
Journal of Geometry and Physics 54 (2005) 355–371

Zeta function and regularized determinant
on a disc and on a cone
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Abstract

We give formulas for the analytic extension of the zeta function of the induced LaplacianL on a
disc and on a cone. This allows the explicit computation of the value of the zeta function and of its
derivative at the origin, and hence we get a formula for the regularized determinant ofL.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The regularized determinant of an elliptic differential operator was originally introduced
in geometric analysis to deal with the heat equation and the index theorem in[2] and with
the analytic torsion in[27], and soon became object of strong interest and intensive study
in differential geometry[12,22] and conformal geometry, where in particular it is studied
as a function of the metric for suitable classes of operators (see e.g.[4,26], and also[5]
where a formula is developed for the quotient of the determinant of two conformally related
conformal operators), but also in mathematical physics, where it provides a regularization
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of the functional integral[19,36]. Despite all these efforts, few explicit calculations are
available (see[30] for a review). In particular, a complete answer has been provided for
the one-dimensional case, namely for regular operators on the circle in[9] and for Sturm–
Liouville operators on the line segment in[10,20]. The main feature of the analysis of Sturm–
Liouville operators is that it allows to deal not just with the regular case, but also with the
singular one. This is obtained by using methods of functional analysis, originally developed
in the study of the asymptotic expansion of the heat kernel and the resolvent of an elliptic
operator[23,29]and subsequently generalized to some classes of singular ones[11,7]. The
principal example of such singular operators arises from a very natural geometrical problem:
namely, the Laplace operator for a manifold with a conical singularity. The analysis and the
geometry of spaces with singularities of conical type were developed in the classical works
of Cheeger (see e.g.[13–15]), using methods of differential geometry, while formulas for
the first terms in the asymptotic expansion of the associated heat operator were given by
Brüning and Seeley[7,8] for a larger class of operators. The results mentioned suggest
the possibility of tackling with success the problem of the computation of the determinant
for a suitable operator on a cone and in particular on a disc. Consequently, some works
appeared in the literature, where the problem of getting a description of the regularized
determinant for a coneC(N) over some compact manifoldN was faced[3,24,16]. The
approach is to deal not directly with the zeta function on the manifoldC(N), but with
the correspondent zeta function on the productC(N) × S1, that is to say the function that
describes the functional determinant for the associated quantum field theory. However, the
explicit expression provided for the analytic continuation of the zeta function onC(N) is
in general not effective. In this work we give a complete answer to the basic case of the flat
cone inR3, that is to say whenN = S1

l , the circle of fixed radiusl; this answer is given by
providing an effective analytic expression for the zeta function that allows to compute the
main zeta invariants. Our result is effective in the sense that we obtain a function of the angle
of the cone, and hence a number for the flat disc (both depending onl). More precisely, the
approach described in this work follows the line introduced in[30], where the computation of
the regularized determinant is pursued by the comprehension of the associated zeta function
(recall that for a suitable operatorL: detL = exp(−ζ′(0, L))). Beside the importance of the
particular application, our main motivation is to establish a general effective method to deal
with problems where a double sum appears in the definition of the zeta function. In fact,
our approach is likely to be generalized to various more general situations, including the
case of a general cone. There are works in progress in these directions.

To state our main result, letLν be the Laplacian on a cone of angle arcsecν and lengthl
in the Euclidean space, with the metric induced from the immersion and Dirichlet boundary
condition. Then we have the following theorem.

Theorem 1. The zeta functionζ(s, Lν) associated to the LaplacianLν can be analytically
extended ats = 0with

ζ(0, Lν) = 1

12

(
ν + 1

ν

)
,

ζ′(0, Lν) = 1

6

(
ν + 1

ν

)
log l+ ν

6
− ν

6
log 2ν − 2νζ′R(−1)
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+ 1

6

∞∑
n=1

[
ζH (2, νn+ 1) − 1

νn+ 1

]
+

∞∑
m=2

m

(m+ 1)(m+ 2)

∞∑
n,k=1

1

(νn+ k)m+1

− 1

2
logν − 1

6ν

[
log 2ν − 5

2
+ ψ

(
1 + 1

ν

)]
.

An alternative formula for the derivative using integrals of special functions instead of
series is given at the end ofSection 5. The case of the disc (ν = 1) follows as a particular
case, namely the following corollary.

Corollary 1. The zeta function associated to the Laplacian on a disc of radius l extends
analytically ats = 0with

ζ(0, L1) = 1
6, ζ′(0, L1) = 1

3(log l− log 2)+ 1
2 log 2π + 5

12 + 2ζ′R(−1).

The remaining of these notes is dedicated to the proof ofTheorem 1, up toSection 3
where the one-dimensional case is outlined. The work is organized as follows. Our approach
starts from the observation that the problem on the cone can be thought as a generalization
of the one-dimensional problem of the Laplacian with a singular potential term on the line
segment. Under this point of view, the method consists in using an explicit expression for
the eigenvalues of the Laplacian to write the formal series representation for the associated
zeta function and hence in getting a suitable alternative representation for the same zeta
function, that immediately gives an analytic extension at the origin. For this purpose, the
analysis of the one-dimensional problem must be performed using the method described
in Section 3. There are two clue points: first, we use the spectral decomposition of the
operator to construct a regularized ‘spectral’ decomposition of the zeta function (Eq.(1) in
Section 4); second, the regularization introduced allows us to use the method described in
Section 3to get the desired alternative representation of the zeta function. Eventually, some
extra work is needed, consisting in producing the right analytic extension of some other
functions appearing in the new representation of the zeta function, to get the final result for
the determinant. All this is inSection 4. We delay comments and remarks to the last section.

