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Abstract In this article, we study the Reidemeister torsion and the analytic torsion of the
m dimensional disc, with the Ray and Singer homology basis (Adv Math 7:145-210, 1971).
We prove that the Reidemeister torsion coincides with a power of the volume of the disc.
We study the additional terms arising in the analytic torsion due to the boundary, using gen-
eralizations of the Cheeger—Miiller theorem. We use a formula proved by Briining and Ma
(GAFA 16:767-873, 2006) that predicts a new anomaly boundary term beside the known
term proportional to the Euler characteristic of the boundary (Liick, J Diff Geom 37:263—
322, 1993). Some of our results extend to the case of the cone over a sphere, in particular
we evaluate directly the analytic torsion for a cone over the circle and over the two sphere.
We compare the results obtained in the low dimensional cases. We also consider a different
formula for the boundary term given by Dai and Fang (Asian J Math 4:695-714, 2000), and
we compare the results. The results of these work were announced in the study of Hartmann
et al. (BUMI 2:529-533, 2009).
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1 Introduction

The Reidemeister torsion is an important topological invariant introduced originally by
Reidemeister, Franz and de Rham to classify lens spaces. For non-acyclic spaces, the R
torsion depends on the homology. However, dealing with Riemannian manifolds, Ray and
Singer [19] introduced a geometric torsion invariant by using the Riemannian structure to
fixing the dependence on the homology of the R torsion. In the same work, in searching for an
analytic description of the R torsion, Ray and Singer also introduced the analytic torsion, that
soon became an important geometric invariant on its own, and has been deeply investigated
by various authors (see for example [1] and the references therein). The equivalence between
the R torsion and the analytic torsion, conjectured by Ray and Singer, was eventually proved
by Cheeger [4] and Miiller [17], for closed manifold. Cheeger also discussed the case of
manifolds with boundary, showing that in this case an extra term could appear. Much later,
this boundary term was explicitly given by Liick [14], for the case of manifolds with a product
metric structure near the boundary. Only in 2000, Dai and Fang [8] gave a formula for the
difference of the R torsion and the analytic torsion on a manifold with boundary without any
assumption for the metric near the boundary. In this formula, some new terms appear. How-
ever, in arecent work of Briining and Ma [2] on Ray—Singer metrics on manifolds with bound-
ary, a further formula is given, where a different boundary contribution appears. The results
given in Theorem 2 below are obtained using the formula of Briining and Ma. The results
obtained using the formula of Dai and Fang are given at the end of Sect. 4. Beside the intensive
investigation and the large literature available, comparably few results exist on the quantita-
tive side, namely explicit evaluations of the analytic torsion [9,20,29]. Continuing along this
line of investigation, we study in this work the simplest case of a manifold with boundary,
namely the case of a disc. Let (W, g) be a compact connected Riemannian manifold with
boundary W, and metric g, and p : 71 (W) — O(k, R) an orthogonal representation of the
fundamental group of W. We denote by tr ((W, g); p) the R torsion, by tr (W, W, g); p)
the R torsion of the pair (W, 9W). We denote by Ty,s((W, g); p) the analytic torsion of
(W, g) with absolute boundary conditions on d W, and by Tie1((W, g); p), the analytic tor-
sion of (W, g) with relative boundary condition, both with respect to the representation p (see
Sect. 2 for the precise definitions). Let D}" = {x € R™ | |x| < [}, the disc of radius / > 0 in
the euclidian space IR”, and with the standard metric gr induced by the immersion, and p an
orthogonal representation of the fundamental group. With this notation, we now state our main
results, that were announced in [10].

Theorem 1 The R torsion of the disc D] is:

w (D', g8); p) = (\/VoT(D,"’))rk(”) .

In the same situation, the R torsion of the pair (Dlm, Slmfl) is:

_ (—1)m=1tk
w((D]", S, gr): p) = (Volg, (D) ™"

Proof The results follow from Propositions 1 and 2 of Sect. 3, taking « = 5. O
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Theorem 2 The analytic torsion of the disc Dj" is (p > 0):

—1
2p—1 1 2p—1, 1 1 =1
log Taps (D] P ep)ip) = Erk(p) log Vol (D, =y 4+ Erk(,o) log2 + Zrk(,o) ’; o
2p 1 2p 1 P 1
log Tuns (D}, g£); p) = 51K(p) log Volg, (D)) + Srk(p) D -—-
n=1
Proof The results follow from Theorem 1, using Lemmas 1 and 2 of Sect. 4. O

Beside our main results concern the case of the discs, that are smooth manifolds, our
technique easily extends, at least formally, to cover the case of the completed cone over a
sphere Cy S}, ,» of angle «, length / > 0, and with the standard metric g induced by the
immersion (see the beginning of Sect. 3 for the definition). And this generalization contains
the case of the discs. For this reason, we develop our analysis in the more general case of the
cone, whenever this is possible. The main problem, to deal with the cone, is the extension
of the Hodge theory to the space of L2-forms near the singularity at the tip of the cone. This
theory has been developed in the work of Cheeger [6], and we will assume his results in
the definition of the Laplacian on forms, necessary in order to define the analytic torsion
appearing in the following theorems. More details on this aspect, are at the beginning of
Sects. 4 and 5.

Theorem 3 The analytic torsion of the cone Cy Sllsinow with tk(pg) = 1, is:
1 . L.
108 Tus ((CarSino 83 p0) = —log Tt = > log(l sine) + - sina.
In particular, for the disc Dlz, we have:

1 1
log Tans (D7, gE); po) = —log Trel (D}, gE); po) = 3 logml* + 3

Proof The proof is in Sect. 5.2. O

Theorem 4 The analytic torsion of the cone Cy stin o

with tk(pg) = 1, is:

2

e lF(O )+1 i
=7 — = ,csco —sin” «,
2 4

3
where the function F (0, x) is given in Appendix B. In particular, for the disc D;

1
10g Tabs ((CaSfyin - 81): p0) = log Tret =  log

3

; ; 1 4ml® 1 1
log Taps (D', g£)3 po) = log Tret (D7, gE): po) = 3 log = T3 log2 + rE

Proof The proof is in Sect. 5.3. O

We note that all the results contained in the previous theorems, up to Theorem 4 when
o # 1 /2, are particular instances of the Cheeger—Miiller theorem for a manifold with bound-
ary, i.e. of the following formula:

1
log Taps (W, 2); p) = log R (W, g): p) + Zrk(p)x(aW) log2 + Agm(@W), (1)

where Agm (0 W) is the anomaly boundary term of Briining and Ma (see Sect. 4 for details).
This is an expected results for the discs, that are manifolds, while is more surprising for
the cone over a circle. On the other side, a simple calculation using the formula given in
Theorem 4 for the cone over the sphere shows that an extra term appears in this case in the
analytic torsion, beside the ones predicted by the formula in Eq. 1.
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2 Preliminary and notation

We recall briefly the definition of the torsion of a finite chain complex of finite dimensional
IF-vectors spaces (where I is a field of characteristic 0)

P Om—1 3 a1
C: Cp—5Cp_j —>--- C Co.

Let Z, = kerd,, By = Imd, 1, and H, = Z,/B,. We assume that preferred bases
cq = {cq,j}and hy = {hy, ;}are givenfor C, and H,,respectively, foreachg.Letb, = {b, ;}
be a set of independent vectors in C; with 9, (b,) # 0, and let z; = {z4, j} be a set of inde-
pendent vectors in Z, with p(z4, ;) = hy, ;. Then, considering the sequence

p

0 B, Z, H, 0,

a basis for Z, is given by the basis 9,11 (by+1) of B, and the set z,. We denote this basis by
by, z4 (see [16] for details). By the same argument, the sequence

0 Z, C, By 0,

determine the basis 9;+1(bg+1), 24, by of Cy. Let (3541(bg41), 24, by /cq) denote the matrix
of the change of basis. Then, the torsion of C is the class

n

7(C;v) = [ [1det@y11(bg11). 24, by /e)1 ", ©)
q=0

in ' /{£1}. Itis easy to see that the torsion is independent of the graded bases b = {b,} and
on the lifts z = {z4}, but depends on the graded homology basis h = {h,}. More precisely,
7(C; v) depends on the volume element v = ®Z’:0h,(]_l)q in ®Z1:0 A" H,, where ry, = rkH,,
and this explain the notation.

Next, let (K, L) be a pair of connected finite cell complexes of dimension m, and ( K, i)
its universal covering complex pair, and identify the fundamental group 7 = 71 (K) with the
group of the covering transformations of K . Note that covering transformations are cellular.
Let C ((I% , I:); 7Z.) be the chain complex of (I% , i,) with integer coefficients. The action of
the group of covering transformations makes each chain group C, ((K, L); Z) into a module
over the group ring Z, and each of these modules is Zm-free and finitely generated with
preferred basis given by the natural choice of the g-cells of K — L. Since K is finite, it follows
that C((K, L); Z) is free and finitely generated over Z . We obtain a complex of free finitely
generated modules over Z that we denote by C((K, L); Z). Let p : 1 — O(IF, k) be an
orthogonal representation of the fundamental group on a IF-vector space V of dimension k,
and consider the twisted complex C((K, L); V,) = V ®z, C((K, L); Z). Then, the torsion
of (K, L) with respect to the representation p is the class of ' /{£1}:

(K, L); p,v) = T(C((K, L); Vp): V).

