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Abstract. Given a free isometric action of the binary tetrahedral group on a

(4n−1)-dimensional sphere we obtain an explicit finite cellular decomposition
of the sphere, equivariant with respect to the group action. A cell decompo-

sition of the correspondent spherical space form and an explicit description

of the associated cellular chain complex of modules over the integral group
ring of the fundamental group of the space form follows. In particular, the

construction provides a simple explicit 4-periodic free resolution for the binary

tetrahedral group.
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1. Introduction

The spherical space forms are obtained as the quotient space of the spheres by
fixed-point free actions of finite groups; the family of such groups is explicitly known.
These spaces are complete Riemannian manifolds of constant positive curvature.

The spherical space forms problem splits into two problems, that of describing
the groups which can occur, and that of describing the ways in which a given group
can act upon the sphere in question. This problem was actually solved by means of
the results of several authors using group theory and representation theory. We refer
the interested reader to the book of Wolf [8], which gives a complete classification
of the spherical space forms.

In [7], Tomoda and Zvengrowski studied the cohomology ring of the tridimen-
sional spherical space forms. The basic idea is to produce an explicit resolution for
the fundamental group π of these spaces. This is indeed a long standing problem
in algebraic topology. Also in [7], they present an explicit resolution for the binary
tetrahedral group. The basic idea of the present work is to obtain an explicit reso-
lution for the binary tetrahedral group using geometry. In the last section, we will
prove the equivalence of our resolution with the one presented in [7].

Our approach is based on the original idea of Swan in [6]. Let a finite group
π act freely on a sphere Sn. Then, in order to obtain a resolution for π, it is
sufficient to obtain a π-equivariant CW decomposition of Sn. Of course, the main
problem in applying this approach is computational, and this is the reason why,
after it was successfully exploited for the cyclic groups, it was somehow abandoned.
In [4], we studied the generalized quaternionic groups, and in [2], we studied the
split metacyclic groups. In particular, we followed the clever geometric setting
introduced by M.M. Cohen in [1, Ch. 9]. In that work, Cohen considered the cyclic
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groups, and a sophisticated description of the cellular complex is obtained using
the join decomposition of a sphere into spheres of lower dimension, i.e., the method
used to obtain the decomposition is essentially geometric. We refer to that book
for all the basic details of the construction.

In [2] and [4], the ideas of Cohen were used, and after some substantial
improving of his technique, it was possible to obtain a cellular decomposition of
the sphere Sn, equivariant with respect to the actions of the groups studied. We
show in this work that this technique is in fact powerful enough to deal with another
class of spherical space forms: the binary tetrahedral spherical space forms. The
main advantage of using a geometric approach is that it is likely to be extended to
tackle all the other groups of the family P8·3k . There is work in progress in this
direction.

2. Preliminaries and notations

2.1. Binary tetrahedral group. We denote by P24 the binary tetrahedral group
with presentation [9, 2.2]

P24 = 〈x, y, z | x2 = (xy)2 = y2, zxz−1 = y, zyz−1 = xy, xyx−1 = y−1, z3 = x4 = 1〉.

This group also has the following semidirect product structure see [7, Section
5.1]. Let Q8 = 〈x, y | x2 = y2; yxy−1 = x−1〉 = {1, x, x2, x3, y, xy, x2y, x3y} be the
quaternionic group, and C3 = {1, z, z2} the cyclic group of order 3. Consider the
homomorphism ϕ : C3 → Aut(Q8), defined by ϕz(x) = zxz−1 = y and ϕz(y) =
zyz−1 = xy (writing Q8 = {±1,±, i,±, j,±k}, ϕ reads: ϕz(i) = j, ϕz(j) = k,
ϕz(k) = i). Then,

P24
∼= Q8 oϕ C3,

and we have the split short exact sequence

1 // Q8
ι // P24

p // C3

s
ii

// 1,

where ι is the inclusion onto the normal subgroup generated by ι(x) = x and
ι(y) = y (ι(i) = x, ι(j) = y, ι(k) = xy), p(z) = z, the generator of C3 , p(x) = 1 =
p(y), and the splitting map is s(z) = z. Note also that (P24)ab = C3.

Remark 2.1. The order of the binary tetrahedral group is 24 and the elements of
P24 can be written as follows:

P24 = {1, x, x2, x3, y, xy, x2y, x3y, z, zx, zx2, zx3, zy, zxy, zx2y, zx3y, z2, z2x, z2x2,

z2x3, z2y, z2xy, z2x2y, z2x3y}.

