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Abstract In this article, we study the Reidemeister torsion and the analytic torsion of the
m dimensional disc, with the Ray and Singer homology basis (Adv Math 7:145–210, 1971).
We prove that the Reidemeister torsion coincides with a power of the volume of the disc.
We study the additional terms arising in the analytic torsion due to the boundary, using gen-
eralizations of the Cheeger–Müller theorem. We use a formula proved by Brüning and Ma
(GAFA 16:767–873, 2006) that predicts a new anomaly boundary term beside the known
term proportional to the Euler characteristic of the boundary (Lück, J Diff Geom 37:263–
322, 1993). Some of our results extend to the case of the cone over a sphere, in particular
we evaluate directly the analytic torsion for a cone over the circle and over the two sphere.
We compare the results obtained in the low dimensional cases. We also consider a different
formula for the boundary term given by Dai and Fang (Asian J Math 4:695–714, 2000), and
we compare the results. The results of these work were announced in the study of Hartmann
et al. (BUMI 2:529–533, 2009).
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1 Introduction

The Reidemeister torsion is an important topological invariant introduced originally by
Reidemeister, Franz and de Rham to classify lens spaces. For non-acyclic spaces, the R
torsion depends on the homology. However, dealing with Riemannian manifolds, Ray and
Singer [19] introduced a geometric torsion invariant by using the Riemannian structure to
fixing the dependence on the homology of the R torsion. In the same work, in searching for an
analytic description of the R torsion, Ray and Singer also introduced the analytic torsion, that
soon became an important geometric invariant on its own, and has been deeply investigated
by various authors (see for example [1] and the references therein). The equivalence between
the R torsion and the analytic torsion, conjectured by Ray and Singer, was eventually proved
by Cheeger [4] and Müller [17], for closed manifold. Cheeger also discussed the case of
manifolds with boundary, showing that in this case an extra term could appear. Much later,
this boundary term was explicitly given by Lück [14], for the case of manifolds with a product
metric structure near the boundary. Only in 2000, Dai and Fang [8] gave a formula for the
difference of the R torsion and the analytic torsion on a manifold with boundary without any
assumption for the metric near the boundary. In this formula, some new terms appear. How-
ever, in a recent work of Brüning and Ma [2] on Ray–Singer metrics on manifolds with bound-
ary, a further formula is given, where a different boundary contribution appears. The results
given in Theorem 2 below are obtained using the formula of Brüning and Ma. The results
obtained using the formula of Dai and Fang are given at the end of Sect. 4. Beside the intensive
investigation and the large literature available, comparably few results exist on the quantita-
tive side, namely explicit evaluations of the analytic torsion [9,20,29]. Continuing along this
line of investigation, we study in this work the simplest case of a manifold with boundary,
namely the case of a disc. Let (W, g) be a compact connected Riemannian manifold with
boundary ∂W , and metric g, and ρ : π1(W ) → O(k,R) an orthogonal representation of the
fundamental group of W . We denote by τR((W, g); ρ) the R torsion, by τR((W, ∂W, g); ρ)
the R torsion of the pair (W, ∂W ). We denote by Tabs((W, g); ρ) the analytic torsion of
(W, g) with absolute boundary conditions on ∂W , and by Trel((W, g); ρ), the analytic tor-
sion of (W, g)with relative boundary condition, both with respect to the representation ρ (see
Sect. 2 for the precise definitions). Let Dm

l = {x ∈ Rm | |x | ≤ l}, the disc of radius l > 0 in
the euclidian space Rm , and with the standard metric gE induced by the immersion, and ρ an
orthogonal representation of the fundamental group. With this notation, we now state our main
results, that were announced in [10].

Theorem 1 The R torsion of the disc Dm
l is:

τR((D
m
l , gE ); ρ) =

(√
VolgE (D

m
l )
)rk(ρ)

.

In the same situation, the R torsion of the pair (Dm
l , Sm−1

l ) is:

τR((D
m
l , Sm−1

l , gE ); ρ) = (√VolgE (D
m
l )
)(−1)m−1rk(ρ)

.

Proof The results follow from Propositions 1 and 2 of Sect. 3, taking α = π
2 . ��
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Theorem 2 The analytic torsion of the disc Dm
l is (p > 0):

log Tabs((D
2p−1
l , gE ); ρ) = 1

2
rk(ρ) log VolgE (D

2p−1
l )+ 1

2
rk(ρ) log 2 + 1

4
rk(ρ)

p−1∑
n=1

1

n
,

log Tabs((D
2p
l , gE ); ρ) = 1

2
rk(ρ) log VolgE (D

2p
l )+ 1

2
rk(ρ)

p∑
n=1

1

2n − 1
.

Proof The results follow from Theorem 1, using Lemmas 1 and 2 of Sect. 4. ��
Beside our main results concern the case of the discs, that are smooth manifolds, our

technique easily extends, at least formally, to cover the case of the completed cone over a
sphere CαSn

l sin α , of angle α, length l > 0, and with the standard metric gE induced by the
immersion (see the beginning of Sect. 3 for the definition). And this generalization contains
the case of the discs. For this reason, we develop our analysis in the more general case of the
cone, whenever this is possible. The main problem, to deal with the cone, is the extension
of the Hodge theory to the space of L2-forms near the singularity at the tip of the cone. This
theory has been developed in the work of Cheeger [6], and we will assume his results in
the definition of the Laplacian on forms, necessary in order to define the analytic torsion
appearing in the following theorems. More details on this aspect, are at the beginning of
Sects. 4 and 5.

Theorem 3 The analytic torsion of the cone CαS1
l sin α , with rk(ρ0) = 1, is:

log Tabs((CαS1
l sin α, gE ); ρ0) = − log Trel = 1

2
log(πl2 sin α)+ 1

2
sin α.

In particular, for the disc D2
l , we have:

log Tabs((D
2
l , gE ); ρ0) = − log Trel((D

2
l , gE ); ρ0) = 1

2
logπl2 + 1

2
.

Proof The proof is in Sect. 5.2. ��
Theorem 4 The analytic torsion of the cone CαS2

l sin α , with rk(ρ0) = 1, is:

log Tabs((CαS2
l sin α, gE ); ρ0) = log Trel = 1

2
log

4

3
l3 − 1

2
F(0, cscα)+ 1

4
sin2 α,

where the function F(0, x) is given in Appendix B. In particular, for the disc D3
l :

log Tabs((D
3
l , gE ); ρ0) = log Trel((D

3
l , gE ); ρ0) = 1

2
log

4πl3

3
+ 1

2
log 2 + 1

4
.

Proof The proof is in Sect. 5.3. ��
We note that all the results contained in the previous theorems, up to Theorem 4 when

α �= π/2, are particular instances of the Cheeger–Müller theorem for a manifold with bound-
ary, i.e. of the following formula:

log Tabs((W, g); ρ) = log τR((W, g); ρ)+ 1

4
rk(ρ)χ(∂W ) log 2 + ABM(∂W ), (1)

where ABM(∂W ) is the anomaly boundary term of Brüning and Ma (see Sect. 4 for details).
This is an expected results for the discs, that are manifolds, while is more surprising for
the cone over a circle. On the other side, a simple calculation using the formula given in
Theorem 4 for the cone over the sphere shows that an extra term appears in this case in the
analytic torsion, beside the ones predicted by the formula in Eq. 1.
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2 Preliminary and notation

We recall briefly the definition of the torsion of a finite chain complex of finite dimensional
F-vectors spaces (where F is a field of characteristic 0)

C : Cm
∂m �� Cm−1

∂m−1 �� . . . ∂2 �� C1
∂1 �� C0.

Let Zq = ker ∂q , Bq = Im∂q+1, and Hq = Zq/Bq . We assume that preferred bases
cq = {cq, j } and hq = {hq, j } are given for Cq and Hq , respectively, for each q . Let bq = {bq, j }
be a set of independent vectors in Cq with ∂q(bq) �= 0, and let zq = {zq, j } be a set of inde-
pendent vectors in Zq with p(zq, j ) = hq, j . Then, considering the sequence

0 �� Bq �� Zq
p �� Hq �� 0,

a basis for Zq is given by the basis ∂q+1(bq+1) of Bq and the set zq . We denote this basis by
bq , zq (see [16] for details). By the same argument, the sequence

0 �� Zq �� Cq
∂q �� Bq−1 �� 0,

determine the basis ∂q+1(bq+1), zq , bq of Cq . Let (∂q+1(bq+1), zq , bq/cq) denote the matrix
of the change of basis. Then, the torsion of C is the class

τ(C; v) =
n∏

q=0

[det(∂q+1(bq+1), zq , bq/cq)](−1)q , (2)

in F×/{±1}. It is easy to see that the torsion is independent of the graded bases b = {bq} and
on the lifts z = {zq}, but depends on the graded homology basis h = {hq}. More precisely,

τ(C; v) depends on the volume element v = ⊗m
q=0h(−1)q

q in ⊗m
q=0�

rq Hq , where rq = rkHq ,
and this explain the notation.

Next, let (K , L) be a pair of connected finite cell complexes of dimension m, and (K̃ , L̃)
its universal covering complex pair, and identify the fundamental group π = π1(K )with the
group of the covering transformations of K̃ . Note that covering transformations are cellular.
Let C((K̃ , L̃);Z) be the chain complex of (K̃ , L̃) with integer coefficients. The action of
the group of covering transformations makes each chain group Cq((K̃ , L̃);Z) into a module
over the group ring Zπ , and each of these modules is Zπ-free and finitely generated with
preferred basis given by the natural choice of the q-cells of K −L . Since K is finite, it follows
that C((K̃ , L̃);Z) is free and finitely generated overZπ . We obtain a complex of free finitely
generated modules over Zπ that we denote by C((K , L);Zπ). Let ρ : π → O(F, k) be an
orthogonal representation of the fundamental group on a F-vector space V of dimension k,
and consider the twisted complex C((K , L); Vρ) = V ⊗Zπ C((K , L);Zπ). Then, the torsion
of (K , L) with respect to the representation ρ is the class of F×/{±1}:

τ((K , L); ρ, v) = τ(C((K , L); Vρ); v).

Now, let W be an m dimensional orientable compact connected Riemannian manifold with
metric g and possible boundary ∂W . The torsion of W can be defined taking any smooth
triangulation or cellular decomposition of W . Moreover, the volume element v can also be
fixed by using the metric structure. More precisely, given a graded orthonormal basis aq for
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the space of harmonic forms Hq(W, Vρ), either with absolute or relative BC, and applying
the de Rham map (see [19])

Aabs
q = (−1)qP−1Am+1−q

rel ∗ : Hq
abs(W, Vρ) → Hq(W ; Vρ), (3)

we obtain a preferred homology graded basis h = A(a), that fix the volume element w =
A(α), where α is the volume element determined by a. This gives the R torsion of W , and
the relative R torsion of (W, ∂W ):

τR((W, g); ρ) = τ(C(W ; Vρ); A(α)), τR((W, ∂W, g); ρ) = τ(C((W, ∂W ); Vρ); A(α)).