Now, let W be an m dimensional orientable compact connected Riemannian manifold with
metric g and possible boundary d W. The torsion of W can be defined taking any smooth
triangulation or cellular decomposition of W. Moreover, the volume element v can also be
fixed by using the metric structure. More precisely, given a graded orthonormal basis a, for

@ Springer



Ann Glob Anal Geom (2012) 42:29-59 33

the space of harmonic forms H?(W, V,,), either with absolute or relative BC, and applying
the de Rham map (see [19])

rel abs

A = (—DIPTIA W (W, V) — Hy (W3 V), 3)

we obtain a preferred homology graded basis & = A(a), that fix the volume element w =
A(a), where « is the volume element determined by a. This gives the R torsion of W, and
the relative R torsion of (W, dW):

RIW, 8); p) = T(C(W; Vp); Al@)),  w((W,0W, g); p) = T(CUW, dW); Vp); A@)).

We conclude this section recalling the definition of the analytic torsion [19]. The zeta
function of Laplace operator A? on ¢ forms in 4 (W, V,) is defined by the meromorphic
extension (analytic at s = 0) of the series

(s, AWy = T A,
reSp, AW
convergent for Re(s) > 7, and where Sp,, denotes the positive part of the spectrum. If W
has no boundary, the analytic torsion of (W, g) is

1 m
log (W, ) p) = 5 > (=1)7q¢'(0, AW, “
g=1

If W has a boundary, we denote by Tys((W, g); p) the number defined by Eq. 4 with A
satisfying absolute boundary conditions, and by Tre1((W, g); p) the number defined by the
same equation with A satisfying relative boundary conditions.

3 The Reidemeister torsion of the cone over a sphere

In this section, we compute the R torsion of the m dimensional disc, Dl’”. However, we will
consider the slightly more general case of a cone. Namely we consider the cone of angle
a, C,S", constructed in R"*2 over the sphere S”, m = n + 1, as defined below. In general,
C, S" is not a smooth Riemannian manifold, but is a space with a singularity of conical type
as defined by Cheeger in [4] (2.1). More precisely, C, S" coincides with the completed finite
metric cone of Cheeger over the sphere of radius sin «. Note that we are adding a point at the
tip of the cone, in order to have a simply connected space. The resulting space is compact,
but obviously is not a smooth Riemannian manifold. The space obtained removing the tip,
is an open smooth Riemannian manifold with the metric induced by the immersion, as in
[4]. In order to define the R torsion some care is necessary, since we do not know how the
de Rham theory extends. More precisely, we do not know if we have the de Rham maps A7
for spaces with conical singularities, in general. However, we show that we can define these
maps in the particular case of C,S", and therefore we define the R torsion accordingly. In
particular, the construction cover the smooth case of the disc.

Let S be the standard sphere of radius b > 0in R" ™!, §7 = {x € R"*! | x| = b} (we
write S" for 7). Let Cy S}, , be the cone of angle « over Sf'; , in RR"*2. Note that the disc
corresponds to D} tHl—c z S;'. Parameterize Co S, , by
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[ x1 = rsinasing,sinf,_; ---sin 63 sin 6> cos H;
Xp = rsinasing, sinf,_j ---sinf3 sin b, sin Oy
X3 = rsinasing, sinf,_; ---sinf3cosb;
n _
CO‘ SI sina
Xp41 = rsinacosé,
| Xp42 = rcosa
with r € [0,1], 6; € [0,27n], 62, ...,6, € [0, ], o is a fixed positive real number, and

0O<a= % =sina < 1. The induced metric is (r > 0)

g =dr ®dr + rzazggir

n—1 n
=dr@dr+ria® (> [ [] sin®0; | do ® do; + do, ® b, |.
i=1 \j=i+l1

and /[detgg| = (r sin@)”" (sin,)" 1 (sin6,_1)" "2 - - - (sin §3)%(sin 6»). Let K be the cellu-
lar decomposition of Cy Sl”sin o> Withone top cell, one n-cell and one O-cell, K = c}l 11 Uc,'l Ucé,
and let the subcomplex L of K be the cellular decomposition of Sf'; . L = chu cé. Let p
be a real (trivial) representation.

Consider first the case of relative boundary conditions. Then, the relevant complex of real

vector spaces reads

Crel OHR[cn+1] 0 s 0 0 0,

with preferred base ¢, +1 = {c,]l +1)- To fix the base for the homology, we need a graded ortho-
normal base a for the harmonic forms. Since a base for Q"*+1(C, Sling) 18 {/Idetgeldr A

doy A -+ AdB,}, we get a1 = [ ldetgp |dr Ad6i A A6, ] Applying the formula in Eq. 3 for

Y VOlgE (Co Slnsina)

the de Rham map, we obtain 7,11 = {2;11 11 }, with

/ *y/|detgg|dr AdOy A --- AdE, an

1 rel (1
Tt = A1 (@pg) = %gb CaSl
1 ol
Vol oS
As b, =}, for all g, we have that
det a1/ )] = : ,

Applying the definition in Eq. 2, this proves the following result.

|det(bg/cg)l =1, 0 < g <n.

Proposition 1
(=1)"rk
IR((C Sl%ma’ Slemoz’ gE); ,0) = ( VOlgE(C [smot) e .

Next, consider the case of absolute boundary conditions. The relevant complex is

Cabs : 0 —>R[c} ;] —R[c}] 0 % 0 Rlcg] 0,
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with preferred bases ¢,+1 = {ciH}, cp = {c,ll} and ¢y = {c(l)}. Hence, H,(K) = 0, for
p > 1,and Hy(K) = IR,[C(])]. Since a base for Q°(C, S} ine) 1 the constant form {1}, we

have ag = { ——L——1. Applying the formula in Eq. 3 for the de Rham map, we
A/ Volg (CaSin o)
obtain zo = {z}, with
th = 4 =

I SR 1 _ n 1
T s, ¥10 = v/ Voler (CaSiiin o).
Asb, =Wforqg=0,...,n, blll_,_1 = c,ll_,_1 and B(bllH_]) = ¢,;, we have that

|det(z0/c0)| = \/ Volg, (CaSfino)» 1det @by, 1) /ca)| = 1, |det(Bay1/cay1)] = 1.

Applying the definition in Eq. 2, this proves the following result.

Proposition 2

k
R (CaSlinar 860 ) = (Volg (CaSfin o)™

4 The anomaly boundary term and the analytic torsion of a disc

The aim of this section is to give the proof of Theorem 2. For we need a formula for the ratio
between the analytic torsion and the Reidemeister torsion, that we call anomaly boundary
contribution. Observe that, by result of Cheeger [4], this ratio depends only on some geomet-
ric terms coming from the geometry of the manifold near the boundary. Since the singularity
at the tip of the cone does not affect the geometry near the boundary, we are allowed to per-
form our calculation for the general case of the cone Cy S}, ,- However, this would imply
some technical difficulties that are beside the aim of the present work. As observed in the
introduction, two different formulas for this anomaly are available at the moment. One is
given in Theorem 1 of [8], and the second one comes from Theorem 1 of [2]. We first proceed
to evaluate the anomaly boundary contribution using the formula of [2]. Then, at the end of
the section, we will describe the contribution appearing using the formula of [8] (see also the
Appendix of [15] for other examples). We proceed in two steps. First we give in Lemma 1
formulas for the anomaly in terms of some geometric invariants. This follows directly from
Theorem 1 of [2], and gives, in the odd dimensional case, the anomaly in terms of the Euler
characteristic of the boundary. The even case is harder, and needs the introduction of some
machinery and notation from [2] and [1]. This is done in the course of the proof, and, as a
result, the anomaly in the even case is written as some integral. The second step is accom-
plished in Lemma 2, where we give all the geometric invariants necessary to compute the
integral appearing in the formula obtained in Lemma 1, and we conclude the calculation for
the even case.

Before to start, we need some notation, that will be used without further comments in this
section. The parameterization of the cone and the induced metric gg are given in Sect. 3.
Define the metrics

g1=gr=dr®dr+ rzggn, go=dr @dr + lzgsn.

