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Abstract. We study the zeta determinant of the Laplace operator on two
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1. Introduction

Zeta regularization is a fundamental technique in mathematical and theoreti-
cal physics and has been deeply investigated (see for example [9] or [12] and
references therein). An interesting problem in this context is to study the
analytic properties of the zeta function of the Laplace operator, and in par-
ticular the zeta determinant, on specific geometries. The case of a bounded
cone was deeply investigated [1–3,7,10,11] because the analytic geometric set-
ting is well known by seminal works of Cheeger [5,6]. The case of a product
space is less studied, but see [13]. In all these works, the approach is based
on the so called heat kernel methods (see for example [14]). These methods
allow to determine many useful properties of the zeta function, in particular
analytic extension, localization of poles and evaluation of residues, but in gen-
eral they are not particularly efficient to dealing with the derivative of the
zeta function at zero, namely with the determinant. In this note we announce
some results on the zeta determinant of the Laplace operator on two classes of
(compact) geometries: cones and product spaces. These results are obtained
by applying some techniques in zeta determinants and regularized products
introduced and developed in a series of recent works [19–22]. In particular, a
detailed account and complete proofs can be found in [22]. We show that using
this method more effective results on the zeta determinant are obtained. We
postpone further comments to the end of the paper. This note is organized as
follows. In Sect. 2, we briefly present our technique. In Sect. 3, we recall some
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general facts on the zeta function of the Laplacian on a compact connected
Riemannian manifold, that will be used in the following sections. In Sects. 4
and 5, we give the zeta determinant for the Laplace operator on a cone and
on a product space, respectively.

2. Zeta determinants for double sequences of spectral type

We recall in this section the method we use to evaluate the zeta determinants.
This is based on [19–22]. Let S = {an}∞

n=1 be a sequence of non vanishing
complex numbers, ordered by increasing modules, with unique point of accu-
mulation at infinite. Denote by e(S) the exponent of convergence of S, and
assume e(S) < ∞. Denote by g(S) the genus of S. We define the zeta function
associated to S by the uniformly convergent series

ζ(s, S) =
∞∑

n=1

a−s
n ,

when Re(s) > e(S), and by analytic continuation otherwise. We call the open
subset ρ(S) = C − S of the complex plane the resolvent set of S. For all
λ ∈ ρ(S), we define the Gamma function associated to S by the canonical
product

1
Γ(−λ, S)

=
∞∏

n=1

(
1 +

−λ
an

)
e
∑g(S)

j=1
(−1)j

j
(−λ)j

a
j
n .

When necessary in order to define the meromorphic branch of an analytic
function, the domain for λ will be the open subset C − [0,∞) of the complex
plane. We use the notation Σθ,c =

{
z ∈ C | | arg(z − c)| ≤ θ

2

}
, with c ≥ δ > 0,

0 < θ < π. We use Dθ,c = C−Σθ,c, for the complementary (open) domain and
Λθ,c = ∂Σθ,c =

{
z ∈ C | | arg(z − c)| = θ

2

}
, oriented counter clockwise, for the

boundary. For simplicity, we assume that each of our sequences S is contained
in the interior of some sector Σθ,c, and we call the complementary domain Dθ,c
the asymptotic domain of S. We define now a particular subclass of sequences.
Let S be as above, and assume that e(S) < ∞, and that the logarithm of
the associated Gamma function has a uniform asymptotic expansion for large
λ ∈ Dθ,c of the following form

logΓ(−λ, S) ∼
∞∑

j=0

aαj ,0(−λ)αj +
g(S)∑

k=0

ak,1(−λ)k log(−λ),

where {αj} is a decreasing sequence of real numbers. Then, we say that S is
a totally regular sequence of spectral type with infinite order. Next, let S =
{λn,k}∞

n,k=1 be a double sequence of non vanishing complex numbers with
unique accumulation point at the infinity, finite exponent s0 = e(S) and genus
p = g(S). Assume if necessary that the elements of S are ordered as 0 <
|λ1,1| ≤ |λ1,2| ≤ |λ2,1| ≤ · · ·. We use the notation Sn(Sk) to denote the simple
sequence with fixed n(k). We call the exponents of Sn and Sk the relative
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exponents of S, and we use the notation (s0 = e(S), s1 = e(Sk), s2 = e(Sn)).
We define relative genus accordingly.

