Raccolta di esercizi e problemi - Scritto 26 - a.a. 2019-2020

Quesito 1 (fino a 8 punti)

Si consideri una sfera conduttrice di raggio R=10 cm che si trova al potenziale elettrostatico V0=1kV e una carica puntiforme q0=1nC a distanza 2R dal centro della sfera conduttrice. Si calcoli

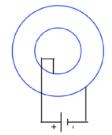
- l'energia elettrostatica del sistema;
- la forza sulla carica puntiforme;
- la densità superficiale di carica al polo della sfera più vicino alla carica q0.

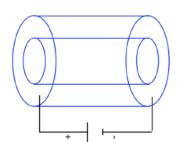
Quesito 2 (fino a 8)

Su una superficie sferica di raggio R è depositata della carica elettrica con distribuzione $\rho=\rho_0\cos\theta$ dove θ è l'angolo polare rispetto ad un asse z che ha origine nel centro della sfera. Si calcoli il potenziale elettrostatico prodotto dalla distribuzione in un generico punto P a grande distanza (r>>R) da essa. Si discuta come è orientato il campo elettrico sui punti dell'asse z e sui punti del piano perpendicolare all'asse z passante per il centro della sfera. E' possibile calcolare in maniera esatta il campo elettrico su un punto dell'asse z a distanza dal centro della sfera superiore a R ?

Quesito 3 (fino a 8 punti)

Un conduttore cilindrico cavo di acciaio omogeneo (resistività ρ =0.18 Ω mm²/m), lunghezza L = 50 cm, raggio interno a = 1 cm e raggio esterno b = 2 cm, è collegato a un generatore di f.e.m. che produce una differenza di potenziale pari a 100V in due diverse configurazioni:





- i due poli sono collegati alle superfici cilindriche interna ed esterna (la fig. a sinistra rappresenta una sezione del conduttore);
- 2) i poli sono collegato ciascuno ad una base del cilindro (figura a destra).

Si calcoli la corrente che fluisce nel circuito nei due casi.

Nella configurazione 2) si calcoli il campo magnetico all'interno del conduttore e il flusso del campo magnetico attraverso una spira rettangolare di lati 2b ed L con il lato lungo coincidente con l'asse del conduttore.

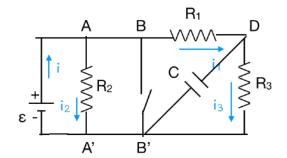
Quesito 4 (fino a 8 punti)

Il circuito in figura e' percorso da una corrente di 10 A nel verso indicato. Si calcoli il campo magnetico nel centro O delle due semicirconferenze, assumendo che il raggio interno sia pari a 20 cm e il raggio esterno a 40 cm. Chiamato x l'asse orizzontale e y l'asse verticale con origine in O si

valuti l'energia potenziale di un dipolo magnetico $\overrightarrow{m}=m_0\hat{u}$ collocato in O, quando $\hat{u}=\hat{y}$ e quando $\hat{u}=\hat{z}$.

Quesito 5 (fino a 8 punti)

Si stimi la carica sulle armature del condensatore a regime quando l'interruttore è aperto. Si calcoli quanto tempo dopo la chiusura dell'interruttore la carica si riduce a un decimo del valore iniziale. Si ipotizzi che durante la scarica del condensatore il collegamento con il generatore sia interrotto e si discuta il bilancio energetico del circuito. Si considerino i valori $R_1=2R_2=4R_3=1k\Omega$, $\epsilon=50$ V, $C=1\mu F$.



RICORDA:

 $\begin{array}{lll} \epsilon_0 = 8.85 \cdot 10^{\text{-}12} \, \text{C}^2 / \text{N} \text{m}^2 &= 8.85 \cdot 10^{\text{-}12} \, \text{F/m}; & \mu_0 = 4 \pi \cdot 10^{\text{-}7} \, \text{H/m}, \ k = 1 / \ (4 \ \pi \ \epsilon_0) = 9 \cdot 10^9 \, \text{N} \text{m}^2 / \text{C}^2 \\ |e| = \ 1.6 \cdot 10^{\text{-}19} \, \text{C}, & \ m_e = 9.1 \cdot 10^{\text{-}31} \, \text{Kg}, \ m_p = 1.67 \cdot 10^{\text{-}27} \, \text{Kg}, \ M_{\text{He}} \, \text{$\approx}4 \, m_p \end{array}$

Campo \overrightarrow{E} prodotto da una carica puntiforme: $\frac{kq}{r^2}\hat{r}$

Campo \overrightarrow{E} prodotto da un dipolo: $\overrightarrow{E}(\mathbf{r}, \boldsymbol{\vartheta}) = \mathbf{k} \frac{3(\overrightarrow{p} \cdot \overrightarrow{r})\overrightarrow{r} - r^2\overrightarrow{p}}{r^5}$;

Campo \overrightarrow{B} prodotto da un dipolo magnetico: $\overrightarrow{B}(\mathbf{r}, \boldsymbol{\vartheta}) = \frac{\mu_0}{4\pi} \frac{3(\overrightarrow{m} \cdot \overrightarrow{r})\overrightarrow{r} - r^2\overrightarrow{m}}{r^5}$;