Letw;, j =0, 1 be the connection one forms associated to g;, and Q; = dw; +w; Aw;
the curvature two forms. Let e(W, g) denotes the Euler class of (W, g).
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Lemma 1 The ratio of the analytic torsion and the Reidemeister torsion of the disc D]", of
m = 2p — 1 odd dimension, and m = 2p even dimension (p > 0), with absolute boundary
conditions are, respectively:

2p—1 p—1
Tans ((D ,8E); P) 1 2p—2 1 1
B = Jtk()x(S" 7 gp) [log2+ 5>~ )
(D" ", 8E); P) il

b B
o Tabs((Dlpng)§p) . lrk( ) 2pr-1 1 / /821771
g - ﬁ(zp—l)!vz 2j 1 Lo
st

log

2
w((D;", gE); p) e

Proof The proof is based on Theorem 0.1 of [2]. Note that we are in the particular case of
the flat trivial bundle F', since the unique representations are the trivial ones.
Therefore, we have from equation (0.6) and Section 4.1 of [2],

log M — lrk(p) / (B(V;TD;n) _ B(VJD;"))7

Tans (D], 80); p) 2 (&)

-1
Sl

where the forms B(V/.TX ) are defined in equation (1.17) of [2] (see Eq. 8) below, and observe
that we take the opposite sign with respect to the definition in [2], since we are considering
left actions instead of right actions). Since gg is a product near the boundary, by the results
of [14]

Tabs((Dlma 80); P) 1 -1
“abs 1805 P) k(o) x (5™, gi) log2,
w(D" gr)ip) 4 £

and it just remains to evaluate the anomaly boundary term, on the right side of Eq. 5. For we
first recall some notation from [1] Chapter III and [2] Sect. 1.1. For two Z/2-graded algebras
A and B, let A9B = A A B denotes the 7./2-graded tensor product. For two real finite
dimensional vector spaces V and E, of dimension m and n, with E Euclidean and oriented,
the Berezin integral is the linear map

B
/ CAVFQAE* —> AV*,

B n(n+1)

R (-1
/ a®B > —————B(er, ..., epa,
2

v

where {e; }’]1.: | is an orthonormal base of E. Let A be an antisymmetric endomorphism of E.
Consider the map

PO :
A:AHA:EZ(ej,Ae[)é-’Aél.
jil=1

Note that

i A
[oton(2) 0

and this vanishes if dimE = n is odd.
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Let w; be the connection one form over D;" associated to the metric g;, and 2; the
curvature two form. Let ® be the curvature two form of the boundary §™=1 (with radius 1)
with the standard Euclidean metric. Let (w;)?, denotes the entries with line @ and column
b of the matrix of one forms w;. Then, introduce the following quantities (see [2] equations
(1.8) and (1.15)), where i : Sl'”_1 — Dl"’ denotes the inclusion of the boundary,

-1 m—1
15 . ~ 1 N
Sj = E E (i*w_i - i*wO)rekeekv R=0= E 2 ; ®9k9160k neét. @)
=1 k=1

Then, we define
Bv =1 / / o IR iil w1 du @®)

From this definition, it follows that B(VOT bi ) vanishes identically, since Sy does. It

remains to evaluate B(VIT bi ). For note that by equation (1.16) of [2] (or by direct cal-
culation, since the curvature of the disc is null) R = —2812. Therefore, Eq. 8 gives

1 B
// (1—u2)82§: 1 k-1 kg
(& 1 —— U u
k 1
0 Sr(z+1)
1

2
B 00 !
> [ —uuF dus
. k /( 1
/. T JT(5+1)

Jj=0,k=1 0

B, "y

| —

| —

- B
D ;/51#2}'.
j=0k=t KT (5+i+1)

Since the Berezin integral vanishes identically if k +2j 7% m — 1, we obtain

N =

m_l] B

2
D", 1 1 m—1
BOLT) = oy 2 T /sl : ©)

2 j=0

Now consider the two cases of even and odd m independently. First, assume m =2p+1
(p = 0). Then, using Eqgs. 6, 9 gives

TD[ZPJrI

1
B =g

LS Lt g
= - —e 7gE7
4n:1n

where ¢(S%7, g) is the Euler class of (S27, gg), and we use the fact that

B
® 5
(S, g) = Pf (E) - /e*z

@
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Therefore,

Tas (D", g1):p) 1 / Dy / )
S LIS =k BV "y =2 k 2
8 (D g0 p) 2P | BT =gk > L st

Sm 1 n= 1

1 1
= g Z —X (5%, gp).
n=1

Second, assume m = 2p(p > 1). Then, Eq. 9 gives

D 1 p-! 1 ;
BV, )= : /321’—1
zr(p+%)j§2p—2/—l !

B
_ or—1 L 1 / 82 p—1
ﬁ(Zp—l)!!j_l 2j —1 o
and substitution in Eq. 5 gives the formula stated in the Lemma. O

Lemma 2 We have
—1 B
2P / /82[171 -1
JT2p — D !
s

Proof First, we determine the connection one forms for the metric g; and go. We define the
Christoffel symbols accordingly to V, es = Fo/ P2 where {e,} is an orthonormal base,
and we use the formula

Y B o
r _Caﬁ +Cy0t +CV/3

g = : (10)

’

where the Cartan structure constant are defined by [eq, eg] = ¢, ﬂye},. The orthonormal base
and its dual with respect to g| are

e = adr’ e =dr,
_ 1 0 01 _ n : .
ey = (r[ljopsing) ™ 55, " =r][[j_,sin6;do,
eq, ; = (rsiné,)” 1—71, efn-1 = rsin6,d6,_,,
ey, = %ag , e =rdo,.
n
e ol v _ 14 v _ O _ -1 :
This gives Cop = —Cpy’» Caa’ = 0, Va, y, and the non-zero are ¢, . = r~ ", and if
1
. 0; . .
k>i chp" = rn%ikine_. Using Eq. 10, the non-zero Christoffel symbols are Fe;rei =
j=k J
1 0 1 0 _cosfy . . 0; _ —cosb; sl s
— Fe,- = s F0,~ 6, = TIT, sn6; , with s > i, and Fes 9, = T sin; , withi > s.

The connection one form is the matrix w; = Fya ﬂey, with non-zero entries

) cos bk . L g
(wl)e’g = i<k, (0), =—=€".
“ r]ljgsing; i r
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The orthonormal base and its dual with respect to gg are
e = % e =dr,
o, =([]jopsindp)~ 55, " = (]}, sin6,)d6y,

eo,_ = (Isin6) ™" 550 =1 = (I'sin6,)d6, 1,
_ 1.9 O _
€y, = T30,° en = ld@n
The non-zero Cartan constants are CG,-GkGi = lan“’%, with k > i. Using Eq. 10,
Jj=k
. 0; _ cos b, : 0; —
the non-zero Christoffel symbols are Fe,- 0, = m, whens > i,and [, "y, =

IHCOS f;n 7 when i > s. The non-zero entries of the connection one form matrix are

cos g o
]} sin6;

It follows that the unique non-zero entries of w; — wg are

9,
(o) Igs =

(w1 —wo)rg,, —*e = H sin6;d6;.
j=i+1

Second, we determine the curvature two form ®. Since gg is a product metric, ® is the

restriction of 2, and hence, we compute Qg = dwg + wo A wp. We write wy in the coordinate
base

s—1
@)y, =0, (00)"y =cost [] sin6;de;. i <s.
j=it1
and hence, dwy is
(dwO)rgi - 07 i 5 nv
(dwo)’y =TT5_ 4y sin0;d0; A d6— 342!, | cos by cos b, [15Z], | sin0;do; Adoy, i<k,

J#s
and wg A wq 18
,
(w0 A @)y, = (wo Awp)'y =0,
k—1 k—1
(o new)y = D cosfycost [] sin6;do; A do
s=i+1 Jj=i+1,
J#s

n
+ ] sino;{ ] sin®6s—1)doi ndor, i<k
j=itl s=k+1

Then, the curvature two form g is

Q0 =0, (0", = H S H sin? 0,d6; AdO, i <k,
j=i+1 s=k+1

and consequently ® = i*Qq (where i denotes the inclusion of the boundary) is
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n
0%, = [] sine; [] sin*6.do; ndor, i<k
j=i+1 s=k+1

Third, recalling that 812 = —%R,

B -1 B
Jer = o
and using the definitions in Eq. 7

2p—1 2p—1 p=l

B B
- Hr-!
[s Gl 3 o ony 3 @0y & A

i,j=1

(—pr-! 3) 2p—-1
= S| 2 s @1 — w0’y @)Yy @0 g0, |
oES)
o(1)=1
(,1)1'(211—1) 1 . :
where cp = ~—5,——. Observe that (0] — wo) @ lsa 1-form multiple of dfy(2)—1 and
T 2

(Qo) is a 2-form multiple of dg, _, A dgH . We can twist all the 2-forms dy,_, A d@] |» With
i> J in each term appearing in the last line of the equation above, as the matrix is skew-
symmetric. Then, we can order the base element, in such a way that the top form appears
in each term. This produces a sign coinciding with sgn(o). Moreover, since the matrix of
the curvature two form is skew-symmetric, the generic term in the sum in the last line of the
above equation can be written in the following form:

1 a(3) o(2p-1)

w1 — wo] 0(2)[90] 0(4)...[90] o(2p)d9] A ANdOyp,

where [& ] denotes the coefficient of the form (& ) ,and o € 8y issuch thato (1) = 1 and
o(2s — 1) < 0(2s) for all s. We prove that