Definition 2.1. Let S = {λn,k}∞
n,k=1 be a double sequence with finite expo-

nents (s0, s1, s2), and genus (p0, p1, p2). Let U = {un}∞
n=1 be a totally regular

sequence of spectral type of infinite order with exponent r0, and genus q.
We say that S is spectrally decomposable over U with power κ, length * and
asymptotic domain Dθ,c, if there exist positive real numbers κ, and * (integer),
such that: (1) the sequence u−κ

n Sn =
{
λn,k

uκ
n

}∞

k=1
is a totally regular sequence

of spectral type of infinite order for each n; (2) the logarithmic Γ-function
associated to Sn/uκn has an asymptotic expansion for large n uniformly in λ
for λ in Dθ,c, of the following form

logΓ(−λ, u−κ
n Sn) =

%∑

h=0

φσh(λ)u−σh
n +

L∑

l=0

Pρl(λ)u−ρl
n log un + o(u−r0

n ),

where σh and ρl are real numbers with σ0 < · · · < σ%, ρ0 < · · · < ρL, the
Pρl(λ) are polynomials in λ satisfying the condition Pρl(0) = 0, * and L are
the larger integers such that σ% ≤ r0 and ρL ≤ r0.

In order to state our main result, we need some more notation. First, we define

Φσh(s) =
∞∫

0

ts−1 1
2πi

∫

Λθ,c

e−λt

−λ φσh(λ)dλdt.

Second, for all n, we have the expansions:

logΓ(−λ, Sn/uκn) ∼
∞∑

j=0

aαj ,0,n(−λ)αj +
p2∑

k=0

ak,1,n(−λ)k log(−λ),

φσh(λ) ∼
∞∑

j=0

bσh,αj ,0(−λ)αj +
p2∑

k=0

bσh,k,1(−λ)k log(−λ),

for large λ in Dθ,c. Then, we set (see Lemma 3.5 of [22]), for 0 ≤ k ≤ p2,

Aαj ,0(s) =
∞∑

n=1

(
aαj ,0,n −

%∑

h=0

bσh,αj ,0u
−σh
n

)
u−κs

n , αj '= 0, 1, . . . , p2,

A0,0(s) =
∞∑

n=1

(
a0,0,n −

%∑

h=0

bσh,0,0u
−σh
n

)
u−κs

n ,

Ak,0(s) =
∞∑

n=1

(
ak,0,n −

%∑

h=0

bσh,k,0u
−σh
n −

L∑

l=0

pρl,ku−ρl
n log un

)
u−κs

n , k '= 0,

Ak,1(s) =
∞∑

n=1

(
ak,1,n −

%∑

h=0

bσh,k,1u
−σh
n

)
u−κs

n .
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With this notation, we have the following theorem (see [22, Theorem 3.9], and
[20, Proposition 1]).

Theorem 2.2 (Spectral decomposition lemma). Let the double sequence S be
spectrally decomposable over U with power κ and length *, then

Res1
s=0

ζ(s, S) =
1
κ

!∑

h=0

Res2
s=0

Φσh(s) Res1
s=σh

ζ(s, U),

Res0
s=0

ζ(s, S) =
!∑

h=0

Res2
s=0

Φσh(s) Res0
s=σh

ζ(s, U) − A0,1(0)

+
1
κ

!∑

h=0

Res1
s=σh

ζ(s, U)

(
Res1
s=0

Φσh(s) + γ Res2
s=0

Φσh(s)

)
,

Res0
s=0

ζ′(s, S) =
1
κ

(
γ2

2
− π2

12

) !∑

h=0

Res2
s=0

Φσh(s) Res1
s=σh

ζ(s, U)

+
γ
κ

!∑

h=0

Res1
s=0

Φσh(s) Res1
s=σh

ζ(s, U)+ γ
!∑

h=0

Res2
s=0

Φσh(s) Res0
s=σh

ζ(s, U)

+
1
κ

!∑

h=0

Res0
s=0

Φσh(s) Res1
s=σh

ζ(s, U)+ κ
!∑

h=0

Res2
s=0

Φσh(s) Res0
s=σh

ζ′(s, U)

+
!∑

h=0

Res1
s=0

Φσh(s) Res0
s=σh

ζ(s, U) − A0,0(0) − A′
0,1(0).

