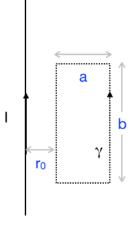
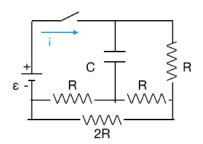

Scritto 27 - a.a. 2018-2019

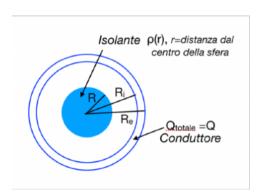

Quesito 1


Il sistema di due bobine illustrato in figura è caratterizzato da R_1 =20 cm, N_1 =15, i_1 =0.1 A, R_2 =10 cm, N_2 = 10000, I_2 =0.2 A, I_2 =1m (si assuma la lunghezza I_1 trascurabile e I_2 >> I_1 e I_2 >> I_2 1. Calcolare il flusso del campo magnetico concatenato con il solenoide interno (1).

Quesito 2

Il filo rettilineo infinito rappresentato in figura e' percorso dalla corrente costante I=10A. Si calcoli la forza che agisce sul circuito γ , fisso nello spazio, se esso e' percorso da una corrente i_0 =1A in senso antiorario. I parametri geometrici siano r_0 = 1cm, a=10cm e b=30cm.

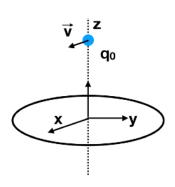
Si dimostri, utilizzando la legge di Ampere, l'espressione del campo magnetico prodotto dal filo.



Quesito 3

Nel circuito in figura comincia a circolare corrente al tempo t=0 quando l'interruttore è chiuso (si assuma che il condensatore sia inizialmente scarico). Si calcoli a regime la carica sulle armature del condensatore, l'energia immagazzinata nel condensatore e il campo elettrico al suo interno sapendo che le due armature sono distanti 1 mm. Si utilizzino i valori seguenti dei parametri del circuito:

$$\epsilon = 4 \text{ V}, R = 100 \Omega, C = 1 \text{ pF}.$$


Quesito 4

Una sfera isolante di raggio R su cui è distribuita della carica elettrica con densità volumetrica $\rho(\,r\,)=\rho_0(\,r/R\,)\,[\rho_0\,>\!0]$ è posta al centro della cavità di un guscio sferico di materiale conduttore, di raggio interno Rį e raggio esterno Re (Rį < R < Re), tenendo conto che sul conduttore è depositata una carica totale Q, si calcoli la differenza di potenziale tra il conduttore e la superficie esterna della sfera isolante e la densità superficiale di carica sulla superficie esterna della sfera conduttrice.

Quesito 5

Calcolare la forza su una particella di carica q_0 e velocità $\overrightarrow{v}=v_0\hat{x}$ nell'istante di tempo in cui essa si trova sull'asse, z, perpendicolare a un anello di raggio R, a una distanza h dal piano dell'anello in almeno uno dei due casi seguenti:

- sull'anello è depositata della carica con densità lineare λ;
- nell'anello scorre una corrente i;
- sull'anello è depositata della carica con densità lineare λ e l'anello ruota con velocità angolare ω costante (si assuma ω sia piccola in modo da poter trascurare effetti relativistici).

RICORDA:

 $\begin{array}{lll} \epsilon_0 = 8.85 \cdot 10^{\text{-}12} \, \text{C}^2/\text{Nm}^2 &= 8.85 \cdot 10^{\text{-}12} \, \text{F/m}; & \mu_0 = 4\pi \cdot 10^{\text{-}7} \, \text{H/m} \\ k = 1/\left(4 \, \pi \, \epsilon_0\right) = 9 \cdot 10^9 \, \text{Nm}^2/\text{C}^2 \\ |e| = \ 1.6 \cdot 10^{\text{-}19} \, \text{C} \end{array}$

 $m_e = 9.1 \cdot 10^{-31} \text{ Kg}$

 $m_p = 1.67 \cdot 10^{-27} \, \text{Kg}$

M_{He} ≃4 m_p

Campo \overrightarrow{E} prodotto da una carica puntiforme in quiete: $\frac{kq}{r^2}$