2p
3) 2p—1 . N
[w1 — wol 0(2)[90]0( o) [QO]U( b )0_(2]7) = — | |(Sln Qg(i))a(z) 1’
i=2

where sin 6>, = 1. The proof is by induction. If p = 1 the equality holds trivially. Suppose
it is true for p — 1. By hypothesis, if T € S, with (1) = 1, then

2p—2

1 3 2p-3 . i)—
[o1 — w0l ) [201"% ) [201" 7 o,y == [] Ginbren ™.
=2

Take o € S, with o(1) = 1. It is clear that there are ko, ki, ko such that o (ko) =
2p —2, 0(k1) =2p — 1and o (k) = 2p. Factoring sin0,,), i =0, 1, 2:

1 3 2p—1
[w1 — wo] (2) [QO]G( )0(4) s [QO]U( d )g(zp)

= (sin 021,,2)21’_3 (sin 021,,1)2’]_2 x factor,
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where ‘factor’ is a product of sinf;, j # o (ko), o (k1), o (kz). In this way, we can rewrite
‘factor’ indexing it by a permutation T € S3,_> such that the induction hypothesis holds.
Then,

2p
3 2p—1 . N
(@1 — w0l ) [2017 V5 4 - - [Q01° %7 )G(zp) = — [ [ sin 6 i)
Jj=2
We have proved that
B
2p-1 _ o =hrep—i BT i
51 :CBW HZ(SIHQJ')J d91/\.../\d92p,1.
j:
Then,
1 H 1
2P~ §2r-1 _ 2P~ =DHP@2p — 1)!V01(S2p—1)
VT 2p — D! L T mep — DI 2r-1pp2p-] !
st
3 Qp—-DlJm
T 2r-l(p =D @2p — DI
It is easy to see that
ep-D!
(p—D!I2p—-DN ’
and the thesis follows. O

Remark 1 In the case m = 2, namely the two-dimensional disc D?, the proof of Lemma 1
extends to the case of the cone C, Sllsin o For the curvature of the cone vanishes identically
in this case. Therefore, we have that

B
og abs(( o 1lsmoz gE) '0) = 7rk(p)7/81'
‘L’R((CotSlsinot’gE);p) 2 ﬁ

The integral can be evaluated proceeding as in the proof of Lemma 2, and we obtain

Tabs((CaSllsinot’ 8E): P) = lrk(p) sin o

tR((CaSllsina7 8E); P) 2

We conclude this section by computing the anomaly boundary term using the formula
given in Theorem 1 of [8]. In the even dimensional case, we give the result for the more gen-
eral case of the cone over the sphere. We need some more notation. Consider the homotopy
w; = wo +1t (w1 —wo), and let Q; = dw; + w; A w; be the corresponding curvature two form.
The Chern—Simons class associated to the Euler class of 2, will be denoted by e(go, g1),
and satisfies de(go, g1) = e(g1) — e(go), where e(g;) is the Euler class of ;. Then, it is
easy to see that Theorem 1 of [8] gives the following formulas:

2p—1 A
Tans((D;" ", 86)i ) 1 _
log — 2117—1 = Zrk(P)X(SIZP ? gp)log2, (11
wrU(D;" 7, gE); p)
Tabs(CoS{ona g0 0) 1

2p—1 =5
TR(CaS)gino» 8E)s P)

k(o) / i*e(g0, k), (12)

2p—1
Isina
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where i denotes the inclusion of the boundary. Proceeding in very similar way as in the proof
of Lemma 2, we compute the integral appearing in Eq. 12. We obtain

2
/ R DPH 2 p) Vol (ST 1) & Z( l)k(sma)2k p—1
’ (4m)P12P=T p\(sin a)2P—2 %+1 \ k)

2p—1
Isina

and in particular, for the disc (sina = 1)

/ i*é(g0, gr) = (=P

2p—1
SI

5 The analytic torsion of C,,[S

Isina

and C, Sl sina
In this section, we compute the analytic torsion of the cones Cy S ll sing and Cy Slzsin o Dy using
the definition given in Eq. 4. For we need first the explicit knowledge of the spectrum of
the Laplace operators on forms on these singular spaces, and second a suitable represen-
tation for the analytic extension of the associated zeta function, that allows to evaluate the
derivative at zero. The first aspect of the problem was originally addressed by Cheeger in
[6] (see also [23]). In the work of Cheeger, the Hodge—de Rham theory is developed for
spaces with singularity of conical type. In particular, it is proved that the Laplacian on forms
is a non-negative self adjoint operator on the space of square integrable forms on the cone,
if some set of appropriate boundary conditions at the tip of the cone are used. We recall

this pomt briefly in the following Remark 2. We give the spectrum of A on C, S[ sing and
on Cy Sl «ine iN Lemma 3 and Lemma 4 below, respectively. Next, to deal with the second

aspect, namely an analytic extension of the zeta functions and a method to evaluating the
derivative at zero, we use a method introduced by Spreafico to deal with the zeta invariants

of an abstract class of double zeta functions. In fact, the eigenvalues of A(CC’) o can be
Isina
identified with the zero z, x of some combination of Bessel functions and their derivatives,

and be enumerated with two positive indices as )\E,q])( = zﬁn «» Where the u,, depends on the

eigenvalues of the the Laplacian on some space of g-forms on the section of the cone. Using
classical estimates for the zeros of the Bessel functions, it is possible to prove that the relevant
sequences U and S are contained in the class of abstract sequences introduced in [24,26].
This means that we can use the method of [23,25,26], to evaluate the derivative at zero of
the associated zeta functions. In particular, we will use the notation and the formula as given
in Section 4 of [11], and all the reference of the following Sects. 5.2 and 5.3 are to that

paper.

5.1 Spectrum of the Laplacian on forms

In this section, we compute the spectrum of the Laplacian on forms. The general form of
the solutions of the eigenvalues equation are given in [6] and [7]. However, we present
here the explicit form of the solutions in the case under study and some details on the cal-
culation, that we were not able to find elsewhere. Furthermore we give, in the course of
the proofs, the complete set of the eigenforms of the Laplace operator. We give a more
detailed proof for the case of the circle. We denote by {k : A} the set of eigenvalues A with
multiplicity k.
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Remark 2 Decomposing with respect to the projections on the eigenspaces of the restriction
of the Laplacian on the section of the cone (i.e. with respect to the angular momenta), the
definition of an appropriate self adjoint extension of the Laplace operator (on functions) on
a cone reduces to the analysis of the boundary values of a singular Sturm-Liouville ordinary
second-order differential equation. The problem was addressed already by Rellich in [21],
who parameterized the self adjoint extensions. In particular, it turns out that there are not
boundary values for the non-zero mode of the angular momentum, while a boundary con-
dition is necessary for the zero modes, and the unique self adjoint extension defined by
this boundary condition is the maximal extension, corresponding to the Friedrich extension
(see [3] or [6] for the boundary condition). The same argument works for the Laplacian on
forms. However, in the present situation we do not actually need boundary values for forms
of positive degree, since the middle homology of the section of the cone is trivial (compare
with [5]).

Lemma 3 The spectrum of the (Friedrich extension of the) Laplacian operator AW on

Cy S}

AP sin o

g-forms with absolute boundary conditions is (where v = cosecw):
(U] _[:2 2\ Y 2 2\
SPAL g = Ut/ PYsy U2 Gl ),y
o _ (2 > IEVALS .2 21
SpAcas,'Sm - {JO,k/Z }k=1 U {/l,k/l }k=1 U {2 S/l }n,k:l
. o
U {2 : (-]\/)n,k)z/lz}mk:l’
2) _[:2 2\ .2 21%°
SpAC"‘sllsina - {j()’k/l }k:l Y {2 : jvn’k/l }n,k=l :
The spectrum with relative boundary conditions is:
(] _[:2 2\ .22 21%¢
SpACaSllsino( - {Jo’k/l }k=1 U {2 : ‘]V”’k/l }I’l,kzl7
(1 IEVALS 2 72 ) 21
SPAc s = Loa/ 4y Y/ P02 V{2 s o/ Y
(3 2 2\
U2 Gl )

aSllsina = {jlz‘k/IZ};o:l U {2 : (j‘/}n'k)z/lz}:i]k:1.

Proof Recall we parameterize Cy Szl by

sin o

X1 = xsina cosf
1 _ T )
CO‘Slsin(x ={ xp = xsinasinf
X3 = XCoS«

where (x,0) € [0,1] x [0, 2], [ and « are fixed positive real numbers and 0 < a = % =
sina < 1. The induced metric is

g =dx ® dx + a%x2d0 ® db,

and the Hodge operator is

1 1
*: 1+ axdx Adf; *:dx +— axdf, *:d0—~ ——dx; *:dx AdO > —.
ax ax
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The Laplacian on forms is

1 1
AO(f) = =03f = B f = 50 f.