Next, we consider the particular case where S is the sum of two sequences. More
precisely, let S(i) = {λ(i),ni

}ni∈N0 , i = 1, 2, be two totally regular sequences
of spectral type with finite exponents s(i), genus p(i), and orders α(i),N(i) ≤ 0.
Assume λ(1),n1 + λ(2),n2 '= 0 for all (n1, n2). Then the sum sequence S(0) =
S(1) + S(2) is a totally regular sequence of spectral type with exponent s(0) =
s(1) + s(2), genus p(0) = [s(0)], and order α(0),N(0) = min(α(i),N(i)) ≤ 0, and we
have:

Theorem 2.3. Suppose that α(1),N(1) < −p(2) − 1, and that −α(2),N(2) ≥ s(1).
Then, the sequence S(0) = {λ(1),n1 + λ(2),n2}ni∈N0 is spectrally decomposable
over S(1) with power 1, and finite length * ≤ N(2). The length * is the larger
integer such that −α(2),% ≤ s(1), where α(2),h are the powers of the terms of
the expansion of the Γ-function logΓ(−λ, S(2)). The zeta function associated
to the sum sequence S(0) is regular at s = 0, and

ζ(0, S(0)) =
!∑

h=0

c(1),−α(2),h,0c(2),α(2),h,0 = a(1),0,1a(2),0,1

+

p(2)∑

j=1

(−1)j+1ja(1),−j,0a(2),j,1 +
N∑

h=0

a(1),−α(2),h,0a(2),α(2),h,0

Γ(−α(2),h)Γ(α(2),h)
,

ζ′(0, S(0)) = −
p(2)∑

l=0

a(2),l,1

(
ζ′(−l, S(1)) + (γ + ψ(l + 1))ζ(−l, S(1))

)
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+
!∑

h=0,
α(2),h #∈N

a(2),α(2),h,0

(
Res0

s=−α(2),h

ζ(s, S(1)) + (γ +ψ(−α(2),h)) Res1
s=−α(2),h

ζ(s, S(1))

)

+ log
∞∏

n1=1

e
−
∑p(2)

j=0 a(2),j,1λj
(1),n1

log λ(1),n1−
∑$

h=0 a(2),α(2),h,0λ
α(2),h
(1),n1 Γ(λ(1),n1 , S(2)).

3. Zeta invariants of Riemannian manifolds

Let (M, gM ) be a compact connected Riemannian manifold of dimension m,
with metric gM . Let ∆M denote the (negative of the) metric Laplacian, and
Sp∆M = {λn}∞

n=0 (λ0 = 0) the spectrum of ∆M . It is well known that there
exists a full asymptotic expansion for the trace of the heat kernel of the La-
placian for small t,

TrL2e−t∆M = t−
m
2

∞∑

j=0

ejt
j
2 , (3.1)

where the coefficients depend only on local invariants constructed from the
metric tensor, and are in principle calculable from it (and all the coefficients
of odd index vanish if the manifold has no boundary).

Proposition 3.1. The sequence Sp+∆M of the positive eigenvalues of the met-
ric Laplacian on a compact connected Riemannian manifold of dimension m,
is a totally regular sequence of spectral type, with finite exponent e = m

2 , genus
g = [e], spectral sector Σε,c with shift 0 < c < λ1, asymptotic domain Dε,c,
and infinite order.

We have the following formulas for the coefficients in the expansion of the
logarithmic Γ-function: αh = m−h

2 , and

logΓ(−λ,Sp+∆M ) = (dimker∆M − em) log(−λ)

+
[m/2]∑

j=1

(−1)j+1

j!
em−2j(−λ)j log(−λ)

+
∞∑

h=0

am−h
2 ,0(−λ)

m−h
2 ,

where ((n) denotes the parity of n)

a m−h
2 ,0 =






Γ
(

h−m
2

)
eh, (h) "=(m) or (h)=(m) and h>m,

(−1)
m−h

2

eh
m−h

2 !
−Res0

s= m−h
2

ζ(s,Sp+∆M )

m−h
2

, (h) = (m) and h < m,

−ζ′(0, Sp+∆M ), h = m.

