line) and total (continuous line) currents

time [ns]

W. Riegler/CERN

Silicon Detector Signals



Χ

Fig. 5.4. Signal current formation induced by the separation of an electron-hole pair in the electric field of the space-charge region of the detector. The electron-hole pair is created in the center plane of a slightly (20%) overdepleted diode (see Example 5.2). Plotted are the electron-induced (dashed line), hole-induced (dash-dot line) and total (continuous line) currents What is the signal induced on the p+ 'electrode' for a single e/h pair created at $x_0=d/2$ for a 300um Si detector ?

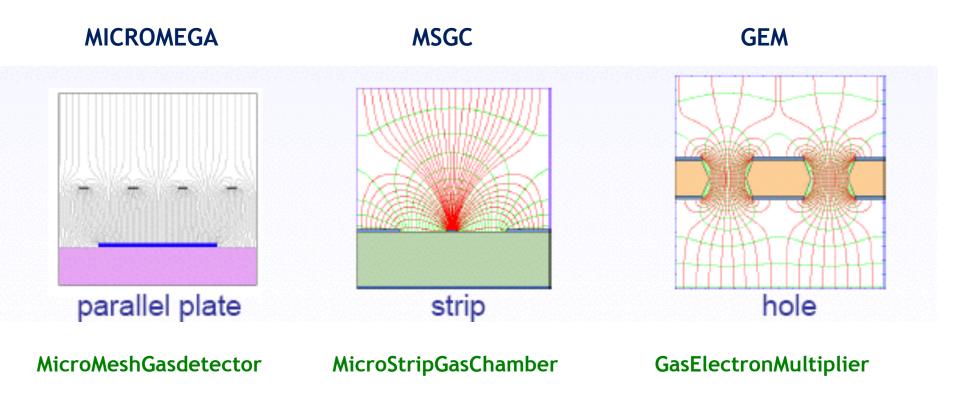
To calculate the signal from a track one has to sum up all the e/h pair signal for different positions x_0 .

Si Signals are fast T<10-15ns. In case the amplifier peaking time is >20-30ns, the induced current signal shape doesn't matter at all.

The entire signal is integrated and the output of the electronics has always the same shape (delta response) with a pulse height proportional to the total deposited charge.

Next Time

More details of signals in Solid State Detectors and Wire Chamber, Signals in MICROMEGAs, GEMs, RPCs and Liquid Calorimeters.



Conclusion

This principle of signal generation is identical for Solid State Detectors, Gas Detectors and Liquid Detectors.

The signals are due to charges (currents) induced on metal electrodes by moving charges.

The easiest way to calculate signals induced by moving charges on metal electrodes is the use of Weighting fields (Ramo - Schottky theorem) for calculation of currents induced on grounded electrodes.

These currents can then be placed as ideal current sources on an equivalent circuit diagram representing the detector.