We conclude this section recalling the definition of the analytic torsion [19]. The zeta
function of Laplace operator 	(q) on q forms in 
q(W, Vρ) is defined by the meromorphic
extension (analytic at s = 0) of the series

ζ(s,	(q)) =
∑

λ∈Sp+	(q)
λ−s,

convergent for Re(s) > m
2 , and where Sp+ denotes the positive part of the spectrum. If W

has no boundary, the analytic torsion of (W, g) is

log T ((W, g); ρ) = 1

2

m∑
q=1

(−1)qqζ ′(0,	(q)). (4)

If W has a boundary, we denote by Tabs((W, g); ρ) the number defined by Eq. 4 with 	
satisfying absolute boundary conditions, and by Trel((W, g); ρ) the number defined by the
same equation with 	 satisfying relative boundary conditions.

3 The Reidemeister torsion of the cone over a sphere

In this section, we compute the R torsion of the m dimensional disc, Dm
l . However, we will

consider the slightly more general case of a cone. Namely we consider the cone of angle
α, CαSn , constructed in Rn+2 over the sphere Sn, m = n + 1, as defined below. In general,
CαSn is not a smooth Riemannian manifold, but is a space with a singularity of conical type
as defined by Cheeger in [4] (2.1). More precisely, CαSn coincides with the completed finite
metric cone of Cheeger over the sphere of radius sin α. Note that we are adding a point at the
tip of the cone, in order to have a simply connected space. The resulting space is compact,
but obviously is not a smooth Riemannian manifold. The space obtained removing the tip,
is an open smooth Riemannian manifold with the metric induced by the immersion, as in
[4]. In order to define the R torsion some care is necessary, since we do not know how the
de Rham theory extends. More precisely, we do not know if we have the de Rham maps Aq

for spaces with conical singularities, in general. However, we show that we can define these
maps in the particular case of CαSn , and therefore we define the R torsion accordingly. In
particular, the construction cover the smooth case of the disc.

Let Sn
b be the standard sphere of radius b > 0 in Rn+1, Sn

b = {x ∈ Rn+1 | |x | = b} (we
write Sn for Sn

1 ). Let CαSn
l sin α be the cone of angle α over Sn

l sin α in Rn+2. Note that the disc
corresponds to Dn+1

l = C π
2

Sn
l . Parameterize CαSn

l sin α by
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CαSn
l sin α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x1 = r sin α sin θn sin θn−1 · · · sin θ3 sin θ2 cos θ1

x2 = r sin α sin θn sin θn−1 · · · sin θ3 sin θ2 sin θ1

x3 = r sin α sin θn sin θn−1 · · · sin θ3 cos θ2
...

xn+1 = r sin α cos θn

xn+2 = r cosα

with r ∈ [0, l], θ1 ∈ [0, 2π ], θ2, . . . , θn ∈ [0, π ], α is a fixed positive real number, and
0 < a = 1

ν
= sin α ≤ 1. The induced metric is (r > 0)

gE = dr ⊗ dr + r2a2gSn
1

= dr ⊗ dr + r2a2

⎛
⎝

n−1∑
i=1

⎛
⎝

n∏
j=i+1

sin2 θ j

⎞
⎠ dθi ⊗ dθi + dθn ⊗ dθn

⎞
⎠,

and
√|detgE | = (r sin α)n(sin θn)

n−1(sin θn−1)
n−2 · · · (sin θ3)

2(sin θ2). Let K be the cellu-
lar decomposition of CαSn

l sin α , with one top cell, one n-cell and one 0-cell, K = c1
n+1∪c1

n∪c1
0,

and let the subcomplex L of K be the cellular decomposition of Sn
l sin α, L = c1

n ∪ c1
0. Let ρ

be a real (trivial) representation.
Consider first the case of relative boundary conditions. Then, the relevant complex of real

vector spaces reads

Crel : 0 �� R[c1
n+1] �� 0 �� · · · �� 0 �� 0 �� 0 ,

with preferred base cn+1 = {c1
n+1}. To fix the base for the homology, we need a graded ortho-

normal base a for the harmonic forms. Since a base for 
n+1(CαSn
l sin α) is {√|detgE |dr ∧

dθ1 ∧ · · · ∧ dθn}, we get an+1 =
{√|detgE |dr∧dθ1∧···∧dθn√

VolgE (Cα Sn
l sin α)

}
. Applying the formula in Eq. 3 for

the de Rham map, we obtain zn+1 = {z1
n+1}, with

z1
n+1 = Arel

n+1(a
1
n+1) = 1√

VolgE (CαSn
l sin α)

∫

pt

∗√|detgE |dr ∧ dθ1 ∧ · · · ∧ dθnc1
n+1

= 1√
VolgE (CαSn

l sin α)
c1

n+1.

As bq = ∅, for all q , we have that

|det(zn+1/cn+1)| = 1√
VolgE (CαSn

l sin α)
, |det(bq/cq)| = 1, 0 ≤ q ≤ n.

Applying the definition in Eq. 2, this proves the following result.

Proposition 1

τR((CαSn
l sin α, Sn

l sin α, gE ); ρ) = (√
VolgE (CαSn

l sin α)
)(−1)n rk(ρ)

.

Next, consider the case of absolute boundary conditions. The relevant complex is

Cabs : 0 �� R[c1
n+1] �� R[c1

n] �� 0 �� · · · �� 0 �� R[c1
0] �� 0 ,
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with preferred bases cn+1 = {c1
n+1}, cn = {c1

n} and c0 = {c1
0}. Hence, Hp(K ) = 0, for

p > 1, and H0(K ) = R[c1
0]. Since a base for 
0(CαSn

l sin α) is the constant form {1}, we

have a0 =
{

1√
VolgE (Cα Sn

l sin α)

}
. Applying the formula in Eq. 3 for the de Rham map, we

obtain z0 = {z1
0}, with

z1
0 = Aabs

0 (a1
0) = 1√

VolgE (Cα Sn
l sin α)

∫
Cα Sn

l sin α
∗1c1

0 = √VolgE (CαSn
l sin α)c

1
0.

As bq = ∅ for q = 0, . . . , n, b1
n+1 = c1

n+1 and ∂(b1
n+1) = cn , we have that

|det(z0/c0)| =
√

VolgE (CαSn
l sin α), |det(∂(b1

n+1)/cn)| = 1, |det(bn+1/cn+1)| = 1.

Applying the definition in Eq. 2, this proves the following result.

Proposition 2

τR((CαSn
l sin α, gE ); ρ) = (√

VolgE (CαSn
l sin α)

)rk(ρ)
.

4 The anomaly boundary term and the analytic torsion of a disc

The aim of this section is to give the proof of Theorem 2. For we need a formula for the ratio
between the analytic torsion and the Reidemeister torsion, that we call anomaly boundary
contribution. Observe that, by result of Cheeger [4], this ratio depends only on some geomet-
ric terms coming from the geometry of the manifold near the boundary. Since the singularity
at the tip of the cone does not affect the geometry near the boundary, we are allowed to per-
form our calculation for the general case of the cone CαSn

l sin α . However, this would imply
some technical difficulties that are beside the aim of the present work. As observed in the
introduction, two different formulas for this anomaly are available at the moment. One is
given in Theorem 1 of [8], and the second one comes from Theorem 1 of [2]. We first proceed
to evaluate the anomaly boundary contribution using the formula of [2]. Then, at the end of
the section, we will describe the contribution appearing using the formula of [8] (see also the
Appendix of [15] for other examples). We proceed in two steps. First we give in Lemma 1
formulas for the anomaly in terms of some geometric invariants. This follows directly from
Theorem 1 of [2], and gives, in the odd dimensional case, the anomaly in terms of the Euler
characteristic of the boundary. The even case is harder, and needs the introduction of some
machinery and notation from [2] and [1]. This is done in the course of the proof, and, as a
result, the anomaly in the even case is written as some integral. The second step is accom-
plished in Lemma 2, where we give all the geometric invariants necessary to compute the
integral appearing in the formula obtained in Lemma 1, and we conclude the calculation for
the even case.

Before to start, we need some notation, that will be used without further comments in this
section. The parameterization of the cone and the induced metric gE are given in Sect. 3.
Define the metrics

g1 = gE = dr ⊗ dr + r2gSn , g0 = dr ⊗ dr + l2gSn .

Let ω j , j = 0, 1 be the connection one forms associated to g j , and
 j = dω j +ω j ∧ω j

the curvature two forms. Let e(W, g) denotes the Euler class of (W, g).
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36 Ann Glob Anal Geom (2012) 42:29–59

Lemma 1 The ratio of the analytic torsion and the Reidemeister torsion of the disc Dm
l , of

m = 2p − 1 odd dimension, and m = 2p even dimension (p > 0), with absolute boundary
conditions are, respectively:

log
Tabs((D

2p−1
l , gE ); ρ)

τR((D
2p−1
l , gE ); ρ)

= 1

4
rk(ρ)χ(S2p−2

l , gE )

⎛
⎝log 2 + 1

2

p−1∑
n=1

1

n

⎞
⎠ ,

log
Tabs((D

2p
l , gE ); ρ)

τR((D
2p
l , gE ); ρ)

= 1

2
rk(ρ)

2p−1

√
π(2p − 1)!!

p∑
j=1

1

2 j − 1

∫

S2p−1
l

B∫
S2p−1

1 .

Proof The proof is based on Theorem 0.1 of [2]. Note that we are in the particular case of
the flat trivial bundle F , since the unique representations are the trivial ones.

Therefore, we have from equation (0.6) and Section 4.1 of [2],

log
Tabs((Dm

l , g1); ρ)
Tabs((Dm

l , g0); ρ) = 1

2
rk(ρ)

∫

Sm−1
l

(
B(∇T Dm

l
1 )− B(∇T Dm

l
0 )

)
,

(5)

where the forms B(∇T X
j ) are defined in equation (1.17) of [2] (see Eq. 8) below, and observe

that we take the opposite sign with respect to the definition in [2], since we are considering
left actions instead of right actions). Since g0 is a product near the boundary, by the results
of [14]

log
Tabs((Dm

l , g0); ρ)
τR((Dm

l , gE ); ρ) = 1

4
rk(ρ)χ(Sm−1, gE ) log 2,

and it just remains to evaluate the anomaly boundary term, on the right side of Eq. 5. For we
first recall some notation from [1] Chapter III and [2] Sect. 1.1. For two Z/2-graded algebras
A and B, let A⊗̂B = A ∧ B̂ denotes the Z/2-graded tensor product. For two real finite
dimensional vector spaces V and E , of dimension m and n, with E Euclidean and oriented,
the Berezin integral is the linear map

B∫
: �V ∗⊗̂�E∗ → �V ∗,

B∫
: α⊗̂β �→ (−1)

n(n+1)
2

π
n
2

β(e1, . . . , en)α,

where {e j }n
j=1 is an orthonormal base of E . Let A be an antisymmetric endomorphism of E .

Consider the map

ˆ : A �→ Â = 1

2

n∑
j,l=1

(e j , Ael)ê
j ∧ êl .