This allows to resume all the information on the zeta function as follows.
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Proposition 3.2. The zeta function ζ(s,Sp+∆M ) has a meromorphic continu-
ation to the whole complex plane up to simple poles at the values of s = m−h

2 ,
h = 0, 1, 2, . . ., that are not negative integers nor zero, with residues

Res1s= m−h
2

ζ(s,Sp+∆M ) = eh

Γ(m−h
2 ) =






a h−m
2 ,0

Γ(h−m
2 )Γ(m−h

2 ) , (h) '= (m),

(−1)h−m
2 +1 h−m

2 ah−m
2 ,1 (h) = (m),

Res0s= m−h
2

ζ(s,Sp+∆M ) = (−1)h−m
2 +1 h−m

2 ah−m
2 ,1 + eh

m−h
2 !

, (h) = (m);

the point s = −k = 0,−1,−2, . . . are regular points and

ζ(0,Sp+∆M ) = a0,1 = em − dimker∆M ,

ζ ′(0,Sp+∆M ) = −a0,0,

ζ(−k,Sp+∆M ) = (−1)k+1kak,0 = (−1)kk!em+2k.

4. The zeta determinant of a cone

Assume in this section that (M, gM ) is a compact connected Riemannian man-
ifold of dimension m without boundary. Let CνM be the metric cone over M ,
namely the space [0, 1] × M with metric

g = (dx)2 +
x2

ν2
gM ,

on (0, 1] × M , and where ν is a positive constant [5]. Particular instances of
this setting have been studied in [1,2,10] (m-ball), (cone over a circle) [19],
and (deformed spheres) [23]. The zeta function on the cone CνM , is defined
by the series

ζ(s,Sp+∆CνM ) =
∑

λ∈Sp+∆Cν M

λ−s,

when Re(s) > m+1
2 , and by analytic extension elsewhere, and we are interested

in the expansion of this function at s = 0. More precisely, the main purpose
in this context is to provide formulas that relate the zeta invariants of the
cone to the zeta invariants of the section, or, more generally, to some spec-
tral invariants of the section, namely invariants that can be constructed using
only the spectral information of the section. Therefore, our aim is to relate
the coefficients of the expansion at s = 0 of ζ(s,Sp+∆CνM ) to some spectral
invariants of M . For we decompose the induced metric Laplacian on CνM

∆CνM = −d2
x +

1
x2

(
ν2∆M − m

4

)
,

on the eigenspaces of ∆M , as in [4] or [19], and we obtain a family of singu-
lar Sturm operators that can be solved in term of Bessel functions (see [19]).
With the opportune boundary conditions, that generalize standard Dirichlet
conditions (see [4,5,19]), the positive spectrum of the metric Laplacian on the
cone is

S = Sp+∆CνM =
{

j2
µn,k

}∞

n=0,k=1
, µn =

√
ν2λn +

(m − 1)2

4
.
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where the jν,k are the positive zeros of the Bessel function Jν . This means that
the relevant zeta functions are:

ζ(s, S) = ζ(s,Sp+∆CνM ) =
∞∑

n=0,k=1

j−2s
µn,k,

ζ(s, U) = ζ

(
s,Sp

(
ν2∆M +

(m − 1)2

4

))
=

∞∑

n=0

(
ν2λn +

(m − 1)2

4

)−s

.

where the second zeta function is the zeta function on the section of the cone,
twisted by the parameter ν and shifted by the constant (m−1)2

4 . Note that
we must omit the zero mode when m = 1 in order to have a proper defi-
nition. The relevant sequences are U = Sp

(
ν2∆M + (m−1)2

4

)
, i.e. un = µ2

n,
and S = Sp+∆CνM . By Proposition 3.1, and using classical estimates for the
zeros of Bessel functions, U and S are sequences of spectral type of genus[

m
2

]
and
[

m+1
2

]
, respectively. Next, we claim that the sequence S is spectrally

decomposable over the sequence U . For it is easy to see that S has relative
genus (p0, p1, p2) =