2.2. Free actions on spheres. The group P24 is a group of type III, according
to the table of Theorem 6.1.11 of J. Wolf [8], with A = 1, B = z, P = x, Q = y,
m = 1, n = 3, r = 1, d = 1, and satisfies all of the three conditions given below the
table (where d is defined in [8, Theorem 5.5.1]).

Then, according to Stepanov [5, Lemma 2.15], the binary tetrahedral group has
only one irreducible complex representation α without fixed points (α(g)(p) = p
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implies g = 1 ∈ P24), explicitly given by

α(x) =
(
i 0
0 −i

)
, α(y) =

(
0 1
−1 0

)
, α(z) = −1

2

(
1 + i 1 + i
−1 + i 1− i

)
.

This representation gives a free action of P24 on S3 ⊂ C2. Next, consider actions
of P24 on the spheres S4n−1, n ≥ 1. By [8, 7.4], all the possible actions are direct
sums of α; then define the representation

α = α1 ⊕ · · · ⊕ αn : P24 → U(2n,C),

where αj = α : P24 → U(2,C), j = 1, 2, ..., n.

Definition 2.1. Let P24 be the binary tetrahedral group. The quotient space of the
action α of P24 over S4n−1, n ≥ 1,

P4n−1 =
S4n−1

α(P24)

is called a tetrahedral spherical space form.

2.3. Curved join. Let w ∈ C, |w| = 1 and w = (cosφ, sinφ) ∈ R2, for some
φ ∈ [0, 2π) (we identify C here with R2 via x + iy = (x, y)). Given two points
w1 = (cosφ1, sinφ1) and w2 = (cosφ2, sinφ2), φ1, φ2 ∈ [0, 2π), with (w1, w2) ∈
C×C = R4, the vectors −→w1 = (cosφ1, sinφ1, 0, 0) and −→w2 = (0, 0, cosφ2, sinφ2) are
orthogonal and then we can take the smallest unitary geodesic arc from w1 to w2.
We denote this arc by w1 ∗w2 = [w1, w2]. The arc [w1, w2] can be written explicitly
as

{(cos t cosφ1, cos t sinφ1, sin t cosφ2, sin t sinφ2) : 0 ≤ t ≤ π/2}.
For any two subsets Z1 and Z2, with W1 ×W2 ⊂ S1 × S1 ⊂ C × C, we define

their curved join by

(2.1) W1 ∗W2 =
⋃

w1∈W1,w2∈W2

w1 ∗ w2.

For example: S1 ∗ S1 = S3. This process generalizes as follows: identifying
Cm with R2m and given the standard orthonormal basis {e1, . . . , e2m} of R2m, for
each 1 ≤ r 6= s ≤ m, denote by Πr,s the plane generated by {er, es}. Suppose
Πr1,s1 ∩ Πr2,s2 = {0}. Let W1 and W2 be subsets of the unit circles of Πr1,s1 and
Πr2,s2 , respectively. Then, the curved join W1∗W2 is well defined by equation (2.1).
In particular, we denote by Σl the unit circle lying in the l-th complex hyperplane
of C2n. Then, we have an equality of the iterated curved join

S4n−1 = Σ1 ∗ · · · ∗ Σ2n.

We can represent the two half spheres S1∗S1
± (where S1

± denotes the north/south
hemisphere of S1) as in Figure 1, where the framing is given by the geodesic lines
joining the end points of the basic vectors ej (see [1, Section 26] for details).

It is clear that the curved join is homeomorphic to the usual join:

J(X,Y ) = (X × I × Y )/ ∼,
where (x, t, y) ∼ (x′, t′, y′) if and only if t = 0 = t′ and y = y′, or t = 1 = t′

and x = x′. However, the usual join J(X,Y ) and the curved join X ∗ Y are
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Figure 1

not isometric. The metric of the curved join is the metric of the sphere, and the
segments are segments of the geodesic. In particular, this is fundamental when we
describe the natural action appearing in the definition of the spherical space forms.
More precisely, let G be a finite group acting freely and orthogonally on a sphere
Sn, let h be a positive integer. Then, there is a natural action of G on Sh(n+1)−1

defined by

(2.2)
(Sh(n+1)−1 ⊂ (Rn+1)h)×G→ Sh(n+1)−1 ⊂ (Rn+1)h,

((x1, . . . , xh), g) 7→ (gx1, . . . , gxh).

This action coincides with the action

(Sh(n+1)−1 = S(h−1)(n+1)−1 ∗ Sn)×G→ Sh(n+1)−1 = S(h−1)(n+1)−1 ∗ Sn,
((x, t, y), g) 7→ (gx, t, gy),

where the join is the curved join.