Note that

B∫
e− Â

2 = P f

(
A

2π

)
, (6)

and this vanishes if dimE = n is odd.
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Let ω j be the connection one form over Dm
l associated to the metric g j , and 
 j the

curvature two form. Let � be the curvature two form of the boundary Sm−1 (with radius 1)
with the standard Euclidean metric. Let (ω j )

a
b denotes the entries with line a and column

b of the matrix of one forms ω j . Then, introduce the following quantities (see [2] equations
(1.8) and (1.15)), where i : Sm−1

l → Dm
l denotes the inclusion of the boundary,

S j = 1

2

m−1∑
k=1

(i∗ω j − i∗ω0)
r
θk

êθk , R = �̂ = 1

2

m−1∑
k,l=1

�
θk
θl

êθk ∧ êθl . (7)

Then, we define

B(∇T Dm
l

j ) = 1

2

1∫

0

B∫
e− 1

2 R−u2S2
j

∞∑
k=1

1

�
( k

2 + 1
)uk−1Sk

j du. (8)

From this definition, it follows that B(∇T Dm
l

0 ) vanishes identically, since S0 does. It

remains to evaluate B(∇T Dm
l

1 ). For note that by equation (1.16) of [2] (or by direct cal-
culation, since the curvature of the disc is null) R = −2S2

1 . Therefore, Eq. 8 gives

B(∇T Dm
l

1 ) = 1

2

1∫

0

B∫
e(1−u2)S2

1

∞∑
k=1

1

�
( k

2 + 1
)uk−1Sk

1 du

= 1

2

B∫ ∞∑
j=0,k=1

1

j !� ( k
2 + 1

)
1∫

0

(1 − u2) j uk−1duSk+2 j
1

= 1

2

∞∑
j=0,k=1

1

k�
( k

2 + j + 1
)

B∫
Sk+2 j

1 .

Since the Berezin integral vanishes identically if k + 2 j �= m − 1, we obtain

B(∇T Dm
l

1 ) = 1

2�
(m+1

2

)
[m

2 −1
]

∑
j=0

1

m − 2 j − 1

B∫
Sm−1

1 . (9)

Now consider the two cases of even and odd m independently. First, assume m =2p+1
(p ≥ 0). Then, using Eqs. 6, 9 gives

B(∇T D2p+1
l

1 ) = 1

2p!

[
p− 1

2

]
∑
j=0

1

2p − 2 j

B∫
S2p

1 = 1

4

p∑
n=1

1

n

B∫
e− �̂

2 = 1

4

p∑
n=1

1

n
P f

(
�

2π

)

= 1

4

p∑
n=1

1

n
e(S2p, gE ),

where e(S2p, gE ) is the Euler class of (S2p, gE ), and we use the fact that

e(S2p
l , gl) = P f

(
�

2π

)
=

B∫
e− �̂

2 .
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Therefore,

log
Tabs((Dm

l , g1); ρ)
Tabs((Dm

l , g0); ρ) = 1

2
rk(ρ)

∫

Sm−1
l

B(∇T Dm
l

1 ) = 1

8
rk(ρ)

p∑
n=1

1

n

∫

S2p
l

e(S2p, gE )

= 1

8
rk(ρ)

p∑
n=1

1

n
χ(S2p, gE ).

Second, assume m = 2p(p ≥ 1). Then, Eq. 9 gives

B(∇T D2p
l

1 ) = 1

2�(p + 1
2 )

p−1∑
j=0

1

2p − 2 j − 1

B∫
S2p−1

1

= 2p−1

√
π(2p − 1)!!

p∑
j=1

1

2 j − 1

B∫
S2p−1

1 ,

and substitution in Eq. 5 gives the formula stated in the Lemma. ��
Lemma 2 We have

2p−1

√
π(2p − 1)!!

∫

S2p−1
l

B∫
S2p−1

1 = 1.

Proof First, we determine the connection one forms for the metric g1 and g0. We define the
Christoffel symbols accordingly to ∇eαeβ = �

γ
α β eγ , where {eα} is an orthonormal base,

and we use the formula

�
γ
α β = c γ

αβ + c β
γα + c α

γβ

2
, (10)

where the Cartan structure constant are defined by [eα, eβ ] = c γ
αβ eγ . The orthonormal base

and its dual with respect to g1 are

er = ∂
∂r , er = dr,

eθ1 = (r
∏n

j=2 sin θ j )
−1 ∂

∂θ1
, eθ1 = r

∏n
j=2 sin θ j dθ1,

...
...

eθn−1 = (r sin θn)
−1 ∂

∂θn−1
, eθn−1 = r sin θndθn−1,

eθn = 1
r
∂
∂θn
, eθn = rdθn .

This gives c γ
αβ = −c γ

βα , c γ
αα = 0,∀α, γ , and the non-zero are c θi

θi r
= r−1, and if

k > i, c θi
θi θk

= cos θk
r
∏n

j=k sin θ j
. Using Eq. 10, the non-zero Christoffel symbols are � r

θi θi
=

− 1
r , �

θi
θi r = 1

r , �
θi

θi θs
= cos θs

r
∏n

j=s sin θ j
, with s > i , and � θi

θs θs
= − cos θi

r
∏n

j=i sin θ j
, with i > s.

The connection one form is the matrix ω1 = �
α

γ β eγ , with non-zero entries

(ω1)
θi
θk

= cos θk

r
∏n

j=k sin θ j
eθi , i < k, (ω1)

r
θi

= −1

r
eθi .
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The orthonormal base and its dual with respect to g0 are

er = ∂
∂r er = dr,

eθ1 = (l
∏n

j=2 sin θ j )
−1 ∂

∂θ1
, eθ1 = (l

∏n
j=2 sin θ j )dθ1,

...
...

eθn−1 = (l sin θn)
−1 ∂

∂θn−1
, eθn−1 = (l sin θn)dθn−1,

eθn = 1
l
∂
∂θn
, eθn = ldθn .

The non-zero Cartan constants are c θi
θi θk

= cos θk
la
∏n

j=k sin θ j
, with k > i . Using Eq. 10,

the non-zero Christoffel symbols are � θi
θi θs

= cos θs
l
∏n

j=s sin θ j
, when s > i , and � θi

θs θs
=

− cos θi
l
∏n

j=i sin θ j
, when i > s. The non-zero entries of the connection one form matrix are

(ω0)
θi
θs

= cos θs

l
∏n

j=s sin θ j
eθi , i < s.

It follows that the unique non-zero entries of ω1 − ω0 are

(ω1 − ω0)
r
θi

= −1

r
eθi = −

n∏
j=i+1

sin θ j dθi .

Second, we determine the curvature two form �. Since g0 is a product metric, � is the
restriction of
0, and hence, we compute
0 = dω0 +ω0 ∧ω0. We writeω0 in the coordinate
base

(ω0)
r
θi

= 0, (ω0)
θi
θs

= cos θs

s−1∏
j=i+1

sin θ j dθi , i < s,

and hence, dω0 is

(dω0)
r
θi

= 0, i ≤ n,

(dω0)
θi
θk

=∏k
j=i+1 sin θ j dθi ∧ dθk −∑k−1

s=i+1 cos θk cos θs
∏k−1

j=i+1,
j �=s

sin θ j dθi ∧ dθs, i<k,

and ω0 ∧ ω0 is

(ω0 ∧ ω0)
α
α = (ω0 ∧ ω0)

r
θi

= 0,

(ω0 ∧ ω0)
θi
θk

=
k−1∑

s=i+1

cos θs cos θk

k−1∏
j=i+1,

j �=s

sin θ j dθi ∧ dθs

+
k∏

j=i+1

sin θ j

(
n∏

s=k+1

sin2 θs − 1

)
dθi ∧ dθk, i < k.

Then, the curvature two form 
0 is

(
0)
r
θi

= 0, (
0)
θi
θk

=
k∏

j=i+1

sin θ j

n∏
s=k+1

sin2 θsdθi ∧ dθk, i < k,

and consequently � = i∗
0 (where i denotes the inclusion of the boundary) is
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�
θi
θk

=
k∏

j=i+1

sin θ j

n∏
s=k+1

sin2 θsdθi ∧ dθk, i < k.

Third, recalling that S2
1 = − 1

2 R,

B∫
S2p−1

1 = (−1)p−1

2p−1

B∫
S1Rp−1,

and using the definitions in Eq. 7

B∫
S2p−1

1 = (−1)p−1

22p−1

B∫ ⎛
⎝

2p−1∑
k=1

(ω1 − ω0)
r
θk

êθk

⎞
⎠
⎛
⎝

2p−1∑
i, j=1

(
0)
θi
θ j

êθi ∧ êθ j

⎞
⎠

p−1

= (−1)p−1

2p−12p
cB

⎛
⎜⎜⎝
∑
σ∈S2p
σ(1)=1

sgn(σ )(ω1 − ω0)
1
σ(2)(
0)

σ(3)
σ (4) . . . (
0)

σ(2p−1)
σ (2p)

⎞
⎟⎟⎠,

where cB = (−1)p(2p−1)

π
2p−1

2
. Observe that (ω1 − ω0)

1
σ(2) is a 1-form multiple of dθσ(2)−1 and

(
0)
i

j is a 2-form multiple of dθi−1 ∧ dθ j−1 . We can twist all the 2-forms dθi−1 ∧ dθ j−1 , with
i > j in each term appearing in the last line of the equation above, as the matrix is skew-
symmetric. Then, we can order the base element, in such a way that the top form appears
in each term. This produces a sign coinciding with sgn(σ ). Moreover, since the matrix of
the curvature two form is skew-symmetric, the generic term in the sum in the last line of the
above equation can be written in the following form:

[ω1 − ω0]1
σ(2)[
0]σ(3)σ (4) . . . [
0]σ(2p−1)

σ (2p)dθ1 ∧ . . . ∧ dθ2p−1,

where [ξ ]i
j denotes the coefficient of the form (ξ)

i
j , and σ ∈ S2p is such that σ(1) = 1 and

σ(2s − 1) < σ(2s) for all s. We prove that

[ω1 − ω0]1
σ(2)[
0]σ(3)σ (4) . . . [
0]σ(2p−1)

σ (2p) = −
2p∏

i=2

(sin θσ(i))
σ (i)−1,

where sin θ2p = 1. The proof is by induction. If p = 1 the equality holds trivially. Suppose
it is true for p − 1. By hypothesis, if τ ∈ S2p−2 with τ(1) = 1, then

[ω1 − ω0]1
τ(2)[
0]τ(3)τ (4) . . . [
0]τ(2p−3)

τ (2p−2) = −
2p−2∏
i=2

(sin θτ(i))
τ(i)−1.

Take σ ∈ S2p with σ(1) = 1. It is clear that there are k0, k1, k2 such that σ(k0) =
2p − 2, σ (k1) = 2p − 1 and σ(k2) = 2p. Factoring sin θσ(ki ), i = 0, 1, 2:

[ω1 − ω0]1
σ(2)[
0]σ(3)σ (4) . . . [
0]σ(2p−1)

σ (2p)

= (sin θ2p−2)
2p−3(sin θ2p−1)

2p−2 × factor,
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where ‘factor’ is a product of sin θ j , j �= σ(k0), σ (k1), σ (k2). In this way, we can rewrite
‘factor’ indexing it by a permutation τ ∈ S2p−2 such that the induction hypothesis holds.
Then,

[ω1 − ω0]1
σ(2)[
0]σ(3)σ (4) . . . [
0]σ(2p−1)

σ (2p) = −
2p∏
j=2

(sin θσ( j))
σ ( j)−1.

We have proved that

B∫
S2p−1

1 = cB
(−1)p(2p−1)!