1 1 1 2
AW (fedx + fpd) = (—aifx — 50 fet 5 fe— =S+ ﬁaofe) dx
a=x X X a=x
5 1, 1 2
+ _8xf9_ ) 289f9+*axf6_*89fx de,
a=x X X

A (fdx ndf) = —02f + o, f— Zf— L a2
f X - xf X X.f x2f azxz (Qf'

Decomposing forms near the boundary into tangent and normal components, the BC gives
the following set of equations. For the O-forms:

rel. : w(l,60) =0, abs. : (0yw)(1,0) =0, (13)
and relative BC coincide with Dirichlet BC. For 2-forms

w
abs.: w(l,0) =0, abs.: (ax;) (1,0) =0, (14)

and absolute BC coincide with Dirichlet BC. For 1-forms:

abs. : (wX(l’ 9 =0, rel. : {0)9(1, 0) =0,

(3xwp)(1,0) =0, (3x(axwy) + = 8pwp) (1,6) = 0. (1)

Next, we solve the eigenvalues equations. Note that the Laplacian on 2-forms coincides
with the one on O-forms up to a Liouville transform f = xh. Consider the eigenvalues
equation for the Laplacian on O-forms

1 1
©) 4 _ 2 2\ ,_ 42
AV = (—8x — ;3)( — a2x289) f=A"f (16)
We can decompose the problem in the eigenspaces of —ds. In fact, ¢,,(8) = ¢’ is a

complete system of eigenfunctions for —dg on the circle S', and the eigenvalue of ¢, is
€, =n?, n € Z. Thus,

AO =" 1,1,
nez

where I1,, is the projection onto the subspace generated by the eigenvector ¢, of the eigen-

space relative to the eigenvalue €, and
v2n?

1
Ly==d{ = —di+ —,

where v = 5 Since €, = €_,, 1, = I1_,. Thus —dy has the complete system

fen = 1% 9000) = @) =}
nelN

where all the eingenvalues are double up to €g = 0 that is simple; since L, = L_,,

o0
AO = LT @ D" Ly(My 4 &, ),

n=1

@ Springer



Ann Glob Anal Geom (2012) 42:29-59 45

where I1, + is the projection on the eigenspace generated by ¢, + in the eigenspace of ¢,
(in fact the eigenspace of ¢, is generated by the two eigenvectors ¢, + for all n # 0). Now,
we solve the eigenvalues equation for L, on L%(0, [), namely

2.2
Lou = (—d§ R )u:A,zlu. 17)

This can be solved in terms of Bessel function. By classical result, Eq. 17 has the two
linearly independent solutions (assume . = vn is not an integer) y+,(x) = J|u(AyX)
(where we assume A, > 0). But J_j, (x) diverges as x~ 1 at x = 0, and therefore does
not satisfy the BC at x = 0, or it is not in L2(0,]) (depending on the value of w). Thus,
in any case, we only have the solution y,. This means that the eigenvalues equation (17)
for L, has the solution v, (x) = Jjn(X,x), for each n € Z; in particular it has solution
Yn(x) = Jyn(hyx), if n > 0, since v > 0. Therefore, a system of linearly independent
solutions of the eigenvalues equation (16) for A is

{po(@)Yo(x) = Jo(Aox)}

. . (18)
U {0+ @9 () = € 100 ), .- O () = " S )|
0
The solution for A® are given by the inverse of the above Liouville transform,
{Do@)Yo(x) = xJo(Rox)}
in6 —in@ (19)
U {4 @09 (6) = X 10 (3r). - @) (6) = xe ™" S Gr)}
0
The eigenvalues equation for the Laplacian on 1-forms:
AVw = 3?0, (20)
with w = fydx 4 fpd6 corresponds to the system of partial differential equations
2 | —v282 +1 212 2
— 07 fe— —Ofo ¥ ——— o F 3 00 fo =2"fx,
X x2 1)

282

2 2
8 fo - *30fx A fo.

1
— i fo+ - T —0x fo +
Since a base for L2 (S s given by the functions e™? with integer n, we consider solutions
of the type w = fy (x)e"?dx + f5(x)e!"?dd, with integers m and n. Substitution in equation
(21) gives

(vm)? + 211) n

1 .
- fxezme
X

. 1 .
_ 3§fxezm6 _ ;8xfxelm0 + 27 e eind — )\fo ,
2 in6 1 in0 ( I’l) m0 2im im6 2 in6
— 05 foe +;8xf66 —— Jfoe N — Jfxe = A" foe'",

that is satisfied if and only if m = n. Therefore, it follows that the solutions of Eq. 20 are
of the form w = e (£, (x)dx + f»(x)d#), with n € Z, or in other words, that the operator
AWM decomposes as

AV =" L,M,,

nez
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where

2 202
L _df _ %dx + (Wl/:erl 21;3;1
n — . 2 )
__2in _d,% + %dx + (VXLZ)

X

on (L2(0, 1))2, and I1,, is the projection onto the subspace generated by e"? of the eigenspace

relative to the eigenvalue n2 of —dg. Therefore, we need to solve the eigenvalues equation
Lou = A2u,
where u = (fy, fp) are two functions in L2(0,1). This corresponds to the system

1 (wn)2 +1 2iv2n
{ _d)%fx_*dxfx‘l‘ fx+ fB :)‘;zzfxa
X x2 x3

(vn)? 2in

fo= = fc =i fo-
X

1
—d2fo+ —defo + —
X X

With the change of base (fy, fo) = (vgx, —ixgp), we obtain

1 (v +1)2
(—d)zc - ;dx T ) (8 +80) = A (8x + 80).
(22)

1 (v —1)2
(—d,% - ;dx + T) (8x — 80) = Ma(gx — o)

By classical results on the solution of the Bessel equation, and taking only the L? solution,
we have that a complete set of linearly independent solution is given by the two vectors

(&x> 80)n,+ = (Jpn+1(AnX), Jont1)(Anx)),
(8x» 80)n,— = (lenfl\()\nx)s _lenfl\()tnx))

Therefore, the eigenvalues equation (20) relative to the operator AV, has the following
complete set of linearly independent L? solutions with n € Z

[fox = Jonsn G)e™ vy 5 ixd6) | (23)

Eventually, we apply the boundary conditions. For O-forms, wn = @ and wperm = 0.
Relative boundary conditions given in Eq. 13 applied to the solutions in Eq. 18, give 4, =
Ank = ] ”;’7" , where j, x are the positive zeros of the Bessel function J,, arranged in increas-
ing order, with k = 1,2, .... Since it is known that the set {J, (jy xx)}k=1,2,... defines an

orthogonal basis of the space L2(0, 1), we have proved that the set

[ff’o(e)wo,k(x) = Jo(22% %), 1 (O s (x) = ei""f’fm(’””"‘ﬂ] ,
l l nelNg

defines a complete set of orthogonal linear independent solutions of the eigenvalues equation
(16) for A with Dirichlet BC at x = [ on L2(0, /), and where A, = A, = 22 for both
¢n.+Jun When n # 0. Absolute boundary conditions are given in Eq. 13. Applying to the
solutions in Eq. 18, we obtain

dw :
o0 = € T Onl) = 0,
_ j\’vn\.k

that give A, = 1), , = =*7*=, where the j/ , are the zeros of J), (z).
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The result for 2-forms is the dual of that for O-forms. Note that, applying the inverse of
the previous Liouville transform, we get a complete system for A with absolute boundary
conditions:

JV in v »
[ Lk, (2)( 2 0) = Gn(@) pujn ik (x) =€ 9xJu|n|(J lzllkx)dx/\d9]

l neZ,kelNg

Fora 1-form w(x, 0) = w,(x, 8)dx + wg(x, 6)dO, wwn = wg and wporm = wy. Note that
none of the solutions in (23) satisfy the BC (15), for 1, # 0. So we consider linear combi-
nations wy +(x,0) = f,.+(x,0) £ f,.—(x, 0). Applying the absolute BC (15) to w, +(x, 0)

we obtain, if n # 0, the eigenvalues Aﬁ’k’+ = j|2vn|.k/12’ and )Lﬁ,kﬁ = (j|/vn|,k)2/12' Ifn =0,
we have )L%,k,Jr = jlz’k/lz, and A%’kﬁ = j&k/lz.

Applying the relative BC (15) to w,,+ (x, 8) we obtain, if n # 0, the eigenvalues Ai’ g =
Gfom )2/ 125 and 27, = ji, /1% Ifn = 0, we have A, . = jg /1% and A5, =
Ji./1%. The eigenforms follow from Eq. 23. O
Lemma 4 The spectrum of the (Friedrich extension of the) Laplacian operator A(Cq) @ on

P sin o

q-forms with absolute boundary conditions is:

=fon+1:72, k_/zz}oo _u{s /12}:;,

spal, = {jék/zz}:o1 fans12 ) .
u{2n+ 1: 2 H/zz}' Y {2n+ 1 jﬁmk’,/lz}:)k:],
[j;k/ﬂ]:ol {2n+1 i k11 } k=1
ufon+1: jjmk&/ﬂ}n,k:l Ufon+1: 2 2}

n,k=1
3) . L2 21 2 2|
SpAl e = {2n+1 L2 }mk:l U {j%’k/l }kzl.