([
m+1

2

]
,
[

m
2

]
, 0
)
, and that U is a totally regular sequence

of spectral type by Proposition 3.1 has genus
[

m
2

]
and infinite order. The

key point, in order to prove decomposability of S over U , is to show that the
Fredholm determinant logΓ(−λ, S̃n) associated to the sequence S̃n = {Sn/un},
has a uniform asymptotic expansion for large µn. This is of course the key point
in all development of spectral analysis on spaces with conical singularities, as
can be seen reading the works of Cheeger. Such an expansion is known from
asymptotic theory of special functions (see for example [16, 10.7]). We obtain
(see also [19])

logΓ(−λ, S̃n) = −
∞∑

k=1

log

(
1 +

µ2
n(−λ)
j2
µn,k

)

=
(
1 − log 2 + log(1 +

√
1 − λ) −

√
1 − λ

)
µn +

1
4

log(1 − λ)

+
∞∑

j=1



 (−1)j

j

( ∞∑

k=1

Uk(1/
√

1 − λ)
µk

n

)j

− B2j

2j(2j − 1)
µ1−2j

n



 ,

where the Bk are the Bernoulli numbers, and the Uk(z) are polynomials in z
of order 3k. The first polynomials are given in [16], where we can also find a
recursive formula. Writing

∞∑

h=1

Dh(1/
√

1 − λ)µ−h
n =

∞∑

j=1

(−1)j

j

( ∞∑

k=1

Uk(1/
√

1 − λ)
µk

n

)j

,

we have

logΓ(−λ, S̃n) =
∑m

h=−1 φh
2
(λ)u− h

2
n + O(u−m−1

n ),
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with

φ− 1
2
(λ) = 1 − log 2 + log(1 +

√
1 − λ) −

√
1 − λ,

φ0(λ) =
1
4

log(1 − λ),

φh
2
(λ) = Dh(1/

√
1 − λ) − Bh+1

h(h + 1)
, 1 ≤ h ≤ m.

Note that the polynomial Uh or Dh represent a set of invariants that com-
pletely characterize the geometry of the cone, at least for what is concerned
with the heat kernel and the zeta function. This emerges clearly from the
results of [3] and [7], as well as from the original results of Cheeger. In fact, all
the formulas related to the analytic properties of the zeta function are given
using information on the zeta function on the section and information con-
tained in the above polynomials. Also note that Dh(1) = − ζR(−h)

h . Applying
Theorem 2.2, and writing Dh(z) =

∑h
j=0 cj(h)zh+2j , we obtain:

Theorem 4.1. The zeta function on the cone ζ(s, S) has an analytic extension
near s = 0, with at most a simple pole at s = 0 and:

Res1
s=0

ζ(s, S) = −1
2

Res1
s=− 1

2

ζ(s, U), (4.1)

Res0
s=0

ζ(s, S) = −1
2

Res0
s=− 1

2

ζ(s, U) − 1
4

Res0
s=0

ζ(s, U)

+ (log 2 − 1) Res1
s=− 1

2

ζ(s, U) −
m∑

h=1

ζR(−h)
h

Res1
s= h

2

ζ(s, U), (4.2)

Res0
s=0

ζ′(s, S) = −
(

π2

12
+ (log 2 − 1)2 + 1

)
Res1
s=− 1

2

ζ(s, U)

+(log 2 − 1) Res0
s=− 1

2

ζ(s, U) − 1
2

Res0
s=− 1

2

ζ′(s, U)

−1
4
ζ′(0, U) −

m∑

h=1

ζR(−h)
h

Res0
s= h

2

ζ(s, U)

+
m∑

h=1

h∑

j=0

cj(h)

(
γ + ψ

(
h
2

+ j

))
Res1
s= h

2

ζ(s, U)

+
∞∑

n=0

( ∞∑

j=1

j
2(j + 1)(j + 2)

∞∑

k=1

1
(µn + k)j+1

−
m∑

h=1

Bh+1

h(h + 1)µh
n

)
.

(4.3)

Some remarks on this result are in order.

(1) An other interesting way of writing the last term in Eq. (4.3) is

− log
√

2π
∞∏

n=1

µ
( 1

2+µn)
n e

(γ+1)µn+
∑m

h=1
Bh+1

h(h+1)µh
n

∞∏

k=1

(
1 − µn

k

)
e− µn

k .
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(2) Equation (4.1) was given in [7, equation (12)], and Eq. (4.2) in incomplete
form in [7] (equations (12) and (19)), and in complete form in [3] (equa-
tion (4.5)). The main result, Eq. (4.3), is new in this form. However, we
note that a formula for the derivative of the zeta function at zero was also
given in [3] (equations (9.8) or equations (3.8) plus (9.1) and (9.2)). The
approach of [3] is based on purely heat kernel methods, and as a result the
final formula for the derivative at zero contains a term (coming from equa-
tion (9.2)) given by an integral of some complicate function, and should
be compared with the last term in Eq. (4.3).