Potenziale di dipolo $\varphi(\mathbf{r}, \vartheta) = \mathbf{k} \frac{\overrightarrow{p} \cdot \overrightarrow{r}}{r^3}$

Formule di Laplace: $d\overrightarrow{B} = \frac{\mu_0}{4\pi}i\frac{d\overrightarrow{l}\wedge\overrightarrow{r}}{r^3}; \qquad d\overrightarrow{F} = id\overrightarrow{l}\wedge\overrightarrow{B}$

Gradiente ∇f	$rac{\partial f}{\partial x}\hat{\mathbf{x}} + rac{\partial f}{\partial y}\hat{\mathbf{y}} + rac{\partial f}{\partial z}\hat{\mathbf{z}}$	$oxed{rac{\partial f}{\partial ho} \hat{oldsymbol{ ho}} + rac{1}{ ho} rac{\partial f}{\partial \phi} \hat{oldsymbol{\phi}} + rac{\partial f}{\partial z} \hat{oldsymbol{z}}}$	$\left rac{\partial f}{\partial r}\hat{m{r}}+rac{1}{r}rac{\partial f}{\partial heta}\hat{m{ heta}}+rac{1}{r\sin heta}rac{\partial f}{\partial\phi}\hat{m{\phi}} ight.$
Divergenza $\nabla \cdot \mathbf{A}$	$rac{\partial A_x}{\partial x} + rac{\partial A_y}{\partial y} + rac{\partial A_z}{\partial z}$	$rac{1}{ ho}rac{\partial(ho A_ ho)}{\partial ho}+rac{1}{ ho}rac{\partial A_\phi}{\partial\phi}+rac{\partial A_z}{\partial z}$	$\left(rac{1}{r^2}rac{\partial (r^2A_r)}{\partial r}+rac{1}{r\sin heta}rac{\partial}{\partial heta}(A_ heta\sin heta)+rac{1}{r\sin heta}rac{\partial A_\phi}{\partial\phi} ight)$
	$(rac{\partial A_z}{\partial y} - rac{\partial A_y}{\partial z}) {f \hat{x}} + $	$(rac{1}{ ho}rac{\partial A_z}{\partial \phi}-rac{\partial A_\phi}{\partial z})m{\hat{ ho}} + $	$rac{1}{r\sin heta}(rac{\partial}{\partial heta}(A_{\phi}\sin heta)-rac{\partial A_{ heta}}{\partial\phi})m{\hat{r}} +$
Rotore $\nabla \times \mathbf{A}$	$(rac{\partial A_x}{\partial z} - rac{\partial A_z}{\partial x})\hat{f y}$ +	P	$=rac{1}{r}(rac{1}{\sin heta}rac{\partial A_r}{\partial\phi}-rac{\partial}{\partial r}(rA_\phi))\hat{m{ heta}} =+$
	$(rac{\partial A_y}{\partial x} - rac{\partial A_x}{\partial y}) \mathbf{\hat{z}}$	$=rac{1}{ ho}(rac{\partial(ho A_{\phi})}{\partial ho}-rac{\partial A_{ ho}}{\partial\phi})m{\hat{z}}$	$rac{1}{r}(rac{\partial}{\partial r}(rA_{ heta})-rac{\partial A_{r}}{\partial heta})\hat{oldsymbol{\phi}}$
Laplaciano $ abla^2 f$	$rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2}$	$\frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \frac{\partial f}{\partial \rho}) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$	$\boxed{\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial f}{\partial r}) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta\frac{\partial f}{\partial \theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \phi^2}}$
Laplaciano di un vettore $ abla^2 \mathbf{A}$	$ abla^2 A_x \hat{\mathbf{x}} + abla^2 A_y \hat{\mathbf{y}} + abla^2 A_z \hat{\mathbf{z}}$	ρρυψ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Lunghezza infinitesima	$d\mathbf{l} = dx\mathbf{\hat{x}} + dy\mathbf{\hat{y}} + dz\mathbf{\hat{z}}$	$d\mathbf{l} = d ho\hat{oldsymbol{ ho}} + ho d\phi\hat{oldsymbol{\phi}} + dz\hat{oldsymbol{z}}$	$d{f l} = dr {f \hat r} + r d heta {f \hat heta} + r \sin heta d\phi {f \hat \phi}$
Aree infinitesime	$d\mathbf{S} = egin{array}{ll} dydz \hat{\mathbf{x}} + \ dxdz \hat{\mathbf{y}} + \ dxdy \hat{\mathbf{z}} \end{array}$	$d\mathbf{S} = \rho d\phi dz \hat{\boldsymbol{\rho}} + d\rho dz \hat{\boldsymbol{\phi}} + \rho d\rho dz \hat{\boldsymbol{\phi}} + \rho d\rho d\phi \hat{\mathbf{z}}$	$egin{array}{ll} d\mathbf{S} = & r^2 \sin heta d heta d heta \hat{\mathbf{r}} + \ & r \sin heta dr d\phi \hat{oldsymbol{ heta}} + \ & r dr d heta \hat{oldsymbol{\phi}} \end{array}$
Volume infinitesimo	dv=dxdydz	$dv = ho d ho d\phi dz$	$dv=r^2\sin heta dr d heta d\phi$