3. The tridimensional case

In this section we present the two important technical results of this work. In
the first subsection we describe the fundamental domain F for the action of P24

via the representation α on the tridimensional sphere S3, in the second subsec-
tion we achieve a CW decomposition of F by first obtaining an equivariant CW
decomposition of S3.

3.1. The fundamental domain. In order to deal with the fundamental domain,
we will use the approach and the notation introduced in [4].

Definition 3.1. Let G be a finite group acting on a space X. A fundamental
domain of the action of G on X is a connected closed subset F of X such that
X =

⋃
g

gF and gF ∩ g′F has empty interior, that we denote by Int, for all

g 6= g′ ∈ G.
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Remark 3.1. We denote by F|G|,4n−1 the fundamental domain, where |G| is the
order of the group G and 4n− 1 is the dimension of the sphere.

The first important difference with respect to the case of the quaternion group
studied in [4] and the case of the split metacyclic group studied in [2] is that in the
present case the fundamental domain is not the curved join of two arcs of geodesic,
one in Π1,2 and another in Π3,4. This is due to the fact that when the elements
of the group with generator z act on the elements of the canonical basis of R4 the
resulting points have all coordinates different from zero.

The alternative approach introduced for the group P24 is to take the point

a =

(
0, 0,

√
2

2
,−
√

2
2

)
as a base point, because when we act by the 24 elements of

the group on a the results are elements in the six planes, namely, Π1,2, Π1,3, Π1,4,
Π2,3, Π2,4 and Π3,4. So with this base point we can find the fundamental domain.
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We find that the action of the elements of the group P24 on the point

a =

(
0, 0,

√
2

2
,−
√

2
2

)
are:

1a =

(
0, 0,

√
2

2
,−
√

2
2

)
, xa =

(
0, 0,−

√
2

2
,−
√

2
2

)
,

x2a =

(
0, 0,−

√
2

2
,

√
2

2

)
, x3a =

(
0, 0,

√
2

2
,

√
2

2

)
,

ya =

(√
2

2
,−
√

2
2
, 0, 0

)
, xya =

(√
2

2
,

√
2

2
, 0, 0

)
,

x2ya =

(
−
√

2
2
,

√
2

2
, 0, 0

)
, x3ya =

(
−
√

2
2
,−
√

2
2
, 0, 0

)
,

za =

(
−
√

2
2
, 0, 0,

√
2

2

)
, zxa =

(
0,
√

2
2
,

√
2

2
, 0

)
,

zx2a =

(√
2

2
, 0, 0,−

√
2

2

)
, zx3a =

(
0,−
√

2
2
,−
√

2
2
, 0

)
,

zya =

(
−
√

2
2
, 0, 0,−

√
2

2

)
, zxya =

(
0,−
√

2
2
,

√
2

2
, 0

)
,

zx2ya =

(√
2

2
, 0, 0,

√
2

2

)
, zx3ya =

(
0,
√

2
2
,−
√

2
2
, 0

)
,

z2a =

(√
2

2
, 0,−

√
2

2
, 0

)
, z2xa =

(
0,−
√

2
2
, 0,
√

2
2

)
,

z2x2a =

(
−
√

2
2
, 0,
√

2
2
, 0

)
, z2x3a =

(
0,
√

2
2
, 0,−

√
2

2

)
,

z2ya =

(
0,
√

2
2
, 0,
√

2
2

)
, z2xya =

(
−
√

2
2
, 0,−

√
2

2
, 0

)
,

z2x2ya =

(
0,−
√

2
2
, 0,−

√
2

2

)
, z2x3ya =

(√
2

2
, 0,
√

2
2
, 0

)
.

These points are displayed in Figure 2. Note that they are always in the middle
of the geodesic arc joining the basis points.

Next consider the sixteenth of the sphere S3 = S1 ∗ S1, namely the tetrahedron
spanned by e1, e1, e3 and e−4, see Figure 3 and Figure 4

The main purpose of this section is to prove the following result:

Proposition 3.1. A fundamental domain for the action of the group P24 on S3

via the representation α is F24,3 = a ∗ xya ∗ zx2a ∗ z2x3a ∪ a ∗ zxa ∗ xya ∗ z2x3a ∪
a ∗ zx2a ∗ z2x3ya ∗xya∪ a ∗ zxa ∗ z2x3ya ∗xya, displayed in Figure 3 and in Figure
4.
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The proof of Proposition 3.1 follows by the next five lemmas. The Lemmas 3.1,
3.2, 3.3 and 3.4 assure that gF24,3 ∩ g′F24,3 has empty interior. The Lemma 3.5
together with the previous lemmas assures that S3 =

⋃
g∈P24

gF24,3, i.e, that the

action of P24 on F24,3 covers all of S3. The proof of the first lemma is clear.