(3) If m is even, ζ(s,Sp+∆CνM ) is regular at s = 0. In fact, we can apply for
example Proposition 1 of [17] to write

Res1
s=− 1

2

ζ(s, U) = − ν

2
√
π

∑

j,k≥0,j+2k=m+1

(−1)k

k!
ej

(
m − 1

2ν

)k

,

where the ej are the coefficients in the heat kernel expansion of ∆M (see
Eq. (3.1). If m is odd, all the indices j are odd, and hence the coefficients
vanish.

(4) If M = Sm, and ν = 1, then C1Sm = Bm+1, the disc of dimension m + 1,
and ζ(s,Sp+∆C1Sm) is regular at s = 0 (this was studied in [1,2,10]). For
it is known that the spectrum of the metric Laplacian on the sphere is{

n(n + m − 1)
}∞

n=1
, and hence Sp+

(
∆M + (m−1)2

4

)
=
(
n + m−1

2

)2. By
theoretical argument in zeta function theory (see for example [20]), the
zeta function associated to these series is regular at s = − 1

2 . This is an
expected result, since Bm+1 is a smooth manifold.

Example. The particular case when the manifold M is the circle S1
l of radius l

was studied in [19]. The relevant sequences are Sν = {jν|n|,k}, and U = {νn},
and

logΓ(λ, (νn)−2Sν) = − log Iνn(νn
√

−λ) − log
(2νnΓ(νn + 1)
(νn

√
−λ)νn

.

Applying Theorem 2.2, we obtain ([19, Theorem 1], see also [4, Section 11])

ζ(0, Sν) =
1
12

(
ν +

1
ν

)
,

ζ ′(0, Sν) =
1
6

(
ν +

1
ν

)
log l +

ν

6
− ν

6
log 2ν − 2νζ ′

R(−1) − 1
2

log ν

+
1
6

∞∑

n=1

(
ζH(2, νn + 1) − 1

νn + 1

)

− 1
6ν

(
log 2ν − 5

2
+ ψ

(
1 +

1
ν

))
.

+
∞∑

m=2

m

(m + 1)(m + 2)

∞∑

n,k=1

1
(νn + k)m+1

.
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In particular, when ν = 1 (compare with [1]):

ζ(0, S1) =
1
6
, ζ ′(0, S1) = 2ζ ′

R(−1) +
5
12

− 1
3

log 2 +
1
2

log 2π.

5. The zeta determinant of a product space

Let M(0) = M(1) × M(2) be the product of two compact connected Rie-
mannian manifolds of dimension m(i) without boundary. The metric Laplacian
∆M(1)×M(2) has real spectrum with positive part Sp+∆M(0) = {λn1,n2}′

ni∈N,
λn1,n2 = λ(1),n1 + λ(2),n2 . By Proposition 3.1, both S(i) are totally regular
sequences of spectral type. They have exponents s(i) = m(i)

2 , genus p(i) =[m(i)
2

]
, and infinite orders. This implies that the hypothesis of Definition 2.1

are satisfied, and consequently S(0) is spectrally decomposable over, say, S(1),
with power κ = 1. It also follows from the characterization of the length given
in Theorem 2.3 and the formulas for the coefficients αh = m−h

2 , just after
Proposition 3.1, that * = m(0) = m(1) +m(2). We are precisely in the situation
described at the end of Sect. 3, and therefore we obtain the analytic properties
of the zeta function ζ(s, S(0)) near s = 0 applying Theorem 2.3. This gives the
following result.