S

O‘SI sino

S2

Isina

The spectrum with relative boundary conditions is:

) L2 2)® 2 2]
SpACD‘Slsmoz {2n + 1 ’ JM"’k/l }n,k=1 Y {j%k/l }k=l ’

spal, = [j;k/lz]:il U {2n+1 : jjmk/ﬂ}:fk:l

U {Zn +1: jin,k,+/12}:k=1 U {2n +1: jin,k/lz}jkzl .
SpAl, = {j;k/lz}:; U {2n+1 2 /12} .

ufon+1: 72, k+/12}°°k: ufen+1: jﬁmk,_/lz}:kzl,
SPAG)SJZSM - {2n+1 ]“ ok, /12} =1 {j3 /12]k .

where i1, = /v2n(n + 1) + %, and where the fv,ki are the zeros of the function G;t(z) =
+ 30 + 2] ).
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Proof Recall we parameterize Cy Slzsma by

X1 = x sina sin 6> cos 6
5 Xy = x sin « sin 6, sin 6
CO‘SI sina — .

X3 = Xx sin& cos 0y
X4 = X COSQ

where (x, 61, 62) € [0,1] x [0, 27] x [0, 7], « is a fixed positive real number and 0 < a =

% = sin« < 1. The induced metric is

g=dxr®dx + a?x? sin? 6,do; ® do; + a2x2d92 ® do,.
The Hodge star acts as follows:
1 1> a?x? sinfrdx A O A dés;

% . dx = a®x%sin 6,do; A dOy, x : dO| >
si

dx A dBy, * : dfr > sinOrdx A dby;
n92
1

1
* 1 dx AdO > ——dby, * : dx A dOr > —sin6rdO;, x 1 dO) Adbr > ———
sin 6, a?x?sin 6,

X5
1

*x:dx AdOy AdOy > ———.
o : 2 a?x? sin 6,

The Laplacian on forms reads

2 ) 02 w 92 w
AO(w) = — (8xa) + 020 + 2 o d ,
X

- 6, W .
a?x2sin@, * a’x?  g2x2sin% 6,

A(l)(wxdx + wy, do, + a)gzd@z)

. + 2 28 1 52 cos 6
=(-0%0w, + w0y — 0wy — =07 Wy — —————0p®
T AT T 22T 226G, 2t

1

2 2 2 2cosbr
_maela)x + 728910)91 + W@gza)gz + 5wy, | dx

—
a2x3sin% 0 a?x3 sin 6

2 2 1 2
+ —8x(1)9| — ;80]6())( - Waeza)g]

st 29 L 2w ) do
Fasing, 0 T AR = g, e ) 4
2 2 I cos 6,
AT T e T a0 T G ng,
1 ( 82 wo) + 2cos 6, 3 ) 49
——(wy, — 05 @ ——— 3,0, ,
a2x2Zsin? 6y 2 Ot i, )T
with the following set of BC. For the O-forms:
abs. : d,yw(l,01,62) =0, rel. : w(l, 01, 62) = 0. 24)
For 1-forms:
wx(l,01,0,) =0, wg, (1,01,602) =0,
abs. : § dywg, (1, 01,62) =0, rel. : § wg, (1, 61,602) =0, (25)
Oxwg, (1, 01,602) =0, d (2wy)(L, 01, 62) = 0.
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Next, we solve the eigenvalues equations. For O-forms:
© 2 I o 2
AV (w) = a)— faxw—i—iA (w) =\ w (26)
X

We can decompose the problem in the eigenspaces of Ag(;). Let Y,f(el,ez) =

eikor P| ‘(cos 6»), where P| |(cos 6>) are the associated Legendre polynomials and |k| < n.
(91 6») is a complete system of eigenforms for A( ) and the eigenvalues are n(n + 1),
w1th multiplicity 2n 4+ 1 and n € Z, n > 0. Thus,

AQ — ZTnH,,,
n>0
with
2 v2 1
T, = —Bfa) — —0yw + %,
X X

and the eigenvalues equation reads

2 2 1
T,(u) = (—afw — ;wa + %) u= )L%u.

. . . Lo 1
This can be solved in terms of Bessel function and the solution is u,, (x) = x~ 2 J,, (A, X).
Hence, the solution for the 0-Laplacian equation is

1
al(x, 01,00) = x72J,,, 0nx)YE (01, 02). 27)
For 1-form, we have
AD (@) = 2w, (28)

with @ = w,dx 4 wy, O] + wp,db>. Write w = f,0, (x)P (61, 02) + fx (x)h(61, 02)dx where
¢ = fo,d01 + fb,d6> and h(01, 6>) is a O-form on $2. Hence, replacing in (28) we have the
system

<1>
(¢) 2 xd h
(—d§f0,02)¢+ 5 Jfo0, — fxd®) =22 fo,0,0
<0> h 2 fondt (29
((—d%fx —defx +32fx>h+ 5 (z)fx e 532(¢))dxzszxhdx.
X X a=x

Consider fy = 0 or & = 0 and ¢ a coexact eigenform on S? with non-zero eigenvalue.
We have the equation, forn > 1,

Vzn(n + ])f9192
x2

(—d? fo0,)0 + ¢ =22 fo0,0

Solvmg this equation in x, we find that fy4, = x2 Ju, Apx) and then a(l) =
X2 Jiu, (Apx)@¢. Note that ¢ = d;z (sin 92Y,f (01, 62)d6; A dBy).

Now, we consider f, # 0, fg,6, 7 0, and h a coexact 0- eigenform of §? with non-zero
eigenvalue such that d(h) = ¢. Hence, A(])(qb) =nn+ 1), dl 2(d(h)) =n(n + 1)h, and
the system (29) becomes
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nn+1) fo,6, 2 fo,0,9
2,2 ¢ -
a=x X

(_d)%fx - %dxfx + %fx)h + n(,;;le)h fx — 2n(n + 1)§9192(¢)

(—d2 fo,0,)0 + =2 fo0. 9,

5 = fxh.

Changing the base by (fp,6,, fx) = (x_%gx, Oy (x_%gx)), we solve the system, and the
solution is gx = J, (A,x). Hence, the solution for the system (29) is

BY = x72 0, () (01, 02) + e (x ™2y, (Ayx))h(6), 07)dlx,

where h(6;,0;) = Y,f(91,92). Consider now f, # 0, fp9, # 0, and ¥ a coexact 0-ei-
genform of S? with non-zero eigenvalue such that d(/) = ¢ and d;zd () = h. Then
h =n(n + 1)y, and the system (29) becomes

1) fa, 2fen(n + 1
(_d§f0192)¢' + nn azx)zfe 02¢ - f n(: )¢ = )\‘I%f9102¢’
(30)
((—d,%fx 2 fot S pony MO DIy, 2o, h) dx = A2 fhdx.

Changing the base by (f,6,, fx) = (9x (x%gx), x_%gx) we solve the system (30) and the
solution is gx = J, (A, x). Hence, the solution for the system (29) in this case is

1 3
YD = 8, (x2 Jy, on ) ) (81, 02) + X2 J, ()R (61, 62)dx,

where ¥ (01, 62) = Y,’l‘ (01, 62). In the case Aglz) (p) = AgOQ) (h) = 0, we have the equation

2 2
((_d)chx - ;dxfx + fo)h) dx = )‘ﬁthdx~

Hence, changing the base by fy = 0y (x_%gx) we find g, = J% (Apx) and the solution is

DM =8, (x72J; Gox)h.

Since we know that the Hodge decomposition of square integrable forms into exact and
coexact forms holds as in the smooth case [7], we conclude that Eq. 28 has the following
complete set of linearly independent L? solutions:

o) =x27, (Anx)d s (sin02Y5 01, 0,)d01 A db),
B = 8 (x ™2y, nx) YEO1, 2)dx + X2, (a)A(YE 1, 62)),
vV = x73 1, (Gx)(n(n + DAY @1, 0)dx (31)
00 (22 Ty, ()Y 61, 62)).
pM = ax(x_%J% (Rox))dx.
Next, we determine the eigenvalues.

O-forms We have only two type of forms in (27), that are,

o =72, 09, B =271, 00080,
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Using the absolute BC in (24), we have

© _ -3 0) _
B (e ) (1. 01, 02) = B (x~2 Ty, Q) B (1. 61 62) = 0,
O (EI, 01, 62) = 0(x ™23 (ox)9™) (U 61, 62) =0,

and so we need the square of the solutions of —fl 3 JM (Irp) + l_ka’ LX) = 0 and
) J2 j3 k
—AO J;(lko):0thatarek k:“'}%andAOk— -

Using the relative BC in (24), we have o 91,61,0) = EX(,61,6,) = 0 and the
i 1
eigenvalues are )‘i,k = "‘;’5’1‘ , and )\(Q)yk = lz—zk

1-forms In this case, we have the four types of forms in (31) (s = 1, 2):

oM = x37, Gur)dl,
B =, (x 2, Oan)$Qdx + x72 J,y, (hx)dp

y O = 3 Jun ) (1 + D26V dx + 8y (x2 Ty, (hnx))dp
DV = 9, (x2 Iy (h0x))pVdx.