Lemma 3.1. Consider P ∗ Q and P ′ ∗ Q′, two subsets in S1 ∗ S1, then
Int(P ∗ Q) ∩ Int(P ′ ∗ Q′) 6= ∅ if and only if Int(P ) ∩ Int(P ′) 6= ∅ and
Int(Q) ∩ Int(Q′) 6= ∅.

We saw that the group P24 ' Q8 oϕ C3. In [4], we showed that the fundamental
domain for the action of Q8 on S3 is the following join that we denote by F8,3 =
A1 ∗ A2, where A1 is the arc of Σ1 of length π

2 starting at e2, and A2 is the arc of
Σ2 of length π starting at e3, displayed in Figure 5.

e
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Figure 5

We describe now the action of the group generators x and y in the representation
α. Let βj = zj ∗ wj be an arc of Σj , and let R(θ) denote the rotation of angle θ,
then:

α(x)(β1 ∗ β2) = R
(π

2

)
(β1) ∗R

(
−π

2

)
(β2)

α(y)(β1 ∗ β2) = R(π)(β2) ∗ β1.

Remark 3.2. α(xγ)(β1 ∗ β2) = R
(
γ
π

2

)
(β1) ∗R

(
−γ π

2

)
(β2).
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Since the fundamental domain F24,3 is contained in F8,3 we have the following
lemmas:

Lemma 3.2. The rotations on the two circles Σj, j = 1, 2, determined by the
action of the elements of group Q8 on F8,3, satisfy the following bounds:

(1) for γ = 1, 2, 3, α(xγ)(β1 ∗ β2) = R
(
γ π2
)

(β1) ∗ R
(
−γ π2

)
(β2), with

0 ≤ γ
π

2
< 2π, i.e. the rotations determined by xγ on Σ1 and Σ2 are

less than 2π;
(2) α(y)(β1 ∗β2) = R(π)(β2)∗β1, i.e. the rotations determined by y on Σ1 and

Σ2 are less than 2π;
(3) for γ = 1, 2, 3, α(xγy)(β1 ∗ β2) = R

(
γ π2 + π

)
(β2) ∗ R

(
−γ π2

)
(β1), with

0 ≤ γ
π

2
+ π < 4π and 0 ≤ −γ π

2
< 2π, i.e. the rotation determined by xγy

on Σ1 is less than 4π and on Σ2 is less than 2π.

Proof. This follows by lengthy direct verification, using the minimal rotations of
each element of the group. See [3] for more details. �

Lemma 3.3. The following statements are true:
(1) for γ = 1, 2, 3, Int(α(xγ)(F8,3)) ∩ Int(F8,3) = ∅;
(2) Int(α(y)(F8,3)) ∩ Int(F8,3) = ∅;
(3) for γ = 1, 2, 3, Int(α(xγy)(F8,3)) ∩ Int(F8,3) = ∅.

Proof. The method of proving these facts is always the same: we first show that the
condition that the intersection of the interiors is empty in each of (1), (2), and (3)
is equivalent to some equation in Z, and then that such equation has no solution,
by contradiction. These calculations are simple so we omit the proof. See [3] for
more details. �

Lemma 3.4. For ρ = 1, 2, γ = 0, 1, 2, 3 and σ = 0, 1,

Int(α(zρxγyσ)(F24,3)) ∩ Int(F24,3) = ∅.

Proof. This proof is by direct determination of the intersection set, using the ex-
plicit description and proceeding case by case. We present some figures to give an
idea. See [3] for all details.
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Lemma 3.5. The image of F24,3 given by the action of the group P24 has volume

equal to
VS3

|P24|
=
VS3

24
, where VS3 denotes the volume of the sphere S3.

