Scritto 16 - a.a. 2018-2019

Quesito 1

Si consideri una sfera di raggio $r_0 = 1 \, \mathrm{mm}$ in cui è distribuita della carica con densità volumetrica $\rho(r)=\rho_0~e^{-r/r_0}$ dove $\rho_0=2.5\times 10^{13}~{\rm C/m^3}.$ Si calcoli:

- 1) il rapporto tra il modulo $|\overrightarrow{F_P}|$ della forza che agisce su una carica di prova $q_0=1\,$ C quando essa si trova nel punto P, che dista $5r_0$ dal centro della sfera, e $|\overrightarrow{F_O}|$, modulo della forza che agisce sulla stessa carica collocata nel punto Q, che invece dista $15r_0$ dal centro della sfera;
- 2) il rapporto tra l'energia potenziale posseduta dalla carica di prova nel punto P e nel punto Q $(U_{\varrho}(P)/U_{\varrho}(Q));$
- 3) modulo direzione e verso del campo elettrico nel punto di coordinate cartesiane $(5r_0,0,0)$ relative a un sistema di riferimento con origine al centro della distribuzione di carica.

Quesito 2

Si consideri una spira conduttrice circolare di raggio R=0.1m che giace nel piano xy percorsa da una corrente i=1 A. Si valuti la forza e il momento torcente su due essa, nelle due condizioni seguenti (si utilizzi l'equivalenza tra una spira percorsa da corrente e un dipolo magnetico):

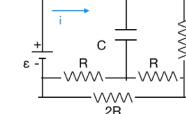
- 1) in campo magnetico uniforme $\vec{B} = B_0 \hat{z}$;
- 2) in campo magnetico uniforme $\overrightarrow{B}=B_1\hat{x}+B_0\hat{z}$.

Si calcoli in entrambi i casi il flusso del campo magnetico concatenato con il circuito. Siano $B_0 = 1 \text{ T e } B_1 = 0.1 \text{ T.}$

Quesito per gli studenti con il corso da 9 crediti o a.a. precedente a 2018-19: Nel caso del campo magnetico 1) si immagini che al tempo t=0 l'intensità del campo cominci a decrescere (linearmente) fino ad annullarsi dopo 10s. Si descrivano i fenomeni fisici che si manifestano.

Quesito 3

Nel circuito in figura comincia a circolare corrente al tempo t=0 quando l'interruttore è chiuso (si assuma che il condensatore sia inizialmente scarico). Si calcoli la carica asintotica sulle armature del condensatore e l'andamento nel tempo della corrente nel circuito di scarica che si ottiene riaprendo l'interruttore.

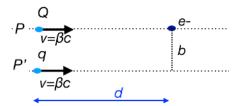


Si utilizzino i valori seguenti dei parametri del circuito:

$$\epsilon = 4 \text{ V}, R = 100 \Omega, C = 1 \text{ pF}.$$

Quesito 4

Un elettrone atomico (che approssimiamo come una carica puntiforme fissa nello spazio) sente l'attrazione esercitata da due cariche (unitarie positive) Q e q in moto rettilineo uniforme nella stessa direzione e verso, con modulo della velocità relativistica v~c. Facendo riferimento alla figura, si calcoli la forza esercitata da ciascuna carica quando esse si trovano nei punti P e P'.



Quesito 5

Il campo magnetico sull'asse di un solenoide di lunghezza L, raggio R e densità lineare di spire n

è diretto lungo l'asse del solenoide e il suo modulo dipende dalla distanza x dal centro del solenoide come segue:
$$\overrightarrow{B}(x) = \frac{\mu_0 i n}{2} (\frac{L+2x}{\sqrt{(L+2x)^2+4R^2}} + \frac{L-2x}{\sqrt{(L-2x)^2+4R^2}}) \hat{x}.$$

Si dimostri che nell'approssimazione di L infinita il campo magnetico è pari a $\vec{B} = \mu_0 i n \hat{x}$ in ogni punto dello spazio interno al solenoide, mentre è nullo all'esterno.