Theorem 5.1. The meromorphic extension of the zeta function ζ(s, S(0)) is
regular at s = 0 and (writing S(j) = Sp+∆M(j))

ζ(0, S(0)) =

m(1)+m(2)∑

h=0

e
(1),

m(2)−h

2

e
(2),

h−m(1)
2

− e(1),0dimker∆M(2) − e(2),0dimker∆M(1) ,

ζ′(0, S(0)) = ζ(0, S(2))ζ
′(0, S(1))+

m(1)+m(2)∑

h=0

Γ

(
h − m(2)

2

)
e(2),h

×



 Res0
s=

h−m(2)
2

ζ(s, S(1)) +

(
γ + ψ

(
h − m(2)

2

))
Res1

s=
h−m(2)

2

ζ(s, S(1))





+

[m(1)
2

]

∑

l=1

(l − 1)!e(2),m(2)+2l

(
Res0
s=l

ζ(s, S(1)) + (γ + ψ(l))Res1
s=l

ζ(s, S(1))

)

+

[m(2)
2

]

∑

l=1

(−1)le(2),m(2)−2l

l!

(
ζ′(−l, S(1)) + (γ + ψ(l+1))ζ(−l, S(1))

)

− log
∞∏

n1=1



e−
∑
[m(2)

2

]

l=1

(−1)le(2),m(2)−2l

l! λl
(1),n1

log λ(1),n1

×e
∑m(1)+m(2)

h=0 Γ

(
h−m(2)

2

)
e(2),hλ

m(2)−h

2
(1),n1

+
∑
[m(1)

2

]

l=1 (l−1)!e(2),m(2)+2l
λ−l
(1),n1
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×e
−
∑
[m(2)

2

]

l=1
(−1)l

l

(
Res0
s=l

ζ(s,S(2))− 1
l Res1
s=l

ζ(s,S(2))

)
λl
(1),n1

×e−ζ(0,S(2)) log λ(1),n1−ζ′(0,S(2))
∞∏

n2=1

(
1+

λ(1),n1

λ(2),n2

)
e

∑
[m(2)

2

]

j=1
(−1)j

j

λ
j
(1),n1

λ
j
(2),n2



.

In particular, we have the following formula for the determinant:

detζ∆M(1)×M(2) = detζ∆M(1)detζ∆M(2)e
−ζ′(0,Sp+∆M(1)+Sp+∆M(2) ).

Also in this case a result for the zeta determinant using pure heat kernel meth-
ods is possible. For in the case of a product manifold one can write the regular
term in the Mellin transform of the heat function by adding and subtracting
the singular part of the integrand (see for example [15, Section 3]), since this
singular part is known (it corresponds to the product of the expansions of the
singular parts of the heat kernels of the factors). This approach provides a
formula for the regularized determinant involving, in the regular part, a finite
integral of some complicate function, and was used in a somehow formal way
in [13]. Since some derivative of the logarithmic Gamma function Γ(−λ, S) is
the Mellin Laplace transform of the heat function (see the proof of Proposi-
tion 2.7 of [20] for details), the result for ζ ′(0, S(0)) given in Theorem 2.3 is an
evaluation of the finite integrals appearing in the formulas given in Section 3
of [13].

Example. Consider the product S1
1/y × M , where S1

1/y is the circle of radius
1
y and M is a compact connected Riemannian manifold without boundary of
dimension m, with Sp+∆M = {λk}∞

k=1. We obtain

detζ∆S1
1
2

×M

=
4π2

y2
e

2π
y

(
Res0
s=− 1

2

ζ(s,Sp+∆M )+2(1−log 2)Res1
s=− 1

2

ζ(s,Sp+∆M )

)
∞∏

k=1

(
1 − e− 2π

y

√
λk

)2
.

This equation is particularly important in theoretical physics, since it gives the
quantistic partition function at finite temperature T = y

2π , for a scalar field in
the Euclidean product space time S1

1/2πT × M (see also [17]).

References

[1] Bordag, M., Geyer, B., Kirsten, K., Elizalde, E.: Zeta function determinant of
the Laplace operator on the D-dimensional ball. Commun. Math. Phys. 179, 215–
234 (1996)

[2] Bordag, M., Elizalde, E., Kirsten, K.: Heat kernel coefficients of the Laplace
operator on the D-dimensional ball. J. Math. Phys. 37, 895–916 (1996)

[3] Bordag, M., Kirsten, K., Dowker, S.: Heat kernels and functional determinants
on a generalized cone. Commun. Math. Phys. 182, 371–394 (1996)
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