Proof. It is clear that the volume of the tetrahedron with vertices e1, e2, e3 and −e4
is VS3

16 . Now denote by A the volume of the tetrahedron with vertices zxa, a, e3
and z2x3ya. Note that the edges of this tetrahedron have length

π

4
,
π

4
,
π

4
,
π

3
,
π

3
and

π

3
(see Figure 6), which are the same lengths as the edges of the tetrahedra with

the vertices
xya, zx2a, z2x3ya, e1

xya, e2, z
2x3a, zxa

z2x3a,−e4, a, zx2a,

Thus each of these tetrahedra will also have volume equal to A.
Now we will find the volume of the solid P with vertices z2x3ya, xya, zxa, z2x3a,

a, zx2a. Tracing the three diagonals of length
π

2
inside the solid P , we obtain the

intersection point O of these diagonals, with coordinates
(

1
2
,

1
2
,

1
2
,−1

2

)
. Thus, we

have eight tetrahedra inside P with center at O, each of these eight tetrahedra also
has volume equal to A. This gives the desired result. �
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3.2. Cellular decomposition. If X = Sn/π, where π is some finite group acting
freely by isometries, F is the fundamental domain of the action of π, and q : Sn → X
is the natural quotient map, then, q is a covering map, Sn = X̃ is the universal
covering space of X, q|F : F → X is surjective, and it is a relative homeomorphism
for the pair (F , ∂F) → (X,X(n−1)), where X(n−1) is the (n − 1)-skeleton of X
(recall X is a compact manifold). A π-equivariant cell decomposition K̃ of Sn

determines a cell decomposition L̃ of F , where L̃ is a subcomplex of K̃, K̃ = πL̃,
and q(L̃) is a cell decomposition L of X. Moreover, at least one lift of each cell of
L will lie in L̃. Therefore, we can choose for each cell c ∈ L a single cell c̃ ∈ L̃, that
will be called a representative lift of c. Since all the other cells of L̃ are in the π-orbit
of some cell c̃ (i.e. are in the π-orbit determined by the action of some element
of the group), the cell complex of L̃ can be described using the cells c̃ and some
actions of π over c̃. This set of cells will be called a minimal set of representative
lifts, and will give a minimal cell decomposition of F , that we denote by Z̃. It is
clear that q(Z̃) = L. Taking all the complete orbits of the cells in Z̃, we obtain the
cell complex K̃ = πZ̃, that is a π-equivariant cellular decomposition of Sn.

We pass now to determining a P24-equivariant cell decomposition of S3. For this
we define a cell decomposition of S3 as follows: fix a point of S3 and identify this
point with a. Write S3 as the join of two circles and consider the decomposition
introduced in Section 3. This gives a cell decomposition L̃ of the fundamental
domain F24,3. Then, 0-cells of the cell decomposition K̃ of S3 are the elements
of the orbit P24a. The 1-cells, 2-cells and 3-cells of S3 are the 1-cells, 2-cells and
3-cells, respectively, of the fundamental domain translated by the actions of the
elements of P24. It is clear that K̃ = P24L̃, i.e. that this is an equivariant cell
decomposition. This gives the following lemma.

Lemma 3.6. A P24 equivariant cell decomposition of S3 is K̃ = P24L̃, where L̃

is the cell decomposition of F24,3 given in Section 3. The quotient L = L̃/α(P24)
gives a cell decomposition of P3.

Now we will describe the minimal set of lifts Z̃ of the cells of L in S3, and their
boundaries. In order to describe this complex, after fixing one 0-cell a, we denote
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the other 0-cells by action of the elements of the group. Higher dimensional cells
are obtained by joining lower dimensional ones.

Proposition 3.2. A minimal set Z̃ of representative lifts c̃q,s (where the first index
denotes the dimension) of the cells of the cellular decomposition L of P3 defined
in Lemma 3.6 is:

c̃0,1 = a =
(

0, 0,
√

2
2 ,−

√
2

2

)
,

c̃1,1 = a ∗ z2x3ya, c̃1,2 = a ∗ zxa,
c̃1,3 = a ∗ z2x3a, c̃1,4 = a ∗ zx2a,

c̃2,1 = a ∗ zxa ∗ z2x3a, c̃2,2 = a ∗ zx2a ∗ z2x3ya,
c̃2,3 = a ∗ zx2a ∗ z2x3a, c̃2,4 = a ∗ zxa ∗ z2x3ya,

c̃3,1 =a ∗ xya ∗ zx2a ∗ z2x3a ∪ a ∗ zxa ∗ xya ∗ z2x3a ∪ a ∗ zx2a ∗ z2x3ya ∗ xya
∪ a ∗ zxa ∗ z2x3ya ∗ xya,

with boundaries:

∂1(c̃1,1) = (z2x3y − 1)c̃0,1,

∂1(c̃1,2) = (zx− 1)c̃0,1,

∂1(c̃1,3) = (z2x3 − 1)c̃0,1,

∂1(c̃1,4) = (zx2 − 1)c̃0,1,

∂2(c̃2,1) = −z2x3 c̃1,1 + c̃1,2 − c̃1,3,
∂2(c̃2,2) = −c̃1,1 − z2x3y c̃1,3 + c̃1,4,

∂2(c̃2,3) = −zx2 c̃1,2 + c̃1,3 − c̃1,4,
∂2(c̃2,4) = c̃1,1 − c̃1,2 − zxc̃1,4,
∂3(c̃3,1) = (1− z2x3y)c̃2,1 + (1− z2x3)c̃2,2 + (1− zx)c̃2,3 + (1− zx2)c̃2,4.