$\frac{\text{Gradiente}}{\nabla f}$	$rac{\partial f}{\partial x}\mathbf{\hat{x}} + rac{\partial f}{\partial y}\mathbf{\hat{y}} + rac{\partial f}{\partial z}\mathbf{\hat{z}}$	$\left(rac{\partial f}{\partial ho} \hat{oldsymbol{ ho}} + rac{1}{ ho} rac{\partial f}{\partial \phi} \hat{oldsymbol{\phi}} + rac{\partial f}{\partial z} \hat{oldsymbol{z}} ight)$	$rac{\partial f}{\partial r}\hat{m{r}} + rac{1}{r}rac{\partial f}{\partial heta}\hat{m{ heta}} + rac{1}{r\sin heta}rac{\partial f}{\partial \phi}\hat{m{\phi}}$
Divergenza $\nabla \cdot \mathbf{A}$	$rac{\partial A_x}{\partial x} + rac{\partial A_y}{\partial y} + rac{\partial A_z}{\partial z}$	$rac{1}{ ho}rac{\partial(ho A_{ ho})}{\partial ho}+rac{1}{ ho}rac{\partial A_{\phi}}{\partial\phi}+rac{\partial A_{z}}{\partial z}$	$rac{1}{r^2}rac{\partial (r^2A_r)}{\partial r}+rac{1}{r\sin heta}rac{\partial}{\partial heta}(A_ heta\sin heta)+rac{1}{r\sin heta}rac{\partial A_\phi}{\partial\phi}$
	$(rac{\partial A_z}{\partial y} - rac{\partial A_y}{\partial z}) \hat{f x} +$	$(rac{1}{ ho}rac{\partial A_z}{\partial \phi}-rac{\partial A_\phi}{\partial z})\hat{oldsymbol{ ho}}$ +	$rac{1}{r\sin heta}(rac{\partial}{\partial heta}(A_{\phi}\sin heta)-rac{\partial A_{ heta}}{\partial\phi})m{\hat{r}} +$
Rotore $\nabla \times \mathbf{A}$	$(rac{\partial A_x}{\partial z} - rac{\partial A_z}{\partial x})\mathbf{\hat{y}} +$	$(rac{\partial A_{ ho}}{\partial z} - rac{\partial A_z}{\partial ho})\hat{m{\phi}} \hspace{0.5cm} + \hspace{0.5cm}$	$=rac{1}{r}(rac{1}{\sin heta}rac{\partial A_r}{\partial \phi}-rac{\partial}{\partial r}(rA_\phi))\hat{m{ heta}} \qquad +$
	$(rac{\partial A_y}{\partial x} - rac{\partial A_x}{\partial y}) \hat{f z}$	$rac{1}{ ho}(rac{\partial(ho A_{\phi})}{\partial ho}-rac{\partial A_{ ho}}{\partial\phi})m{\hat{z}}$	$rac{1}{r}(rac{\partial}{\partial r}(rA_{ heta})-rac{\partial A_{r}}{\partial heta})\hat{oldsymbol{\phi}}$
Laplaciano $ abla^2 f$	$rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2}$	$\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho\frac{\partial f}{\partial\rho}) + \frac{1}{\rho^2}\frac{\partial^2 f}{\partial\phi^2} + \frac{\partial^2 f}{\partial z^2}$	$\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial f}{\partial r}) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta\frac{\partial f}{\partial \theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \phi^2}$
Laplaciano di un vettore $ abla^2 \mathbf{A}$	$ abla^2 A_x \hat{\mathbf{x}} + abla^2 A_y \hat{\mathbf{y}} + abla^2 A_z \hat{\mathbf{z}}$	ρ ρ οψ	$\begin{array}{ll} (\nabla^2 A_r - \frac{2A_r}{r^2} - \frac{2}{r^2 \sin \theta} \frac{\partial (A_\theta \sin \theta)}{\partial \theta} - \frac{2}{r^2 \sin \theta} \frac{\partial A_\phi}{\partial \phi}) \hat{\boldsymbol{r}} & + \\ (\nabla^2 A_\theta - \frac{A_\theta}{r^2 \sin^2 \theta} + \frac{2}{r^2} \frac{\partial A_r}{\partial \theta} - \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_\phi}{\partial \phi}) \hat{\boldsymbol{\theta}} & + \\ (\nabla^2 A_\phi - \frac{A_\phi}{r^2 \sin^2 \theta} + \frac{2}{r^2 \sin \theta} \frac{\partial A_r}{\partial \phi} + \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_\theta}{\partial \phi}) \hat{\boldsymbol{\phi}} & + \\ \end{array}$
Lunghezza infinitesima	$d\mathbf{l} = dx\mathbf{\hat{x}} + dy\mathbf{\hat{y}} + dz\mathbf{\hat{z}}$	$d{f l} = d ho{m{\hat ho}} + ho d\phi{m{\hat\phi}} + dz{m{\hat z}}$	$d\mathbf{l} = dr\hat{\mathbf{r}} + rd heta\hat{oldsymbol{ heta}} + r\sin heta d\phi\hat{oldsymbol{\phi}}$
Aree infinitesime	$d\mathbf{S} = dydz\hat{\mathbf{x}} + \ dxdz\hat{\mathbf{y}} + \ dxdy\hat{\mathbf{z}}$	$d\mathbf{S} = \rho d\phi dz \hat{\boldsymbol{\rho}} + \\ d\rho dz \hat{\boldsymbol{\phi}} + \\ \rho d\rho d\phi \hat{\mathbf{z}}$	$egin{array}{ll} d\mathbf{S} = & r^2 \sin heta d heta d heta \hat{oldsymbol{r}} + \ & r \sin heta dr d\phi \hat{oldsymbol{ heta}} + \ & r dr d heta \hat{oldsymbol{\phi}} \end{array}$
Volume infinitesimo	dv=dxdydz	$dv= ho d ho d\phi dz$	$dv=r^2\sin heta dr d heta d\phi$