2p−12p

2p−1∏
j=2

(sin θ j )
j−1dθ1 ∧ . . . ∧ dθ2p−1.

Then,

2p−1

√
π(2p − 1)!!

∫

S2p−1
l

B∫
S2p−1

1 = cB
2p−1

√
π(2p − 1)!!

(−1)p(2p − 1)!
2p−12pl2p−1 Vol(S2p−1

l )

= (2p − 1)!√π
2p−1(p − 1)!√π(2p − 1)!! .

It is easy to see that

(2p − 1)!
(p − 1)!(2p − 1)!! = 2p−1,

and the thesis follows. ��
Remark 1 In the case m = 2, namely the two-dimensional disc D2

l , the proof of Lemma 1
extends to the case of the cone CαS1

l sin α . For the curvature of the cone vanishes identically
in this case. Therefore, we have that

log
Tabs((CαS1

l sin α, gE ); ρ)
τR((CαS1

l sin α, gE ); ρ)
= 1

2
rk(ρ)

1√
π

B∫
S1.

The integral can be evaluated proceeding as in the proof of Lemma 2, and we obtain

log
Tabs((CαS1

l sin α, gE ); ρ)
τR((CαS1

l sin α, gE ); ρ)
= 1

2
rk(ρ) sin α.

We conclude this section by computing the anomaly boundary term using the formula
given in Theorem 1 of [8]. In the even dimensional case, we give the result for the more gen-
eral case of the cone over the sphere. We need some more notation. Consider the homotopy
ωt = ω0 + t (ω1 −ω0), and let
t = dωt +ωt ∧ωt be the corresponding curvature two form.
The Chern–Simons class associated to the Euler class of 
t will be denoted by ẽ(g0, g1),
and satisfies dẽ(g0, g1) = e(g1) − e(g0), where e(g j ) is the Euler class of 
 j . Then, it is
easy to see that Theorem 1 of [8] gives the following formulas:

log
Tabs((D

2p−1
l , gE ); ρ)

τR((D
2p−1
l , gE ); ρ)

= 1

4
rk(ρ)χ(S2p−2

l , gE ) log 2, (11)

log
Tabs((CαS2p−1

l sin α , gE ); ρ)
τR((CαS2p−1

l sin α , gE ); ρ)
= 1

2
rk(ρ)

∫

S2p−1
l sin α

i∗ẽ(g0, gE ), (12)
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where i denotes the inclusion of the boundary. Proceeding in very similar way as in the proof
of Lemma 2, we compute the integral appearing in Eq. 12. We obtain

∫

S2p−1
l sin α

i∗ẽ(g0, gE ) = (−1)p+1(2p)!Vol(S2p−1
l sin α )

(4π)pl2p−1 p!(sin α)2p−2

p−1∑
k=0

(−1)k
(sin α)2k

2k + 1

(
p − 1

k

)
,

and in particular, for the disc (sin α = 1)
∫

S2p−1
l

i∗ẽ(g0, gE ) = (−1)p+1.

5 The analytic torsion of CαS1
l sin α

and CαS2
l sin α

In this section, we compute the analytic torsion of the cones CαS1
l sin α and CαS2

l sin α by using
the definition given in Eq. 4. For we need first the explicit knowledge of the spectrum of
the Laplace operators on forms on these singular spaces, and second a suitable represen-
tation for the analytic extension of the associated zeta function, that allows to evaluate the
derivative at zero. The first aspect of the problem was originally addressed by Cheeger in
[6] (see also [23]). In the work of Cheeger, the Hodge–de Rham theory is developed for
spaces with singularity of conical type. In particular, it is proved that the Laplacian on forms
is a non-negative self adjoint operator on the space of square integrable forms on the cone,
if some set of appropriate boundary conditions at the tip of the cone are used. We recall
this point briefly in the following Remark 2. We give the spectrum of 	(q) on CαS1

l sin α and
on CαS2

l sin α in Lemma 3 and Lemma 4 below, respectively. Next, to deal with the second
aspect, namely an analytic extension of the zeta functions and a method to evaluating the
derivative at zero, we use a method introduced by Spreafico to deal with the zeta invariants
of an abstract class of double zeta functions. In fact, the eigenvalues of 	(q)Cα Sn

l sin α
can be

identified with the zero zν,k of some combination of Bessel functions and their derivatives,

and be enumerated with two positive indices as λ(q)n,k = z2
un ,k

, where the un depends on the
eigenvalues of the the Laplacian on some space of q-forms on the section of the cone. Using
classical estimates for the zeros of the Bessel functions, it is possible to prove that the relevant
sequences U and S are contained in the class of abstract sequences introduced in [24,26].
This means that we can use the method of [23,25,26], to evaluate the derivative at zero of
the associated zeta functions. In particular, we will use the notation and the formula as given
in Section 4 of [11], and all the reference of the following Sects. 5.2 and 5.3 are to that
paper.

5.1 Spectrum of the Laplacian on forms

In this section, we compute the spectrum of the Laplacian on forms. The general form of
the solutions of the eigenvalues equation are given in [6] and [7]. However, we present
here the explicit form of the solutions in the case under study and some details on the cal-
culation, that we were not able to find elsewhere. Furthermore we give, in the course of
the proofs, the complete set of the eigenforms of the Laplace operator. We give a more
detailed proof for the case of the circle. We denote by {k : λ} the set of eigenvalues λ with
multiplicity k.
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Remark 2 Decomposing with respect to the projections on the eigenspaces of the restriction
of the Laplacian on the section of the cone (i.e. with respect to the angular momenta), the
definition of an appropriate self adjoint extension of the Laplace operator (on functions) on
a cone reduces to the analysis of the boundary values of a singular Sturm–Liouville ordinary
second-order differential equation. The problem was addressed already by Rellich in [21],
who parameterized the self adjoint extensions. In particular, it turns out that there are not
boundary values for the non-zero mode of the angular momentum, while a boundary con-
dition is necessary for the zero modes, and the unique self adjoint extension defined by
this boundary condition is the maximal extension, corresponding to the Friedrich extension
(see [3] or [6] for the boundary condition). The same argument works for the Laplacian on
forms. However, in the present situation we do not actually need boundary values for forms
of positive degree, since the middle homology of the section of the cone is trivial (compare
with [5]).

Lemma 3 The spectrum of the (Friedrich extension of the) Laplacian operator	(q)
Cα S1

l sin α
on

q-forms with absolute boundary conditions is (where ν = cosecα):

Sp	(0)
Cα S1

l sin α
= {

j2
1,k/ l2}∞

k=1
∪ {2 : ( j ′νn,k)

2/ l2}∞
n,k=1

,

Sp	(1)
Cα S1

l sin α
= {

j2
0,k/ l2}∞

k=1
∪ { j2

1,k/ l2}∞
k=1

∪ {2 : j2
νn,k/ l2}∞

n,k=1

∪ {2 : ( j ′νn,k)
2/ l2}∞

n,k=1
,

Sp	(2)
Cα S1

l sin α
= {

j2
0,k/ l2}∞

k=1
∪ {2 : j2

νn,k/ l2}∞
n,k=1

.

The spectrum with relative boundary conditions is:

Sp	(0)
Cα S1

l sin α
= {

j2
0,k/ l2}∞

k=1
∪ {2 : j2

νn,k/ l2}∞
n,k=1

,

Sp	(1)
Cα S1

l sin α
= {

j2
0,k/ l2}∞

k=1
∪ { j2

1,k

/
l2}∞k=1 ∪ {2 : j2

νn,k/ l2}∞
n,k=1

∪ {2 : ( j ′νn,k)
2/ l2}∞

n,k=1
,

Sp	(2)
Cα S1

l sin α
= {

j2
1,k/ l2}∞

k=1
∪ {2 : ( j ′νn,k)

2/ l2}∞
n,k=1

.

Proof Recall we parameterize CαS1
l sin α by

CαS1
l sin α =

⎧
⎨
⎩

x1 = x sin α cos θ
x2 = x sin α sin θ
x3 = x cosα

where (x, θ) ∈ [0, l] × [0, 2π ], l and α are fixed positive real numbers and 0 < a = 1
ν

=
sin α ≤ 1. The induced metric is

g = dx ⊗ dx + a2x2dθ ⊗ dθ,

and the Hodge operator is

∗ : 1 �→ axdx ∧ dθ; ∗ : dx �→ axdθ, ∗ : dθ �→ − 1

ax
dx; ∗ : dx ∧ dθ �→ 1

ax
.
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The Laplacian on forms is

	(0)( f ) = −∂2
x f − 1

x
∂x f − 1

a2x2 ∂
2
θ f,

	(1)( fx dx + fθdθ) =
(

−∂2
x fx − 1

a2x2 ∂
2
θ fx + 1

x2 fx − 1

x
∂x fx + 2

a2x3 ∂θ fθ

)
dx

+
(

−∂2
x fθ − 1

a2x2 ∂
2
θ fθ + 1

x
∂x fθ − 2

x
∂θ fx

)
dθ,

	(2)( f dx ∧ dθ) = −∂2
x f + 1

x
∂x f − 2

x2 f − 1

a2x2 ∂
2
θ f.

Decomposing forms near the boundary into tangent and normal components, the BC gives
the following set of equations. For the 0-forms:

rel. : ω(l, θ) = 0, abs. : (∂xω)(l, θ) = 0, (13)

and relative BC coincide with Dirichlet BC. For 2-forms

abs. : ω(l, θ) = 0, abs. :
(
∂x
ω

x

)
(l, θ) = 0, (14)

and absolute BC coincide with Dirichlet BC. For 1-forms:

abs. :
{
ωx (l, θ) = 0,
(∂xωθ)(l, θ) = 0,

rel. :
{
ωθ(l, θ) = 0,(
∂x (axωx )+ 1

ax ∂θωθ
)
(l, θ) = 0.