Proof. The proof is based on an explicit description of the cell decomposition
L̃ of the fundamental domain. First, since P3 is connected, one 0-cell c0,1 is
sufficient in L and we fix the lift c̃0,1 of c0,1 by identifying it with the point

a =

(
0, 0,

√
2

2
,−
√

2
2

)
. Next, since the quotient space is a manifold and the funda-

mental domain a 3-dimensional disc, it is clear that we can take just one top cell,
namely we can lift the top cell of L and this will be exactly L̃, with boundary glued
on the 2-skeleton of L̃, that is precisely its boundary. The 0-cells are vertices of
F24,3, that is, the points:

c0,1 = a, c0,2 = zxa, c0,3 = z2x3a, c0,4 = z2x3ya, c0,5 = zx2a, c0,6 = xya.

The 1-cells are arcs:
c1,1 = a ∗ z2x3a, c1,2 = a ∗ zxa, c1,3 = a ∗ zx2a,
c1,4 = z2x3a ∗ zxa, c1,5 = zxa ∗ xya, c1,6 = z2x3a ∗ xya,
c1,7 = z2x3ya ∗ xya, c1,8 = zxa ∗ z2x3ya, c1,9 = a ∗ z2x3ya,
c1,10 = z2x3ya ∗ z2xa c1,11 = zx2a ∗ xya, c1,12 = zx2a ∗ z2x3a.
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The 2-cells are the sets:

c2,1 = a ∗ zxa ∗ z2x3a, c2,2 = zxa ∗ xya ∗ z2x3a, c2,3 = zxa ∗ z2x3ya ∗ xya,
c2,4 = z2x3ya ∗ xya ∗ zx2a, c2,5 = z2x3ya ∗ zx2a ∗ a, c2,6 = a ∗ zx2a ∗ z2x3a,
c2,7 = a ∗ zxa ∗ z2x3ya, c2,8 = zx2a ∗ z2x3a ∗ xya.

We verify that the union of the eight 2-cells previously presented coincides with
the boundary of the fundamental domain, ∂F24,3. Similarly, the boundary of each
2-cell is contained in the union of 1-cells, and the boundary of each 1-cell is con-
tained in the union of 0-cells. This shows that this set of cells provides a cell
decomposition of the fundamental domain. We verify that the following is a set of
linearly independent 1-cells that generates all the other 1-cells:

c̃1,1 = c1,9 = a ∗ z2x3ya, c̃1,2 = c1,2 = a ∗ zxa,
c̃1,3 = c1,1 = a ∗ z2x3a, c̃1,4 = c1,3 = a ∗ zx2a,

for

c1,4 = z2x3 c1,9, c1,5 = zx c1,1, c1,6 = z2x3 c1,3, c1,7 = z2x3y c1,2,
c1,8 = zx c1,3, c1,10 = z2x3y c1,1, c1,11 = zx2 c1,9, c1,12 = zx2 c1,2.

Next, we give representative lifts in Z̃ of the 2-cells. The method is similar to
the previous one, we identify the orbits of 2-cells in L̃, we get:

c2,2 = z2x3c2,5, c2,3 = zxc2,6, c2,4 = z2x3yc2,1, c2,8 = zx2c2,7.

Thus, a set of minimal lifts of 2-cells is:

c̃2,1 = c2,1 = a ∗ zxa ∗ z2x3a, c̃2,2 = c2,5 = z2x3ya ∗ zx2a ∗ a,
c̃2,3 = c2,6 = a ∗ zx2a ∗ z2x3a, c̃2,4 = c2,7 = a ∗ zxa ∗ z2x3ya.

The unique 3-cell of Z̃ is c̃3,1 and it coincides with the fundamental domain.
Figure 7 shows the fundamental domain with all the cells in Z̃.
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2 3
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Ixyc0,1 Iz x
2 3
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Figure 7

Finally, we calculate the boundaries geometrically and we write the coefficients
in ZP24. �
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4. The higher dimensional case

The fundamental domain and the cellular decomposition for the higher dimen-
sional cases will follow by the tridimensional case and some general results. Apply-
ing [3, Lemma 2.3.1], the fundamental domain of the action of P24 on S4n−1, via
the representation α, follows immediately from the definition of the fundamental
domain F24,3 given in Proposition 3.1.