$\frac{\text{Gradiente}}{\nabla f}$	$rac{\partial f}{\partial x} \hat{\mathbf{x}} + rac{\partial f}{\partial y} \hat{\mathbf{y}} + rac{\partial f}{\partial z} \hat{\mathbf{z}}$	$rac{\partial f}{\partial ho} \hat{oldsymbol{ ho}} + rac{1}{ ho} rac{\partial f}{\partial \phi} \hat{oldsymbol{\phi}} + rac{\partial f}{\partial z} \hat{oldsymbol{z}}$	$\left rac{\partial f}{\partial r}\hat{m{r}}+rac{1}{r}rac{\partial f}{\partial heta}\hat{m{ heta}}+rac{1}{r\sin heta}rac{\partial f}{\partial \phi}\hat{m{\phi}} ight.$
Divergenza $\nabla \cdot \mathbf{A}$	$rac{\partial A_x}{\partial x} + rac{\partial A_y}{\partial y} + rac{\partial A_z}{\partial z}$	$rac{1}{ ho}rac{\partial(ho A_ ho)}{\partial ho}+rac{1}{ ho}rac{\partial A_\phi}{\partial\phi}+rac{\partial A_z}{\partial z}$	$\left(rac{1}{r^2}rac{\partial (r^2A_r)}{\partial r}+rac{1}{r\sin heta}rac{\partial}{\partial heta}(A_ heta\sin heta)+rac{1}{r\sin heta}rac{\partial A_\phi}{\partial\phi} ight)$
Rotore	$(rac{\partial A_z}{\partial y} - rac{\partial A_y}{\partial z})\hat{\mathbf{x}} +$	$(rac{1}{ ho}rac{\partial A_z}{\partial \phi}-rac{\partial A_\phi}{\partial z})\hat{m{ ho}}$ +	$rac{1}{r\sin heta}(rac{\partial}{\partial heta}(A_{\phi}\sin heta)-rac{\partial A_{ heta}}{\partial\phi})m{\hat{r}} +$
$\nabla \times \mathbf{A}$	$(rac{\partial A_x}{\partial z} - rac{\partial A_z}{\partial x})\hat{\mathbf{y}} +$	$(rac{\partial A_{ ho}}{\partial z} - rac{\partial A_z}{\partial ho}) \hat{m{\phi}} \hspace{0.5cm} + \hspace{0.5cm}$	$=rac{1}{r}(rac{1}{\sin heta}rac{\partial A_r}{\partial\phi}-rac{\partial}{\partial r}(rA_\phi))\hat{m{ heta}} =+$
	$(rac{\partial A_y}{\partial x} - rac{\partial A_x}{\partial y}) {f \hat{z}}$	$rac{1}{ ho}(rac{\partial(ho A_\phi)}{\partial ho}-rac{\partial A_ ho}{\partial\phi})m{\hat{z}}$	$rac{1}{r}(rac{\partial}{\partial r}(rA_{ heta})-rac{\partial A_{r}}{\partial heta})\hat{oldsymbol{\phi}}$
Laplaciano $ abla^2 f$	$rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2}$	$\frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \frac{\partial f}{\partial \rho}) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$	$\boxed{\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial f}{\partial r}) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta\frac{\partial f}{\partial \theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \phi^2}}$
Laplaciano di un		$\rho^- \rho^- O \psi$	$(abla^2 A_r - rac{2A_r}{r^2} - rac{2}{r^2 \sin heta} rac{\partial (A_ heta \sin heta)}{\partial heta} - rac{2}{r^2 \sin heta} rac{\partial A_\phi}{\partial \phi}) \hat{m{r}}$ +
vettore $ abla^2 \mathbf{A}$	$ abla^2 A_x \hat{\mathbf{x}} + abla^2 A_y \hat{\mathbf{y}} + abla^2 A_z \hat{\mathbf{z}}$	$(abla^2 A_\phi - rac{A_\phi}{ ho^2} + rac{2}{ ho^2} rac{\partial A_ ho}{\partial \phi}) \hat{m{\phi}} ~~+ \ (abla^2 A_z) \hat{m{z}}$	$egin{array}{l} (abla^2 A_{ heta} - rac{A_{ heta}}{r^2 \sin^2 heta} + rac{2}{r^2} rac{\partial A_r}{\partial heta} - rac{2\cos heta}{r^2\sin^2 heta} rac{\partial A_{\phi}}{\partial \phi}) \hat{m{ heta}} &+ \ (abla^2 A_{\phi} - rac{A_{\phi}}{r^2\sin^2 heta} + rac{2}{r^2\sin heta} rac{\partial A_r}{\partial \phi} + rac{2\cos heta}{r^2\sin^2 heta} rac{\partial A_{ heta}}{\partial \phi}) \hat{m{\phi}} &+ \ \end{array}$
Lunghezza infinitesima	$d\mathbf{l} = dx\mathbf{\hat{x}} + dy\mathbf{\hat{y}} + dz\mathbf{\hat{z}}$	$d\mathbf{l}=d ho\hat{oldsymbol{ ho}}+ ho d\phi\hat{oldsymbol{\phi}}+dz\hat{oldsymbol{z}}$	$d\mathbf{l} = dr\hat{\mathbf{r}} + rd heta\hat{oldsymbol{ heta}} + r\sin heta d\phi\hat{oldsymbol{\phi}}$
Aree	$d{f S}= -dydz{f \hat x}+$	$d\mathbf{S} = ho d\phi dz \hat{oldsymbol{ ho}} +$	$d\mathbf{S} = r^2 \sin \theta d\theta d\phi \hat{\mathbf{r}} +$
infinitesime	$dxdz\hat{\mathbf{y}}+\ dxdy\hat{\mathbf{z}}$	$d ho dz \hat{m{\phi}} + \ ho d ho d\phi \hat{m{z}}$	$r\sin heta dr d\phi oldsymbol{ heta} + \ r dr d heta oldsymbol{\hat{\phi}}$
Volume infinitesimo	dv=dxdydz	$dv = ho d ho d\phi dz$	$dv=r^2\sin heta dr d heta d\phi$

Campo \overrightarrow{E} prodotto da una carica puntiforme in moto con velocità \overrightarrow{v} : $\frac{kq}{r^2} \frac{1 - \beta^2}{(1 - \beta^2 \sin^2 \theta)^{3/2}} \hat{r}$

Campo \overrightarrow{E} prodotto da un dipolo: $\overrightarrow{E}(\mathbf{r}, \boldsymbol{\vartheta}) = \mathbf{k} \frac{3(\overrightarrow{p} \cdot \overrightarrow{r})\overrightarrow{r} - r^2\overrightarrow{p}}{r^5}$;

Campo \overrightarrow{B} prodotto da un dipolo magnetico: $\overrightarrow{B}(\mathbf{r}, \mathbf{\vartheta}) = \frac{\mu_0}{4\pi} \frac{3(\overrightarrow{m} \cdot \overrightarrow{r})\overrightarrow{r} - r^2\overrightarrow{m}}{r^5}$;

Potenziale di dipolo $\varphi(\mathbf{r}, \vartheta) = \mathbf{k} \frac{\overrightarrow{p} \cdot \overrightarrow{r}}{r^3}$