(15)

Next, we solve the eigenvalues equations. Note that the Laplacian on 2-forms coincides
with the one on 0-forms up to a Liouville transform f = xh. Consider the eigenvalues
equation for the Laplacian on 0-forms

	(0) f =
(

−∂2
x − 1

x
∂x − 1

a2x2 ∂
2
θ

)
f = λ2 f. (16)

We can decompose the problem in the eigenspaces of −∂θ . In fact, φn(θ) = einθ is a
complete system of eigenfunctions for −dθ on the circle S1, and the eigenvalue of φn is
εn = n2, n ∈ Z. Thus,

	(0) =
∑
n∈Z

Ln�n,

where �n is the projection onto the subspace generated by the eigenvector φn of the eigen-
space relative to the eigenvalue εn and

Ln = −d2
x − 1

x
dx + ν2n2

x2 ,

where ν = 1
a . Since εn = ε−n, �n = �−n . Thus −dθ has the complete system

{
εn = n2;φn,+(θ) = einθ , φn,−(θ) = e−inθ

}
n∈N ,

where all the eingenvalues are double up to ε0 = 0 that is simple; since Ln = L−n ,

	(0) = L0�0 ⊕
∞∑

n=1

Ln(�n,+ ⊕�n,−),
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where �n,± is the projection on the eigenspace generated by φn,± in the eigenspace of εn

(in fact the eigenspace of εn is generated by the two eigenvectors φn,± for all n �= 0). Now,
we solve the eigenvalues equation for Ln on L2(0, l), namely

Lnu =
(

−d2
x − 1

x
dx + ν2n2

x2

)
u = λ2

nu. (17)

This can be solved in terms of Bessel function. By classical result, Eq. 17 has the two
linearly independent solutions (assume μ = νn is not an integer) y±μ(x) = J±|μ|(λn x)
(where we assume λn > 0). But J−|μ|(x) diverges as x−|μ| at x = 0, and therefore does
not satisfy the BC at x = 0, or it is not in L2(0, l) (depending on the value of μ). Thus,
in any case, we only have the solution y+. This means that the eigenvalues equation (17)
for Ln has the solution ψn(x) = J|νn|(λn x), for each n ∈ Z; in particular it has solution
ψn(x) = Jνn(λn x), if n ≥ 0, since ν ≥ 0. Therefore, a system of linearly independent
solutions of the eigenvalues equation (16) for 	(0) is

{φ0(θ)ψ0(x) = J0(λ0x)}
∪
{
φn,+(θ)ψn(x) = einθ Jνn(λn x), φn,−(θ)ψn(x) = e−inθ Jνn(λn x)

}
n∈N0

.
(18)

The solution for 	(2) are given by the inverse of the above Liouville transform,

{φ0(θ)ψ0(x) = x J0(λ0x)}
∪
{
φn,+(θ)ψn(x) = xeinθ Jνn(λn x), φn,−(θ)ψn(x) = xe−inθ Jνn(λn x)

}
n∈N0

.
(19)

The eigenvalues equation for the Laplacian on 1-forms:

	(1)ω = λ2ω, (20)

with ω = fx dx + fθdθ corresponds to the system of partial differential equations
⎧
⎪⎪⎨
⎪⎪⎩

− ∂2
x fx − 1

x
∂x fx + −ν2∂2

θ + 1

x2 fx + 2ν2

x3 ∂θ fθ = λ2 fx ,

− ∂2
x fθ + 1

x
∂x fθ + −ν2∂2

θ

x2 fθ − 2

x
∂θ fx = λ2 fθ .

(21)

Since a base for L2(S1) is given by the functions einθ with integer n, we consider solutions
of the type ω = fx (x)eimθdx + fθ (x)einθdθ , with integers m and n. Substitution in equation
(21) gives

⎧⎪⎪⎨
⎪⎪⎩

− ∂2
x fx eimθ − 1

x
∂x fx eimθ + (νm)2 + 1

x2 fx eimθ + 2iν2n

x3 fθeinθ = λ2 fx eimθ ,

− ∂2
x fθeinθ + 1

x
∂x fθeinθ + (νn)2

x2 fθeinθ − 2im

x
fx eimθ = λ2 fθeinθ ,

that is satisfied if and only if m = n. Therefore, it follows that the solutions of Eq. 20 are
of the form ω = einθ ( fx (x)dx + fθ (x)dθ), with n ∈ Z, or in other words, that the operator
	(1) decomposes as

	(1) =
∑
n∈Z

Ln�n,
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where

Ln =
(

−d2
x − 1

x dx + (νn)2+1
x2

2iν2n
x3

− 2in
x −d2

x + 1
x dx + (νn)2

x2

)
,

on (L2(0, 1))2, and�n is the projection onto the subspace generated by einθ of the eigenspace
relative to the eigenvalue n2 of −d2

θ . Therefore, we need to solve the eigenvalues equation

Lnu = λ2
nu,

where u = ( fx , fθ ) are two functions in L2(0, l). This corresponds to the system
⎧⎪⎪⎨
⎪⎪⎩

− d2
x fx − 1

x
dx fx + (νn)2 + 1

x2 fx + 2iν2n

x3 fθ = λ2
n fx ,

− d2
x fθ + 1

x
dx fθ + (νn)2

x2 fθ − 2in

x
fx = λ2

n fθ .

With the change of base ( fx , fθ ) = (νgx ,−i xgθ ), we obtain
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
−d2

x − 1

x
dx + (νn + 1)2

x2

)
(gx + gθ ) = λ2

n(gx + gθ ),

(
−d2

x − 1

x
dx + (νn − 1)2

x2

)
(gx − gθ ) = λ2

n(gx − gθ ).

(22)

By classical results on the solution of the Bessel equation, and taking only the L2 solution,
we have that a complete set of linearly independent solution is given by the two vectors

{
(gx , gθ )n,+ = (J|νn+1|(λn x), J|νn+1|(λn x)),

(gx , gθ )n,− = (J|νn−1|(λn x),−J|νn−1|(λn x)).

Therefore, the eigenvalues equation (20) relative to the operator 	(1), has the following
complete set of linearly independent L2 solutions with n ∈ Z

{
fn,± = J|νn±1|(λn x)einθ (νdx ∓ i xdθ)

}
. (23)

Eventually, we apply the boundary conditions. For 0-forms, ωtan = ω and ωnorm = 0.
Relative boundary conditions given in Eq. 13 applied to the solutions in Eq. 18, give λn =
λn,k = jνn,k

l , where jν,k are the positive zeros of the Bessel function Jν , arranged in increas-
ing order, with k = 1, 2, . . .. Since it is known that the set {Jν( jν,k x)}k=1,2,... defines an
orthogonal basis of the space L2(0, 1), we have proved that the set

{
φ0(θ)ψ0,k(x) = J0(

j0,k
l

x), φn,±(θ)ψn,k(x) = e±inθ Jνn(
jνn,k

l
x)

}

n∈N0

,

defines a complete set of orthogonal linear independent solutions of the eigenvalues equation
(16) for 	(0) with Dirichlet BC at x = l on L2(0, l), and where λn = λn,k = jνn,k

l for both
φn,± Jνn when n �= 0. Absolute boundary conditions are given in Eq. 13. Applying to the
solutions in Eq. 18, we obtain

∂ω

∂x
(l, θ) = λneinθ J ′|νn|(λnl) = 0,

that give λn = λ′
n,k = j ′|νn|,k

l , where the j ′νn,k are the zeros of J ′
νn(z).
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The result for 2-forms is the dual of that for 0-forms. Note that, applying the inverse of
the previous Liouville transform, we get a complete system for	(2) with absolute boundary
conditions:
{

j2
ν|n|,k
l2 , ω

(2)
n,k(x, θ) = φn(θ)ρν|n|,k(x) = einθ x Jν|n|(

jν|n|,k
l

x)dx ∧ dθ

}

n∈Z,k∈N0

.

For a 1-form ω(x, θ) = ωx (x, θ)dx +ωθ(x, θ)dθ, ωtan = ωθ and ωnorm = ωx . Note that
none of the solutions in (23) satisfy the BC (15), for λn �= 0. So we consider linear combi-
nations ωn,±(x, θ) = fn,+(x, θ)± fn,−(x, θ). Applying the absolute BC (15) to ωn,±(x, θ)
we obtain, if n �= 0, the eigenvalues λ2

n,k,+ = j2|νn|,k/ l2, and λ2
n,k,− = ( j ′|νn|,k)2/ l2. If n = 0,

we have λ2
0,k,+ = j2

1,k/ l2, and λ2
0,k,− = j2

0,k/ l2.

Applying the relative BC (15) to ωn,±(x, θ)we obtain, if n �= 0, the eigenvalues λ2
n,k,+ =

( j ′|νn|,k)2/ l2, and λ2
n,k,− = j2|νn|,k/ l2. If n = 0, we have λ2

0,k,+ = j2
0,k/ l2, and λ2

0,k,− =
j2
1,k/ l2. The eigenforms follow from Eq. 23. ��

Lemma 4 The spectrum of the (Friedrich extension of the) Laplacian operator	(q)
Cα S2

l sin α
on

q-forms with absolute boundary conditions is:

Sp	(0)
Cα S2

l sin α
=
{

2n + 1 : j̃2
μn ,k,−/ l2

}∞
n,k=1

∪
{

j2
3
2 ,k
/ l2
}∞

k=1
,

Sp	(1)
Cα S2

l sin α
=
{

j2
3
2 ,k
/ l2
}∞

k=1
∪
{

2n + 1 : j2
μn ,k/ l2

}∞
n,k=1

∪
{

2n + 1 : j̃2
μn ,k,+/ l2

}∞
n,k=1

∪
{

2n + 1 : j̃2
μn ,k,−/ l2

}∞
n,k=1

,

Sp	(2)
Cα S2

l sin α
=
{

j2
1
2 ,k
/ l2
}∞

k=1
∪
{

2n + 1 : j2
μn ,k/ l2

}∞
n,k=1

∪
{

2n + 1 : j̃2
μn ,k,+/ l2

}∞
n,k=1

∪
{

2n + 1 : j2
μn ,k/ l2

}∞
n,k=1

,

Sp	(3)
Cα S2

l sin α
=
{

2n + 1 : j2
μn ,k/ l2

}∞
n,k=1

∪
{

j2
1
2 ,k
/ l2
}∞

k=1
.

The spectrum with relative boundary conditions is:

Sp	(0)
Cα S2

l sin α
=
{

2n + 1 : j2
μn ,k/ l2

}∞
n,k=1

∪
{

j2
1
2 ,k
/ l2
}∞

k=1
,

Sp	(1)
Cα S2

l sin α
=
{

j2
1
2 ,k
/ l2
}∞

k=1
∪
{

2n + 1 : j2
μn ,k/ l2

}∞
n,k=1

∪
{

2n + 1 : j̃2
μn ,k,+/ l2

}∞
n,k=1

∪
{

2n + 1 : j2
μn ,k/ l2

}∞
n,k=1

,

Sp	(2)
Cα S2

l sin α
=
{

j2
3
2 ,k
/ l2
}∞

k=1
∪
{

2n + 1 : j2
μn ,k/ l2

}∞
n,k=1

∪
{

2n + 1 : j̃2
μn ,k,+/ l2

}∞
n,k=1

∪
{

2n + 1 : j̃2
μn ,k,−/ l2

}∞
n,k=1

,

Sp	(3)
Cα S2

l sin α
=
{

2n + 1 : j̃2
μn ,k,−/ l2

}∞
n,k=1

∪
{

j2
3
2 ,k
/ l2
}∞

k=1
,

where μn =
√
ν2n(n + 1)+ 1

4 , and where the j̃ν,k,± are the zeros of the function G±
ν (z) =

± 1
2 Jν(z)+ z J ′

ν(z).
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Proof Recall we parameterize CαS2
l sin α by

CαS2
l sin α =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = x sin α sin θ2 cos θ1

x2 = x sin α sin θ2 sin θ1

x3 = x sin α cos θ2

x4 = x cosα

where (x, θ1, θ2) ∈ [0, l] × [0, 2π ] × [0, π ], α is a fixed positive real number and 0 < a =
1
ν

= sin α ≤ 1. The induced metric is

g = dx ⊗ dx + a2x2 sin2 θ2dθ1 ⊗ dθ1 + a2x2dθ2 ⊗ dθ2.

The Hodge star acts as follows:

∗ : 1 �→ a2x2 sin θ2dx ∧ dθ1 ∧ dθ2;
∗ : dx �→ a2x2 sin θ2dθ1 ∧ dθ2, ∗ : dθ1 �→ −1

sin θ2
dx ∧ dθ2, ∗ : dθ2 �→ sin θ2dx ∧ dθ1;

∗ : dx ∧ dθ1 �→ 1

sin θ2
dθ2, ∗ : dx ∧ dθ2 �→ − sin θ2dθ1, ∗ : dθ1 ∧ dθ2 �→ 1

a2x2 sin θ2
dx;

∗ : dx ∧ dθ1 ∧ dθ2 �→ 1

a2x2 sin θ2
.