Proposition 4.1. A fundamental domain for the action of the group P24 on S4n−1,
n ≥ 1, via the representation α is

F24,4n−1 = Σ1 ∗ Σ2 ∗ · · · ∗ Σ2(n−1) ∗ F24,3,

with F24,3 inside Σ2n−1 ∗ Σ2n.

In a similar way, the equivariant cell decomposition of S4n−1 follows from that
of S3 given in Propositions 3.2. It remains to consider the boundary of the cell
c̃4q,1, q > 0. But this follows easily considering that c̃4q,1 = S4q−1 ∗ c̃4q−1,1, and
hence its boundary is given by the collection of all the cells of S4q−1, i.e. all the
orbits of π. All the details can be found in the chain complex explicitly given in
the next section.

4.1. The chain complex. We now describe the chain complex of ZP24 modules
for the tetrahedral spherical space form P4n−1.

Following standard notation in algebraic topology, we will denote by C(K̃;Zπ)
the Zπ-chain complex of the universal covering space of a finite complex K with
the action of the fundamental group acting by covering transformations. This is a
complex of free finitely generated modules over Zπ.

Theorem 4.1. The chain complex C(P4n−1;ZP24) of the universal covering space
of the tetrahedral spherical space forms P4n−1 with the action of the fundamental
group acting by covering transformations is the following complex of free finitely
generated ZP24 modules:

0 // C4n−1
// . . .

∂4q−1// C4q−2
∂4q−2 // C4q−3

∂4q−3 // . . . // C0
// 0,

where

C4q−4 =ZP24[c4q−4],

C4q−3 =ZP24[c4q−3,1, c4q−3,2, c4q−3,3, c4q−3,4],

C4q−2 =ZP24[c4q−2,1, c4q−2,2, c4q−2,3, c4q−2,4],

C4q−1 =ZP24[c4q−1],

with boundary (∂0 = 0):

∂4q−4,1(c4q−4) =(1 + x+ x2 + x3)(1 + y)(1 + z + z2)c(4q−4)−1,

∂4q−3(c4q−3,1) =(z2x3y − 1)c4q−4,

∂4q−3(c4q−3,2) =(zx− 1)c4q−4,

∂4q−3(c4q−3,3) =(z2x3 − 1)c4q−4,

∂4q−3(c4q−3,4) =(zx2 − 1)c4q−4,
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∂4q−2(c4q−2,1) =− z2x3 c4q−3,1 + c4q−3,2 − c4q−3,3,

∂4q−2(c4q−2,2) =− c4q−3,1 − z2x3y c4q−3,3 + c4q−3,4,

∂4q−2(c4q−2,3) =− zx2c4q−3,2 + c4q−3,3 − c4q−3,4,

∂4q−2(c4q−2,4) =c4q−3,1 − c4q−3,2 − zxc4q−3,4,

∂4q−1(c4q−1) =(1− z2x3y)c4q−2,1 + (1− z2x3)c4q−2,2 + (1− zx)c4q−2,3+

+(1− zx2)c4q−2,4.

This complex is exact in all middle dimensions, namely Im(∂q+1) = Ker(∂q), for
0 < q < 4n− 1.

Proof. The complex emerges directly from the equivariant cellular decomposition
of S3 described in Proposition 3.2. Exactness follows by the fact that the complex
is composed of the cells of the cellular decomposition of S4n−1, and the homology
of S4n−1 is zero, in middle levels. �

The chain complex C(P4n−1;ZP24) of the universal covering space (S4n−1) is
exact in all middle dimensions, as we saw in Theorem 4.1. Taking the augmentation
map and letting n→∞, we construct a 4-periodic resolution of Z over ZP24, and
we have the following result.

Corollary 4.1. The complex (the boundaries are given in Theorem 4.1)

. . . // C4q−3
∂4q−3 // C4q−4

∂4q−4 // . . . // C1
∂1 // C0

ε // Z // 0,

is a 4-periodic resolution of Z over ZP24.

4.2. Remarks. With integer coefficients, the complex in Theorem 4.1 is the com-
plex of groups

C4q−4 =Z[c4q−4],

C4q−3 =Z[c4q−3,1, c4q−3,2, c4q−3,3, c4q−3,4],

C4q−2 =Z[c4q−2,1, c4q−2,2, c4q−2,3, c4q−2,4],

C4q−1 =Z[c4q−1],

with boundary (∂0 = 0):

∂4q−4(c4q−4) = 24c(4q−4)−1,

∂4q−3 = 0,

∂4q−2(c4q−2,1) = −c4q−3,1 + c4q−3,2 − c4q−3,3,

∂4q−2(c4q−2,2) = −c4q−3,1 − c4q−3,3 + c4q−3,4,

∂4q−2(c4q−2,3) = −c4q−3,2 + c4q−3,3 − c4q−3,4,

∂4q−2(c4q−2,4) = c4q−3,1 − c4q−3,2 − zxc4q−3,4,

∂4q−1(c4q−1) = 0.