Using the absolute BC in (25) we have, for the four types,

3 (@M)p) (1, 61, 02) = By (x7 Ty, () (1) = 0,

BV (101, 02) = 0, ((B)a ) (1. 01 62) = B (x ™2 Ty, (p)) (1) = 0,
WM, 61,62) = Iy, (Ln) = 0,

1
0 (v e, (U 01, 02) = = Ty, (Un) + n Ty, () + 4p 1 (Uhn) =0,

0.(D") = 8 (™27, (o) () =0,

and so we obtain the square of the zeros of %J,L,, (Iry) + “‘J,/L,, (Iry) =0, —%JH" () +
_1
MJ;;,, (Ixp) =0, Jy, (Ixy) = 0,and —2 * J% (IAg) = 0, that are

j 2ok 2k ur
_ I'Ln»kv“’ 72 _ THask,— 2 _ Hn, 2 _ 2
)\.n k= 12 . A’l’l,k = 12 . )‘n,k = 12 and )\'O,k = lz .

Using the relative BC in (25) we have, for the five types,

@")o, (1. 61, 62) = (x2 I, () (1) =0,
(B)g, (1. 61, 02) = Iy, (Ihn) = 0,
1
0 (> (B (L. 01.,02) = =, () + T}, () + () T}, () =0,

1
A (M), 01, 62) = 5T Oon) + D Jy, (1) = 0,
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o () (L. 61, 62) = lfun(lxn)ﬂu/ () =0,
0.2 D)W 01, 62) = 020 (x™2 T (o)D) = 0,

and so we need the square of the zeros of J,, (IA,) = 0, —%Jﬂn Ury) + lknJ,in Ury) +
(Z)Ln)zJ[[n (Ir,) =0, %J,ln (Ian) + l)\'”];/l,n (IA;) = 0 and J% (Irg) = 0, that are

~ )
2 2
52wkt o0 Ik
lz nk — 12 0,k — 12 .

]
2
)"n,k =

This concludes the proof for O-forms and 1-forms. The result for 2-forms and 3-forms
follows by duality. O

5.2 The analytic torsion of a cone over the circle

This case is now a particular instance of the general case covered in [11] and [12]. We will
recall the main points, see the on line file for a complete account [13]. Consider absolute BC.
By the analysis in Sect. 5.1, the relevant zeta functions are

oo /()7]? /171? 00 722 (j k) 2s
My — Jon vn,
£, A >—Z,ZY+Z,72‘Y+2Z 2y =T
k=1 k=1 n,k=1 n,k=1
) =2
(s, A?) = i Jok' ’ i Jonk
¢, - |25 + [=25°
k=1 n,k=1

and by Eq. 4, the torsion is (@ = sina = %) log Tabs((CaSl]a, gE); p) = —%{/(O, Ay 4
£'(0, A®). The torsion zeta function is

t(s) = —%g‘(s, ADY 4 2(s, APy =17 (%ZO(S) - 1z1(s) + Z(s) — Z(S))

0 0 00
1

1 - - -
= EIZS /O ]35 - EIZT 2S + ® Z vnzlsc — 1> Z (j"” k) 2S
=1 k=1 nk=1 n,k=1

and log Tabs((CO,S}a, ge); p) = t'(0). Using equation 14 of [11], we compute zp,1(0) and
24 ,1(0). 1t remains to deal with the differences Z(0) — Z(0) and Z'(0) — Z'(0). For we use
Theorem 3 of [11]. The relevant sequences are the double sequences S = { jfn’ ) and S =
{(j;n,k)z}, and the simple sequence U = {vn};2 | = v™°¢r(s), and Z(s) = ¢ (s, S), 2(5) =
(s, 8). Itis possible to show that the results of [11] Sect. 4 apply. U, S, andAS'n are totally
regular sequences of spectral type with genus 1, and the relative genus of S and S are (1, 0, 0).
Also, S and S are spectrally decomposable over U with power x = 2 and length £ = 2, as
in Definition 1 of [11]. This follows using the uniform expansions for the Bessel functions
given for example in [18] (7.18), and Ex. 7.2. The final expansions read

logF(—A,Sn/u,zl)=Z¢h_1(k)u},_h=( —log2 — /1= +log(l + V1 — ))
h=0

—i—1 log(1 —X) — (Ul(v—k) + i) i + 0 (;) ,
4 12) vn

(vn)?
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log T (—, 8 /u2) = > $n1Gyu) ™ = (1 —log2 — /1= +log(l + V1 — A)) vn

h=0

—llog(l -2 — (vl(«/—T)+ i) L +0 (—1 )
4 12) vn

(vn)?
Applying Theorem 1 of [11], since the unique pole of ¢ (s, U) isats = 1,
A ~ 1 A
£00,5) = 20, 5) = =A0.1(0) + A0.1(0) + 7= Re%l (@1(s) — P1(s)),
§=
£'0,8) = ¢'(0,8) = —A0,0(0) — A) 1 (0) + Ag(0) + Ap 1 (0)
1 - 1/3 A
+5-Reso(P1(s) = P1(s))+— | 57 +logv ) Res (P1(s) —Pi(s)),
2v 5=0 v \2 s=0

where, by definition in equation (11) of [11], and the calculations in Appendix A,

CT(s+3) . T(s+3)
Whence
Z(0) = Z(0) = — (A0.1(0) — Ap.1(0)),
b B , A N 1 (32)
Z/0) = 2/0) =~ (A00(0) + 45,10 = Ao,0(0) — Ag, () + o

Recalling the definition in a equation (13) of [11] of the terms A 0(0) and AE),] 0),

and computing the expansion for large A of the functions logI'(—A, S, /u%) and ¢1(A)
(using classical expansions for the Bessel functions and their derivative and the formulas in
equation (12) of [11]) we obtain that Ag 0(0) = Ap,0(0), and that

o0

A 1 —2s 1
Ao i) = Aoi(o) = 5 Dy =

_ L
n _§§(2s,U)_2v (2s).

n=1

Substitution in Eq. 32 gives Z (0) — Z(0) = %, Z/(0)—2Z'(0) = —% logv+ % log 2w + %
and and hence (compare with [27])

108 Tabs (Ca S}gin g+ 8E): p) = S log 1% + 5.

5.3 The analytic torsion of a cone over the sphere

We consider absolute BC. By the analysis in Sect. 5.1, the relevant zeta functions are

oo ]:iy oo j72‘;( 00 J’-“72A;{ N
1)y _ 2 Hn s Mn,K,
Co. A =30+ D @n+ DS+ > Qnt DEEE
k=1 nk=1 nk=1
oo Jl_is ) j—2S %) ]7'—23
2)y _— 2 Jn .k Mk, +
oA =3 242 D Cnk DI+ D) Cnk DI
k=1 n,k=1 n,k=1
%) ]T?{A %) J-—ZL;c
3)y _ 2 Hans
6, A =2 2+ D) Cn+ DS
k=1 n,k=1

and by Eq. 4, the torsion is
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108 Tavs (CaSfsing- 8£): £) = — 520, AD) + 20, A®) — 3¢/(0, A®)).

Define the torsion zeta function

1 3
1s) = =580, AD) + 265, AP) = 225, AD)
0o jo 2s ]3 k 1 & —Zi . —21
_ Mn l/-n -
= Z -5 +ZZ<2 + DT _,2(2 n+ DI
k k_ n,k=1 nk 1
_p( L, 1 1, L,
= (S)—Ez%(S)+5 +(S)—§ - ),
then

) 1 1 1 1
log Tuvs (Ca 7, 81): p) = 1/(0) = log 12 (—iz%w) — 35O+ 3740~ 52_(()))

1/(0) 1/(0)+IZ/(0) IZ/(0)
2°4 P2 R R T

Using equations (14) of [11], we compute

3 01 1
IOgTabs((Caslzsinang)§P)=(4+ Z,(0) — fZ (0))10gl2
33
+1z’(0) 1z’(0)+11 4 .
= - = —log -.
27 27~ 2 %83

It remains to deal with the differences Z (0) — Z_(0) and Z’, (0) — Z’ (0). For we use
Theorem 3 of [11], in the form given in the corollary. The relevant sequences are the dou-
ble sequences S+ = { jﬁn «.+)> and the simple sequence U = {2n + 1 : Mn}o2 ;. where

Un = V2 + 1)+ %, and Z4 (s) = ¢(s, S+). Using classical estimates for the zeros of

Bessel function [28], the genus of S+ is 0, the genus of U is 2, and the relative genus of S are
(1, 0, 1). This only differs from the case of the circle by g(S+ x), with fixed k. Using classical
estimates for the zeros of the Bessel function, the behavior of this sequence is given by the
behavior of the sequence of the eigenvalues of the Laplacian on the sphere S, that is known.
In particular, we recall the main features here below. We check that U, and S+ ,, are totally reg-
ular sequences of spectral type. By definition of the sequence U, (s, U) = v°¢(s, L . ),
where L, = 2n + 1 : /n(n+1)+¢q}32,. Hence, U is related to the sequence of the
eigenvalues of the Laplacian on the 2 sphere shifted by some positive constant ¢g. More pre-
cisely, ¢(2s, Lo) = ¢(s, Sp,. A(O)) The zeta function ¢ (s, Sp,. A(O)) has been studied in [24],

Sect. 3.3, where it was proved that e(Sp+A(O)) = (Sp+A(0)) = 1, and that Sp+A( isa
totally regular sequence of spectral type w1th infinite order by giving the explicit formula
for the associated Gamma function I'(—A, U) in terms of the Barnes G function. It follows
that e(U) =g(U) =2, and that U is a totally regular sequence of spectral type with infinite
order. Also, ¢ (s, Sp +A(S%)) has one simple pole at s = 1, with residues

Reso Z(s, Sp+A(O)) =2y, Res1 L(s, Sp+A(O)) =1,
and hence, ¢ (s, Lo) has one simple pole at s = 2, with the same finite part and double residue.