The Laplacian on forms reads

	(0)(ω) = −
(

2

x
∂xω + ∂2

xω + cos θ2

a2x2 sin θ2
∂θ2ω + ∂2

θ2
ω

a2x2 + ∂2
θ1
ω

a2x2 sin2 θ2

)
,

	(1)(ωx dx + ωθ1 dθ1 + ωθ2 dθ2)

=
(

−∂2
xωx + 2

x2ωx − 2

x
∂xωx − 1

a2x2 ∂
2
θ2
ωx − cos θ2

a2x2 sin θ2
∂θ2ωx

− 1

a2x2 sin2 θ2
∂2
θ1
ωx + 2

a2x3 sin2 θ2
∂θ1ωθ1 + 2

a2x3 ∂θ2ωθ2 + 2 cos θ2

a2x3 sin θ2
ωθ2

)
dx

+
(

−∂2
xωθ1 − 2

x
∂θ1ωx − 1

a2x2 ∂
2
θ2
ωθ1

+ cos θ2

a2x2 sin θ2
(∂θ2ωθ1 − 2∂θ1ωθ2)− 1

a2x2 sin2 θ2
∂2
θ1
ωθ1

)
dθ1

+
(

−∂2
xωθ2 − 2

x
∂θ2ωx − 1

a2x2 ∂
2
θ2
ωθ2 − cos θ2

a2x2 sin θ2
∂θ2ωθ2

+ 1

a2x2 sin2 θ2
(ωθ2 − ∂2

θ1
ωθ2)+ 2 cos θ2

a2x2 sin3 θ2
∂θ1ωθ1

)
dθ2,

with the following set of BC. For the 0-forms:

abs. : ∂xω(l, θ1, θ2) = 0, rel. : ω(l, θ1, θ2) = 0. (24)

For 1-forms:

abs. :
⎧
⎨
⎩
ωx (l, θ1, θ2) = 0,
∂xωθ1(l, θ1, θ2) = 0,
∂xωθ2(l, θ1, θ2) = 0,

rel. :
⎧
⎨
⎩
ωθ1(l, θ1, θ2) = 0,
ωθ2(l, θ1, θ2) = 0,
∂x (x2ωx )(l, θ1, θ2) = 0.

(25)
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Next, we solve the eigenvalues equations. For 0-forms:

	(0)(ω) = −∂2
xω − 2

x
∂xω + 1

a2x2	
(0)
S2 (ω) = λ2ω. (26)

We can decompose the problem in the eigenspaces of 	
(0)
S2 . Let Y k

n (θ1, θ2) =
eikθ1 P |k|

n (cos θ2), where P |k|
n (cos θ2) are the associated Legendre polynomials and |k| ≤ n.

Y k
n (θ1, θ2) is a complete system of eigenforms for 	(0)

S2 and the eigenvalues are n(n + 1),
with multiplicity 2n + 1 and n ∈ Z, n ≥ 0. Thus,

	(0) =
∑
n≥0

Tn�n,

with

Tn = −∂2
xω − 2

x
∂xω + ν2n(n + 1)

x2 ,

and the eigenvalues equation reads

Tn(u) =
(

−∂2
xω − 2

x
∂xω + ν2n(n + 1)

x2

)
u = λ2

nu.

This can be solved in terms of Bessel function and the solution is un(x) = x− 1
2 Jμn (λn x).

Hence, the solution for the 0-Laplacian equation is

α(0)n (x, θ1, θ2) = x− 1
2 Jμn (λn x)Y k

n (θ1, θ2). (27)

For 1-form, we have

	(1)(ω) = λ2ω, (28)

with ω = ωx dx +ωθ1 dθ1 +ωθ2 dθ2. Write ω = fθ1θ2(x)φ(θ1, θ2)+ fx (x)h(θ1, θ2)dx where
φ = fθ1 dθ1 + fθ2 dθ2 and h(θ1, θ2) is a 0-form on S2. Hence, replacing in (28) we have the
system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−d2
x fθ1θ2)φ + 	

(1)
S2 (φ)

a2x2 fθ1θ2 − 2 fx d(h)

x
= λ2 fθ1θ2φ,

(
(−d2

x fx − 2

x
dx fx + 2

x2 fx )h +	
(0)
S2 (h)

a2x2 fx − 2 fθ1θ2 d†
S2(φ)

a2x3

)
dx =λ2 fx hdx .

(29)

Consider fx = 0 or h = 0 and φ a coexact eigenform on S2 with non-zero eigenvalue.
We have the equation, for n ≥ 1,

(−d2
x fθ1θ2)φ + ν2n(n + 1) fθ1θ2

x2 φ = λ2
n fθ1θ2φ.

Solving this equation in x , we find that fθ1θ2 = x
1
2 Jμn (λn x) and then α

(1)
n =

x
1
2 Jμn (λn x)φ. Note that φ = d†

S2(sin θ2Y k
n (θ1, θ2)dθ1 ∧ dθ2).

Now, we consider fx �= 0, fθ1θ2 �= 0, and h a coexact 0-eigenform of S2 with non-zero

eigenvalue such that d(h) = φ. Hence, 	(1)
S2 (φ) = n(n + 1)φ, d†

S2(d(h)) = n(n + 1)h, and
the system (29) becomes
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⎧⎪⎨
⎪⎩
(−d2

x fθ1θ2)φ + n(n + 1) fθ1θ2

a2x2 φ − 2 fθ1θ2φ

x
= λ2

n fθ1θ2φ,

(−d2
x fx − 2

x
dx fx + 2

x2 fx )h + n(n + 1)h

a2x2 fx − 2n(n + 1) fθ1θ2(φ)

a2x3 = λ2
n fx h.

Changing the base by ( fθ1θ2 , fx ) = (x− 1
2 gx , ∂x (x− 1

2 gx )), we solve the system, and the
solution is gx = Jμn (λn x). Hence, the solution for the system (29) is

β(1)n = x− 1
2 Jμn (λn x)φ(θ1, θ2)+ ∂x (x

− 1
2 Jμn (λn x))h(θ1, θ2)dx,

where h(θ1, θ2) = Y k
n (θ1, θ2). Consider now fx �= 0, fθ1θ2 �= 0, and ψ a coexact 0-ei-

genform of S2 with non-zero eigenvalue such that d(ψ) = φ and d†
S2 d(ψ) = h. Then

h = n(n + 1)ψ , and the system (29) becomes

⎧⎪⎪⎨
⎪⎪⎩

(−d2
x fθ1θ2)φ + n(n + 1) fθ1θ2

a2x2 φ − 2 fx n(n + 1)

x
φ = λ2

n fθ1θ2φ,

(
(−d2

x fx − 2

x
dx fx + 2

x2 fx )h + n(n + 1) fx

a2x2 h − 2 fθ1θ2

a2x3 h

)
dx = λ2

n fx hdx .
(30)

Changing the base by ( fθ1θ2 , fx ) = (∂x (x
1
2 gx ), x− 3

2 gx ) we solve the system (30) and the
solution is gx = Jμn (λn x). Hence, the solution for the system (29) in this case is

γ (1)n = ∂x (x
1
2 Jμn (λn x))(λn x)φ(θ1, θ2)+ x− 3

2 Jμn (λn x)h(θ1, θ2)dx,

where ψ(θ1, θ2) = Y k
n (θ1, θ2). In the case 	(1)

S2 (φ) = 	
(0)
S2 (h) = 0, we have the equation

(
(−d2

x fx − 2

x
dx fx + 2

x2 fx )h

)
dx = λ2

n fx hdx .

Hence, changing the base by fx = ∂x (x− 1
2 gx ) we find gx = J 1

2
(λ0x) and the solution is

D(1) = ∂x (x− 1
2 J 1

2
(λ0x))h.

Since we know that the Hodge decomposition of square integrable forms into exact and
coexact forms holds as in the smooth case [7], we conclude that Eq. 28 has the following
complete set of linearly independent L2 solutions:

α(1)n = x
1
2 Jμn (λn x)d†

S2(sin θ2Y k
n (θ1, θ2)dθ1 ∧ dθ2),

β(1)n = ∂x (x
− 1

2 Jμn (λn x))Y k
n (θ1, θ2)dx + x− 1

2 Jμn (λn x)d(Y k
n (θ1, θ2)),

γ (1)n = x− 3
2 Jμn (λn x)(n(n + 1))ν2Y k

n (θ1, θ2)dx

+ ∂x (x
1
2 Jμn (λn x))d(Y k

n (θ1, θ2)),

D(1) = ∂x (x
− 1

2 J 1
2
(λ0x))dx .

(31)

Next, we determine the eigenvalues.

0-forms We have only two type of forms in (27), that are,

α(0)n = x− 1
2 Jμn (λn x)φ(0)n , E (0)n = x− 1

2 J 1
2
(λ0x)φ(0)n .
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Using the absolute BC in (24), we have

∂x (α
(0)
1,n)(l, θ1, θ2) = ∂x (x

− 1
2 Jμn (λn x)φ(0)n )(l, θ1, θ2) = 0,

∂x (E
(0)
n )(l, θ1, θ2) = ∂x (x

− 1
2 J 1

2
(λ0x)φ(0)n )(l, θ1, θ2) = 0,

and so we need the square of the solutions of − 1
2 l− 3

2 Jμn (lλn) + l− 1
2 λJ ′

μn
(lλn) = 0 and

−λ− 1
2

0 J 3
2
(lλ0) = 0 that are λ̃2

n,k = j̃2
μn ,k,−

l2 and λ2
0,k =

j2
3
2 ,k

l2 .

Using the relative BC in (24), we have α(0)n (l, θ1, θ2) = E (0)n (l, θ1, θ2) = 0 and the

eigenvalues are λ2
n,k = j2

μn ,k

l2 , and λ2
0,k =

j2
1
2 ,k

l2 .

1-forms In this case, we have the four types of forms in (31) (s = 1, 2):

α(1)n = x
1
2 Jμn (λn x)φ(1)n ,

β(1)n = ∂x (x
− 1

2 Jμn (λn x))φ(0)n dx + x− 1
2 Jμn (λn x)dφ(0)n ,

γ (1)n = x− 3
2 Jμn (λn x)(n(n + 1))ν2φ(0)n dx + ∂x (x

1
2 Jμn (λn x))dφ(0)n ,

D(1)
n = ∂x (x

− 1
2 J 1

2
(λ0x))φ(0)n dx .