RICORDA:

 $\epsilon_0 = 8.85 \cdot 10^{-12} \, \text{C}^2/\text{Nm}^2 = 8.85 \cdot 10^{-12} \, \text{F/m}; \quad \mu_0 = 4\pi \cdot 10^{-7} \, \text{H/m}$

 $k = 1/(4 \pi \epsilon_0) = 9 \cdot 10^9 \text{ Nm}^2/\text{C}^2$

 $|e| = 1.6 \cdot 10^{-19} \,\mathrm{C}$

 $m_e = 9.1 \cdot 10^{-31} \text{ Kg}$ $m_p = 1.67 \cdot 10^{-27} \text{ Kg}$

 $M_{He} \simeq 4 m_p$

Campo \overrightarrow{E} prodotto da una carica puntiforme in quiete: $\frac{kq}{r^2}\hat{r}$

Campo \overrightarrow{E} prodotto da una carica puntiforme in moto con velocità \overrightarrow{v} : $\frac{kq}{r^2} \frac{1 - \beta^2}{(1 - \beta^2 \sin^2 \theta)^{3/2}} \hat{r}$

Campo \overrightarrow{E} prodotto da un dipolo: $\overrightarrow{E}(\mathbf{r}, \mathbf{\vartheta}) = \mathbf{k} \frac{3(\overrightarrow{p} \cdot \overrightarrow{r})\overrightarrow{r} - r^2\overrightarrow{p}}{r^5}$;

Campo \overrightarrow{B} prodotto da un dipolo magnetico: $\overrightarrow{B}(\mathbf{r}, \mathbf{\vartheta}) = \frac{\mu_0}{4\pi} \frac{3(\overrightarrow{m} \cdot \overrightarrow{r})\overrightarrow{r} - r^2\overrightarrow{m}}{r^5}$;

Potenziale di dipolo $\varphi(r, \vartheta) = k \frac{p \cdot r}{r^3}$