Expanding the power of the binomial, we have that ¢ (s, Ly) = ¢(s, Lo) + f(s), where f(s)
is a regular function at s = 2. Therefore,
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Reso ¢(s, Ly) =2y + f(2), Resi (s, Ly) =2,
s=2 s=2
and
C(s,U) =v7¢(s, Ly) = 2 b + f(s)
’ o T 2 g2 ’
near s = 2. For S+, we proceed as in Sect. 5.2 of [11]. Introducing the functions
+ _ 1 /
G, () = j:EJv(z) +2J,(2),

we have the product representation, where HVjE () = e 7l "Gf(iz),

+ _ l / _ L 44 = Z2
H @) = 51, +20)() = (1 -+ 2U) T H(l o ) (34)

k=1 vk, %

Using this representation, we obtain a product representations for the Gamma func-
tions associated to the sequences St ,, and hence, a complete asymptotic expansion of
log "' (=, S+ ,), proving that therefore S, and S, are sequences of spectral type. Considering
the expansions, it follows that they are both totally regular sequences of infinite order. Next,
we prove that Si are spectrally decomposable over U with power k = 2 and length ¢ = 3,
as in Definition 1 of [11]. We have to show that the functions log I'(—2, Si,n/u%), have the
appropriate uniform expansions for large n. Using Eq. 34 and the uniform expansions for the
Bessel functions and their derivatives [18] (7.18), and Ex. 7.2, we obtain

o
log T(=, St /1n) = D 1,20y
h=0

- (1 — T2 +1log(1 +VT—n) —log2) fhn

1 1 1\ 1
—Zlog(l -2+ (—W1,i(«/j)») + 3~ 7) —

12)
| B 1\ 1 1
W (W—A)+ W[ (V=2) — < —+0\—=)-
2 = 8) uy M
(see [11] p. 429, for the explicit formulas of the Wy ), and hence
é1,+(1) — ! ! + >
1, =—-5 - = -
+ 8(1_)0% 24(1_)\)% 12
b0 7 1 7 1 7
1,-(V) =< - — -,
8(1_)\)% 24 (1_)0% 12 (35)
by () = 1 1 3 1 n 7 1 1
SR TS ) 8(1—12% 16(1—-13 8
9 1 7 1 7 1 1
$2,— (1) = -3

T61—A_§(1—A)Z+T6(1—A)3 8

The length £ of the decomposition is precisely 3. For the e(U) = 2, and therefore the
larger integer such that h — 1 = o5, < 21is 3, since g = —1, 01 =0, 00 = 1, 03 = 2.
However, only the term with o, = 2, namely 4 = 3, appears in the formula of Theorem 3 of
[11], since the unique pole of £ (s, U) is at s = 2.
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We now apply the formula in that theorem. First, since k = 2, Resp;—» ¢ (s, U) = K, and
Resi s (s, U) = %, we obtain

1
2(0,81) —¢(0,S-) = —Ag,1,+(0) + Ag,1,—(0) + > Rg%1(¢2,+(8) — &y _(s)),
£'(0,80) —¢'(s,8-) = —(A0,0.+(0) + Aj 1 (0) — Ag,0,—(0) — Aj ;. _(0))

1
+§ Re_%o(®2,+(s) — @5 _(5))
+ (L + K) Resi (92.4.(5) = 2, (s)).
v s=0

Second, using the definition in equation (11) of [11], by Eq. 35 and the formula in
Appendix A, we obtain

1
Dy 4 (5) — Py —(s) = EF(S +D),
and hence
1
Reso(P2,4(s) — @2, (5)) = =, Resj (P24 (s) — P2, —(s5)) = 0.
=0 2 =0

This gives

Z4(0) = Z_(0) = —A0,1,+(0) + Ao,1,-(0),

Z () = ZL(0) = ¢'(0, 84) = (5, 5-) 36)

, 1
= ~(A0,0.40) + Ap 1+ (0) = Aoo.~(0) = Ay _(O) + 7.

Third, by equation (13) of [11], the terms Ag o(s) and Ag,1(s), are

[e.¢]
—1y -2
A00.£(5) = D (a0.0n+ — b2oo.xuy, ") u, ™,

n=1
00

—1y -2
Ao1£(5) = D (a0 1nx — baoszuy, ), ™.

n=1

Hence, we need the expansion for large A of the functionslog I' (=X, S, +/ u%) and ¢y +(1).
This comes from the expansion

HE(z) ~ ﬁez(l + ka_k)-i- 0(e™9),

for large z. After some calculations (see [11] pg. 429 for details), we find that Ag 1 +(s) =
Ao,1,—(s), and therefore Z, (0) — Z_(0) = 0, and that

A A —0021*2“111 111 =F
0.0+ ()=Ag0.—()=D_(2n+ i, (Og +2Mn)_0g( ~ )— (s, v).

n=1

This series converges uniformly for Re(s) > 2, and using the analytic extension of the
zeta function ¢(s, U), has an analytic extension that is regular at s = 0. Substitution in
Eq. 36 gives

Z/(0) = Z(0) = —F(0,v) + 53

202"
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Substitution in Eq. 33 gives

3

1 4B 1
108 Tabs ((Co St o 8E): P) == 5 log == = SF(0,esca) + Zsmza (37

We give in the Appendix B a series representation for the F (0, v) for v > 1. Consider

here the case v = 1. Then, u,, = ,/n(n + 1) + % =n+ %, and hence

oo
F(s,1)=2%>"2n+1)'"*(log(n + 1) — logn).
n=1
For Re(s) > 2, due to absolute convergence, we can rearrange the terms in the sum. We
obtain

F(s,1) = =2 > (@n+ 1'% = @2n - 1)!"*) logn
n=1
— (1 =25\ (1 —(=1)/
=Z( S)%m +i-1

Jj=0

¢'(2s + 2k)
= (1-25)¢'(25) + Z (2k . I)W,
and hence, by substitution in Eq. 37,
3
log Tuns((C S7. g£); p) =log T((D}, g). p) = 3log ¥ + Llog2 + 1.
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Appendix A

We give here a formula for a contour integral appearing in the text. The proof is in [23]
Sect.4.2. Let Ag. ={L e C||arg(hA—c)|=6},0<6 <m, 0 <c <1, areal then

o
/ts_li. / e ;d)\dt — M
2mi —A (1 —A1)4 I'(a)s

0 Ag.e

Appendix B

We give a power series representation for the function F (0, v) for v > 1. Assume Re(s) > 2,

then
1 1
) (-52))
2pin 2pp

F(s,v) = Z(2n + 1),LL_23 (log (1 +
00 2k 00 1

n=1
2 22 2k—1 < 2s—2k—1
_22 DS oSS S n o D2
@nt+Du k_02k+1“ k_()(2k+1)22/<n:1("“L My

n=1
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Now,
X e} 1
2% _ —j 2x=2j
’unx_(vn(n+l)+ ) 22/()(n(n+1))xl x=2j
j=0
and therefore
0 00 1 . 1 0)
P S LS (ko hyge kT Shag)
' pos (2k + 1)22k 022j j D25 AZKA2j+1 .
= Jj=

where

£(5.p, AD) =D @n + D + 1)~
n=1

Since the unique pole of the meromorphic extension of ¢ (s, Sp +A(S(;)) isats = 1, writing

F(s.v) = ¢(s, Spy AP v=27!

S I 1 (—s—k—}\ 6 +k+j+3.5p,A0)
et Qk + 1)22k 22j j p25+2k+2j+1 ’

Jj+k#£0

and using the analytic extension of ¢ (s, Sp +A(52>), we obtain

(]
 J— 1 1 [~k — NG+ j+ 3,80, A )
o) ! 2 +
F(O \)) =< ( SP+A ) » + kE_O (2]( n 1)22k 22.,' ( ] ) v2k+2]+1
)

It is easy to see that the coefficient in the power series above are all convergent series,
and can be evaluated numerically. The leading term requires independent treatment. Using
the theorem of Plana as in [22], we obtain

1 A O +y +47E 1 3y
§(§,Sp+ 2) = —= f+6/flsm 5 arctan 5— = dy

N 3y
- ——————cos | - arctan dy.
ey — 1 2 22
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