Using the absolute BC in (25) we have, for the four types,

∂x ((α
(1)
n )θs )(l, θ1, θ2) = ∂x (x

1
2 Jμn (λn x))(l) = 0,

(β(1)n )x (l, θ1, θ2) = ∂x ((β
(1)
n )θs )(l, θ1, θ2) = ∂x (x

− 1
2 Jμn (λn x))(l) = 0,

(γ (1)n )x (l, θ1, θ2) = Jμn (lλn) = 0,

∂x (γ
(1)
n )θs (l, θ1, θ2)=−1

4
Jμn (lλn)+ λn J ′

μn
(lλn)+ λ2

n J ′′
μn
(lλn)=0,

∂x (D
(1)
n ) = ∂x (x

− 1
2 J 1

2
(λ0x))(l) = 0,

and so we obtain the square of the zeros of 1
2 Jμn (lλn) + lλJ ′

μn
(lλn) = 0, − 1

2 Jμn (lλn) +
lλJ ′

μn
(lλn) = 0, Jμn (lλn) = 0, and −λ− 1

2
0 J 3

2
(lλ0) = 0, that are

λ̃2
n,k = j̃2

μn ,k,+
l2 , λ̃2

n,k = j̃2
μn ,k,−

l2 , λ2
n,k = j2

μn ,k

l2 and λ2
0,k =

j2
3
2 ,k

l2 .

Using the relative BC in (25) we have, for the five types,

(α(1)n )θs (l, θ1, θ2) = (x
1
2 Jμn (λn x))(l) = 0,

(β(1)n )θs (l, θ1, θ2) = Jμn (lλn) = 0,

∂x (x
2(β(1)n )x )(l, θ1, θ2) = −1

4
Jμn (lλn)+ lλn J ′

μn
(lλn)+ (lλn)

2 J ′′
μn
(lλn) = 0,

∂x ((γ
(1)
n )θs )(l, θ1, θ2) = 1

2
Jμn (lλn)+ lλn J ′

μn
(lλn) = 0,
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∂x (x
2(γ (1)n )x )(l, θ1, θ2) = 1

2
Jμn (lλn)+ lλJ ′

μn
(lλn) = 0,

∂x (x
2(D(1)

n )x )(l, θ1, θ2) = ∂x (x
2∂x (x

− 1
2 J 1

2
(λ0x)))(l) = 0,

and so we need the square of the zeros of Jμn (lλn) = 0, − 1
4 Jμn (lλn) + lλn J ′

μn
(lλn) +

(lλn)
2 J ′′
μn
(lλn) = 0, 1

2 Jμn (lλn)+ lλn J ′
μn
(lλn) = 0 and J 1

2
(lλ0) = 0, that are

λ2
n,k = j2

μn ,k

l2 (twice), λ̃2
n,k = j̃2

μn ,k,+
l2 and λ2

0,k =
j2

1
2 ,k

l2 .

This concludes the proof for 0-forms and 1-forms. The result for 2-forms and 3-forms
follows by duality. ��
5.2 The analytic torsion of a cone over the circle

This case is now a particular instance of the general case covered in [11] and [12]. We will
recall the main points, see the on line file for a complete account [13]. Consider absolute BC.
By the analysis in Sect. 5.1, the relevant zeta functions are

ζ(s,	(1)) =
∞∑

k=1

j−2s
0,k

l−2s
+

∞∑
k=1

j−2s
1,k

l−2s
+ 2

∞∑
n,k=1

j−2s
νn,k

l−2s
+ 2

∞∑
n,k=1

( j ′νn,k)
−2s

l−2s
,

ζ(s,	(2)) =
∞∑

k=1

j−2s
0,k

l−2s
+ 2

∞∑
n,k=1

j−2s
νn,k

l−2s
,

and by Eq. 4, the torsion is (a = sin α = 1
ν
) log Tabs((CαS1

la, gE ); ρ) = − 1
2 ζ

′(0,	(1)) +
ζ ′(0,	(2)). The torsion zeta function is

t (s) = −1

2
ζ(s,	(1))+ ζ(s,	(2)) = l2s

(
1

2
z0(s)− 1

2
z1(s)+ Z(s)− Ẑ(s)

)

= 1

2
l2s

∞∑
k=1

j−2s
0,k − 1

2
l2s

∞∑
k=1

j−2s
1,k + l2s

∞∑
n,k=1

j−2s
νn,k − l2s

∞∑
n,k=1

( j ′νn,k)
−2s,

and log Tabs((CαS1
la, gE ); ρ) = t ′(0). Using equation 14 of [11], we compute z0/1(0) and

z′
0/1(0). It remains to deal with the differences Z(0)− Ẑ(0) and Z ′(0)− Ẑ ′(0). For we use

Theorem 3 of [11]. The relevant sequences are the double sequences S = { j2
νn,k} and Ŝ =

{( j ′νn,k)
2}, and the simple sequence U = {νn}∞n=1 = ν−sζR(s), and Z(s) = ζ(s, S), Ẑ(s) =

ζ(s, Ŝ). It is possible to show that the results of [11] Sect. 4 apply. U, Sn , and Ŝn are totally
regular sequences of spectral type with genus 1, and the relative genus of S and Ŝ are (1, 0, 0).
Also, S and Ŝ are spectrally decomposable over U with power κ = 2 and length � = 2, as
in Definition 1 of [11]. This follows using the uniform expansions for the Bessel functions
given for example in [18] (7.18), and Ex. 7.2. The final expansions read

log�(−λ, Sn/u
2
n) =

∞∑
h=0

φh−1(λ)u
1−h
n =

(
1 − log 2 − √

1 − λ+ log(1 + √
1 − λ)

)
νn

+1

4
log(1 − λ)−

(
U1(

√−λ)+ 1

12

)
1

νn
+ O

(
1

(νn)2

)
,
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log�(−λ, Ŝn/u
2
n) =

∞∑
h=0

φ̂h−1(λ)u
1−h
n =

(
1 − log 2 − √

1 − λ+ log(1 + √
1 − λ)

)
νn

−1

4
log(1 − λ)−

(
V1(

√−λ)+ 1

12

)
1

νn
+ O

(
1

(νn)2

)
.

Applying Theorem 1 of [11], since the unique pole of ζ(s,U ) is at s = 1,

ζ(0, S)− ζ(0, Ŝ) = −A0,1(0)+ Â0,1(0)+ 1

2ν
Res1
s=0

(�1(s)− �̂1(s)),

ζ ′(0, S)− ζ ′(0, Ŝ) = −A0,0(0)− A′
0,1(0)+ Â0,0(0)+ Â′

0,1(0)

+ 1

2ν
Res0
s=0

(�1(s)−�̂1(s))+ 1

ν

(
3

2
γ+log ν

)
Res1
s=0

(�1(s)−�̂1(s)),

where, by definition in equation (11) of [11], and the calculations in Appendix A,

�1(s) = �
(
s + 1

2

)

12
√
πs

(1 + 5s), �̂1(s) = �
(
s + 1

2

)

12
√
πs

(1 − 7s).

Whence

Z(0)− Ẑ(0) = − (A0,1(0)− Â0,1(0)),

Z ′(0)− Ẑ ′(0) = −
(

A0,0(0)+ A′
0,1(0)− Â0,0(0)− Â′

0,1(0)
)

+ 1

2ν
.

(32)

Recalling the definition in a equation (13) of [11] of the terms A0,0(0) and A′
0,1(0),

and computing the expansion for large λ of the functions log�(−λ, Sn/u2
n) and φ1(λ)

(using classical expansions for the Bessel functions and their derivative and the formulas in
equation (12) of [11]) we obtain that A0,0(0) = Â0,0(0), and that

A0,1(s)− Â0,1(s) = 1

2

∞∑
n=1

u−2s
n = 1

2
ζ(2s,U ) = 1

2
ν−2sζ(2s).

Substitution in Eq. 32 gives Z(0)− Ẑ(0) = 1
4 , Z ′(0)− Ẑ ′(0) = − 1

2 log ν+ 1
2 log 2π+ 1

2ν ,
and and hence (compare with [27])

log Tabs((CαS1
l sin α, gE ); ρ) = 1

2 log π
ν

l2 + 1
2ν .

5.3 The analytic torsion of a cone over the sphere

We consider absolute BC. By the analysis in Sect. 5.1, the relevant zeta functions are

ζ(s,	(1)) =
∞∑

k=1

j−2s
3
2 ,k

l−2s
+

∞∑
n,k=1

(2n + 1)
j−2s
μn ,k

l−2s
+

∞∑
n,k=1

(2n + 1)
j̃−2s
μn ,k,±
l−2s

,

ζ(s,	(2)) =
∞∑

k=1

j−2s
1
2 ,k

l−2s
+ 2

∞∑
n,k=1

(2n + 1)
j−2s
μn ,k

l−2s
+

∞∑
n,k=1

(2n + 1)
j̃−2s
μn ,k,+
l−2s

,

ζ(s,	(3)) =
∞∑

k=1

j−2s
1
2 ,k

l−2s
+

∞∑
n,k=1

(2n + 1)
j−2s
μn ,k

l−2s
,

and by Eq. 4, the torsion is
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log Tabs((CαS2
l sin α, gE ); ρ) = − 1

2 ζ
′(0,	(1))+ ζ ′(0,	(2))− 3

2 ζ
′(0,	(3)).

Define the torsion zeta function

t (s) = −1

2
ζ(s,	(1))+ ζ(s,	(2))− 3

2
ζ(s,	(3))

= −1

2

∞∑
k=1

j−2s
1
2 ,k

l−2s
− 1

2

∞∑
k=1

j−2s
3
2 ,k

l−2s
+ 1

2

∞∑
n,k=1

(2n + 1)
j̃−2s
μn ,k,+
l−2s

− 1

2

∞∑
n,k=1

(2n + 1)
j̃−2s
μn ,k,−
l−2s

= l2s
(

−1

2
z 1

2
(s)− 1

2
z 3

2
(s)+ 1

2
Z+(s)− 1

2
Z−(s)

)
,

then

log Tabs((CαS2
la, gE ); ρ) = t ′(0) = log l2

(
−1

2
z 1

2
(0)− 1

2
z 3

2
(0)+ 1

2
Z+(0)− 1

2
Z−(0)

)

−1

2
z′

1
2
(0)− 1

2
z′

3
2
(0)+ 1

2
Z ′+(0)− 1

2
Z ′−(0).

Using equations (14) of [11], we compute

log Tabs((CαS2
l sin α, gE ); ρ) =

(
3

4
+ 1

2
Z+(0)− 1

2
Z−(0)

)
log l2

+ 1

2
Z ′+(0)− 1

2
Z ′−(0)+ 1

2
log

4

3
.