This gives H0(P4n−1;Z) = Z, H4q−4,q>1(P4n−1) = 0, H4q−2(P4n−1) = 0,
H4q−1(P4n−1;Z) = Z/24Z (since the determinant of the matrix of ∂4q−2 is differ-
ent from 0). In order to compute H4q−3(P4n−1), we change the basis of C4q−3 and
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C4q−2 to the new bases

c4q−3,4, c4q−3,1 + c4q−3,4,−c4q−3,2 + c4q−3,3 − c4q−3,4, c4q−3,3 + c4q−3,4,

and

−2c4q−2,1+c4q−2,2−c4q−2,3−c4q−2,4,−c4q−2,1−c4q−2,3, c4q−2,3,−c4q−2,1−c4q−2,4.

In these new bases the matrix of ∂4q−2 is diagonal with eigenvalues 3, 1, 1, 1, and
therefore H4q−3(P4n−1) = Z/3Z.

The cohomology follows by the universal coefficient theorem:

H0(P24;Z) = Z,

H4q−4,q>1(P24;Z) = Z/24Z,

H4q−3(P24;Z) = 0,

H4q−2(P24;Z) = Z/3Z,

H4q−1(P24;Z) = 0.

This agrees with [7] Theorem 4.4. Furthermore, we now show explicitly that the
complex described in Theorem 4.1 is in fact chain equivalent to the one given in
Proposition 4.1 of [7]. For, first recall that in [7] the following presentation for the
group P24 is used

P ′24 = 〈S, T ;STS = T 2, TST = S2〉.

An isomorphism ϕ : P24 → P ′24 is the following (we thank the referee for sug-
gesting this isomorphism)

ϕ(x) = TS2T, ϕ(y) = TS, ϕ(z) = S4,

with inverse

ψ(T ) = z2x3y, ψ(S) = zx2.

Consistently, we denote by C ′ the resolution of Z over P ′24 described in Propo-
sition 4.1 of [7], that we recall here

C ′0 = ZP ′24[a], ∂′0(a) = 0;

C ′1 = ZP ′24[b, b′], ∂′1(b) = (S − 1)a,

∂′1(b′) = (T − 1)a;

C ′2 = ZP ′24[c, c′], ∂′2(c) = (T − S − 1)b+ (1 + TS)b′,

∂′2(c′) = (1 + ST )b+ (S − T − 1)b′;

C ′3 = ZP ′24[d], ∂′3(d) = (S − 1)c+ (T − 1)c′;

C ′4 = ZP ′24[a4], ∂′4(a4) = Nd.

We now present an explicit proof of the equivalence of C and C ′. Using the
isomorphism ϕ, we identify the element of P24 with their image in P ′24. We have
the chain maps

ϕq : Cq → C ′q
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ϕ0(c0) = a,

ϕ1(c1,1) = b′, ϕ1(c1,2) = S−1T−1((1− T )b− b′),
ϕ1(c1,3) = T−1(b− b′), ϕ1(c1,4) = b,

ϕ2(c2,1) = −S−1T−1c− T−1c′, ϕ2(c2,2) = 0,

ϕ2(c2,3) = 0, ϕ2(c2,4) = S−1T−1c,

ϕ3(c3) = T−1d,

and

ψq : C ′q → Cq

ψ0(a) = c0,

ψ1(b) = c1,4, ψ1(b′) = c1,1,

ψ2(c) = −c2,2 − Tc2,3 + TSc2,4, ψ2(c′) = −Tc2,1 + c2,2 − Tc2,4,
ψ3(d) = Tc3,

ψ4(a4) = Tc4.

It is easy to verify that ϕψ is the identity of C ′. On the other side, ψϕ is chain
equivalent to the identity of C by the chain homotopy Dq : Cq → Cq+1,

D1(c1,2) = S−1T−1c2,1 + S−1c2,3, D1(c1,3) = T−1c2,2,

and Dq is zero otherwise.

Acknowledgments The authors are grateful to the referee for his comments
and remarks, and in particular for suggesting to present an explicit proof of the
equivalence of the resolution presented here with one described in [7].
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