(33)

It remains to deal with the differences Z+(0) − Z−(0) and Z ′+(0) − Z ′−(0). For we use
Theorem 3 of [11], in the form given in the corollary. The relevant sequences are the dou-
ble sequences S± = { j̃2

μn ,k,±}, and the simple sequence U = {2n + 1 : μn}∞n=1, where

μn =
√
ν2n(n + 1)+ 1

4 , and Z± (s) = ζ(s, S±). Using classical estimates for the zeros of
Bessel function [28], the genus of S± is 0, the genus of U is 2, and the relative genus of S are
(1, 0, 1). This only differs from the case of the circle by g(S±,k), with fixed k. Using classical
estimates for the zeros of the Bessel function, the behavior of this sequence is given by the
behavior of the sequence of the eigenvalues of the Laplacian on the sphere S2, that is known.
In particular, we recall the main features here below. We check that U , and S±,n are totally reg-
ular sequences of spectral type. By definition of the sequence U, ζ(s,U ) = ν−sζ(s, L 1

4ν2
),

where Lq = {2n + 1 : √
n(n + 1)+ q}∞n=1. Hence, U is related to the sequence of the

eigenvalues of the Laplacian on the 2 sphere shifted by some positive constant q . More pre-
cisely, ζ(2s, L0) = ζ(s,Sp+	

(0)
S2 ). The zeta function ζ(s,Sp+	

(0)
S2 ) has been studied in [24],

Sect. 3.3, where it was proved that e(Sp+	
(0)
S2 )= g(Sp+	

(0)
S2 ) = 1, and that Sp+	

(0)
S2 is a

totally regular sequence of spectral type with infinite order, by giving the explicit formula
for the associated Gamma function �(−λ,U ) in terms of the Barnes G function. It follows
that e(U )= g(U )= 2, and that U is a totally regular sequence of spectral type with infinite
order. Also, ζ(s,Sp+	

(0)
S2 ) has one simple pole at s = 1, with residues

Res0
s=1

ζ(s,Sp+	
(0)
S2 ) = 2γ, Res1

s=1
ζ(s,Sp+	

(0)
S2 ) = 1,

and hence, ζ(s, L0) has one simple pole at s = 2, with the same finite part and double residue.
Expanding the power of the binomial, we have that ζ(s, Lq) = ζ(s, L0)+ f (s), where f (s)
is a regular function at s = 2. Therefore,
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Res0
s=2

ζ(s, Lq) = 2γ + f (2), Res1
s=2

ζ(s, Lq) = 2,

and

ζ(s,U ) = ν−sζ(s, Lq) = 2

ν2

1

s − 2
+ f (s),

near s = 2. For S±, we proceed as in Sect. 5.2 of [11]. Introducing the functions

G±
ν (z) = ±1

2
Jν(z)+ z J ′

ν(z),

we have the product representation, where H±
ν (z) = e− π

2 iνG±
ν (i z),

H±
ν (z) = ±1

2
Iν(z)+ z I ′

ν(z) =
(

1 ± 1

2ν

)
zν

2ν�(ν)

∞∏
k=1

(
1 + z2

z2
ν,k,±

)
. (34)

Using this representation, we obtain a product representations for the Gamma func-
tions associated to the sequences S±,n , and hence, a complete asymptotic expansion of
log�(−λ, S±,n), proving that therefore Sn and Ŝn are sequences of spectral type. Considering
the expansions, it follows that they are both totally regular sequences of infinite order. Next,
we prove that S± are spectrally decomposable over U with power κ = 2 and length � = 3,
as in Definition 1 of [11]. We have to show that the functions log�(−λ, S±,n/u2

n), have the
appropriate uniform expansions for large n. Using Eq. 34 and the uniform expansions for the
Bessel functions and their derivatives [18] (7.18), and Ex. 7.2, we obtain

log�(−λ, Sn,±/μ2
n) =

∞∑
h=0

φh−1,±(λ)μ1−h
n

=
(

1 − √
1 − λ+ log(1 + √

1 − λ)− log 2
)
μn

−1

4
log(1 − λ)+

(
−W1,±(

√−λ)± 1

2
− 1

12

)
1

μn

+
(

−W2,±(
√−λ)+ 1

2
W 2

1,±(
√−λ)− 1

8

)
1

μ2
n

+ O

(
1

μ3
n

)
,

(see [11] p. 429, for the explicit formulas of the Wk,±), and hence

φ1,+(λ) = −1

8

1

(1 − λ)
1
2

− 7

24

1

(1 − λ)
3
2

+ 5

12
,

φ1,−(λ) = 7

8

1

(1 − λ)
1
2

− 7

24

1

(1 − λ)
3
2

− 7

12
,

φ2,+(λ) = 1

16

1

1 − λ
− 3

8

1

(1 − λ)2
+ 7

16

1

(1 − λ)3
− 1

8
,

φ2,−(λ) = 9

16

1

1 − λ
− 7

8

1

(1 − λ)2
+ 7

16

1

(1 − λ)3
− 1

8
.

(35)

The length � of the decomposition is precisely 3. For the e(U ) = 2, and therefore the
larger integer such that h − 1 = σh ≤ 2 is 3, since σ0 = −1, σ1 = 0, σ2 = 1, σ3 = 2.
However, only the term with σh = 2, namely h = 3, appears in the formula of Theorem 3 of
[11], since the unique pole of ζ(s,U ) is at s = 2.
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We now apply the formula in that theorem. First, since κ = 2, Res0s=2 ζ(s,U ) = K , and
Res1s=2 ζ(s,U ) = 2

ν2 , we obtain

ζ(0, S+)− ζ(0, S−) = −A0,1,+(0)+ A0,1,−(0)+ 1

ν2 Res1
s=0

(�2,+(s)−�2,−(s)),

ζ ′(0, S+)− ζ ′(s, S−) = −(A0,0,+(0)+ A′
0,1,+(0)− A0,0,−(0)− A′

0,1,−(0))

+ 1

ν2 Res0
s=0

(�2,+(s)−�2,−(s))

+
( γ
ν2 + K

)
Res1
s=0

(�2,+(s)−�2,−(s)).

Second, using the definition in equation (11) of [11], by Eq. 35 and the formula in
Appendix A, we obtain

�2,+(s)−�2,−(s) = 1

2
�(s + 1),

and hence

Res0
s=0

(�2,+(s)−�2,−(s)) = 1

2
, Res1

s=0
(�2,+(s)−�2,−(s)) = 0.

This gives

Z+(0)− Z−(0) = −A0,1,+(0)+ A0,1,−(0),
Z ′+(0)− Z ′−(0) = ζ ′(0, S+)− ζ ′(s, S−)

= −(A0,0,+(0)+ A′
0,1,+(0)− A0,0,−(0)− A′

0,1,−(0))+ 1

2ν2 .

(36)

Third, by equation (13) of [11], the terms A0,0(s) and A0,1(s), are

A0,0,±(s) =
∞∑

n=1

(
a0,0,n,± − b2,0,0,±u−1

n

)
u−2s

n ,

A0,1,±(s) =
∞∑

n=1

(
a0,1,n,± − b2,0,1,±u−1

n

)
u−2s

n .

Hence, we need the expansion for largeλof the functions log�(−λ, Sn,±/u2
n) andφ2,±(λ).

This comes from the expansion

H±
ν (z) ∼

√
zez

√
2π

(
1 +

∞∑
k=1

bk z−k

)
+ O(e−z),

for large z. After some calculations (see [11] pg. 429 for details), we find that A0,1,+(s) =
A0,1,−(s), and therefore Z+(0)− Z−(0) = 0, and that

A0,0,+(s)− A0,0,−(s)=
∞∑

n=1

(2n + 1)μ−2s
n

(
log

(
1 + 1

2μn

)
−log

(
1 − 1

2μn

))
= F(s, ν).

This series converges uniformly for Re(s) > 2, and using the analytic extension of the
zeta function ζ(s,U ), has an analytic extension that is regular at s = 0. Substitution in
Eq. 36 gives

Z ′+(0)− Z ′−(0) = −F(0, ν)+ 1
2ν2 .

123

Author's personal copy



Ann Glob Anal Geom (2012) 42:29–59 57

Substitution in Eq. 33 gives

log Tabs((CαS2
l sin α, gE ); ρ) =1

2
log

4l3

3
− 1

2
F(0, cscα)+ 1

4
sin2 α. (37)

We give in the Appendix B a series representation for the F(0, ν) for ν > 1. Consider

here the case ν = 1. Then, μn =
√

n(n + 1)+ 1
4 = n + 1

2 , and hence

F(s, 1) = 22s
∞∑

n=1

(2n + 1)1−2s(log(n + 1)− log n).

For Re(s) > 2, due to absolute convergence, we can rearrange the terms in the sum. We
obtain

F(s, 1) = −22s
∞∑

n=1

(
(2n + 1)1−2s − (2n − 1)1−2s) log n

=
∞∑
j=0

(
1 − 2s

j

)
(1 − (−1) j )

2 j
ζ ′(2s + j − 1)

= (1 − 2s)ζ ′(2s)+
∞∑

k=1

(
1 − 2s

2k + 1

)
ζ ′(2s + 2k)

22k+1 ,

and hence, by substitution in Eq. 37,

log Tabs((C π
2

S2
l , gE ); ρ) = log T ((D3

l , gE ), ρ) = 1
2 log 4πl3

3 + 1
2 log 2 + 1

4 .
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Appendix A

We give here a formula for a contour integral appearing in the text. The proof is in [23]
Sect. 4.2. Let �θ,c = {λ ∈ C | | arg(λ− c)| = θ}, 0 < θ < π, 0 < c < 1, a real, then

∞∫

0

t s−1 1

2π i

∫

�θ,c

e−λt

−λ
1

(1 − λ)a
dλdt = �(s + a)

�(a)s
.

Appendix B

We give a power series representation for the function F(0, ν) for ν > 1. Assume Re(s) > 2,
then

F(s, ν) =
∞∑

n=1

(2n + 1)μ−2s
n

(
log

(
1 + 1

2μn

)
− log

(
1 − 1

2μn

))

=
∞∑

n=1

(2n+1)μ−2s
n

∞∑
k=0

2−2k

2k + 1
μ−2k−1 =

∞∑
k=0

1

(2k+1)22k

∞∑
n=1

(2n + 1)μ−2s−2k−1
n .
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Now,

μ2x
n =

(
ν2n(n + 1)+ 1

4

)x

=
∞∑
j=0

1

22 j

(
x

j

)
(n(n + 1))x− jν2x−2 j ,

and therefore

F(s, ν) =
∞∑

k=0

1

(2k + 1)22k

∞∑
j=0

1

22 j

(−s − k − 1
2

j

)
ζ(s + k + j + 1

2 ,Sp+	
(0)
S2 )

ν2s+2k+2 j+1 ,

where

ζ(s,Sp+	
(0)
S2 ) =

∞∑
n=1

(2n + 1)(n(n + 1))−s .

Since the unique pole of the meromorphic extension of ζ(s,Sp+	
(0)
S2 ) is at s = 1, writing

F(s, ν) = ζ(s,Sp+	
(0)
S2 )ν

−2s−1

+
∞∑

j,k=0,
j+k �=0

1

(2k + 1)22k

1

22 j

(−s − k − 1
2

j

)
ζ(s + k + j + 1

2 ,Sp+	
(0)
S2 )

ν2s+2k+2 j+1 ,

and using the analytic extension of ζ(s,Sp+	
(0)
S2 ), we obtain

F(0, ν) = ζ

(
1

2
,Sp+	

(0)
S2

)
1

ν
+

∞∑
j,k=0,
j+k �=0

1

(2k + 1)22k

1

22 j

(−k − 1
2

j

)
ζ(k + j + 1

2 ,Sp+	
(0)
S2 )

ν2k+2 j+1 .

It is easy to see that the coefficient in the power series above are all convergent series,
and can be evaluated numerically. The leading term requires independent treatment. Using
the theorem of Plana as in [22], we obtain

ζ(
1

2
,Sp+	

(0)
S2 ) = −5

4

√
2 + 6

∞∫

0

(y4 + y2 + 4)− 1
4

e2πy − 1
sin

(
1

2
arctan

3y

2 − y2

)
dy

−4

∞∫

0

(y4 + y2 + 4)− 1
4

e2πy − 1
cos

(
1

2
arctan

3y

2 − y2

)
dy.
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