2. Description of the problem

Let Cν be the cone of angle arcsecν > 0 and lengthl. Choosing the coordinates
(θ, x) ∈ S1 × (0, l], the induced metric isg = (dx)2 + ν−2x2(dθ)2, and (after a Liouville
transformation) the Laplacian becomes

Lν = −∂2
x + 1

x2
Aν(x),

where the operator

Aν(x) = −ν2∂2
θ − 1

4,
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onS1 has the complete system{λν,n = ν2n2 − 1
4;φν,n(θ) = einθ}, θ ∈ [0,2π], n ∈ Z, each

λν,n having multiplicity 2, up toλν,0 having multiplicity 1. Then, we have a spectral
decomposition ofLν as

Lν =
∑
n∈Z

Lν,nΠλν,n ,

where

Lν,n = −d2
x + 1

x2
λν,n = −d2

x + 1

x2

(
ν2n2 − 1

4

)
.

With Dirichlet boundary condition atx = l, each Lν,n has the complete system

{λνn,k = j2
ν|n|,k
l2

;ψνn,k(x) =
√

2xJν|n|(jν|n|,kx/ l)
lJν|n|+1(jν|n|,k) }, k ∈ N− {0}, where jν|n|,k are the (posi-

tive) zeros of the Bessel functionJν|n|(x) [35, 15.40], and henceLν has the complete
system

{
λνn,k =

j2
ν|n|,k
l2

, φν,n(θ)ψν|n|,k(x)

}
, n = 0,±1,±2, . . . , k = 1,2, . . .

3. The zeta function on the line segment

In this section we present a method to deal with the zeta function associated to the one-
dimensional problem that we will generalize in the next section to treat the two-dimensional
problem. The results of this section are not new[20], and also the method uses classical
tools [34,33,1], but our approach is different and expressly conceived for the purposes of
the general case (see also[31]). For the operator1

Sν = − d2

dx2
+ 4ν2 − 1

4x2
,

on the line interval (0, l], with the discrete resolution

{
λν,n = j2

ν,n

l2
, φν,n(x) =

√
2xJν(λν,nx)

lJν+1(jν,n)

}
,

wherejν,n are the positive zeros of the Bessel functionJν(z), we introduce the zeta function

ζ(s, Sν) =
∞∑
n=1

λ−s
ν,n = l2s

∞∑
n=1

j−2s
ν,n ,

1 With Dirichlet boundary condition atx = l.
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for Re(s) > 1
2, also called Bessel zeta function[32]. Using the Mellin transform, we get the

analytic representation

ζ(s, Sν) = 1

Γ (s)

∫ ∞

0
ts−1f (t, ν) dt,

where the trace of the heat operator is

f (t, ν) = Tr e−tSν =
∞∑
n=1

e−λν,nt,

and from this the complex representation

f (t, ν) = 1

2πi

∫
Λc

e−λtR(λ, ν) dλ,

where the contour2 is Λc = {λ ∈ C|| arg(λ− c)| = π/4}, oriented counter clockwise, for
some 0< c < jν,1, and the trace of the resolvent is

R(λ, ν) =
∞∑
n=1

1

λ− λν,n
.

We now observe that it is easy to express such function in terms of special functions. In fact,
taking logarithmic derivative of the infinite product representation of the Bessel function
Iν(z) [35, 15.41], we get:

R(λ, ν) = ν

2z2
− 1

2z

d

dz
logIν(lz).

Here,z = √−λ, we set arg(−λ) = 0 on the line (−∞,0] and we fix the sectors+ = {z ∈
C|| argz| < π/2} for z.

At this point it is worth observing that all information about poles and residua ofζ(s, Sν)
can be obtained using the representation introduced, asymptotic expansions for Bessel
functions and classical arguments[17,21,28]. This is an easy way for producing the results
relative to the so called ‘constant case’ when studying regular singular operators[11,7,8].
In order to obtain the derivative ats = 0, we need more, and precisely we introduce the
following lemma.

2 See for example[37, 12.22]for this type of Hankel’s integrals.
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Lemma 1. Suppose the zeta functionz(s, x) = ∑∞
n=1 an(x)−s has the following represen-

tation (everything smooth in x):

z(s, x) = 1

Γ (s)

∫ ∞

0
ts−1 1

2πi

∫
Λc

e−λtR(λ, x) dλdt,

where the contour is as above, and there is a primitive function−T (λ, x) for the function
R(λ, x) = − d

dλT (λ, x), satisfying the following properties:

(a) T is analytic nearλ = 0,
(b) for fixed x and largeλ in some domain of the complex plane, the functionT (λ, x) has an

asymptotic expansion in terms of powers and logarithms as the one considered in[7]
(see also[8, Section 7]), namely

∑
(−λ)α logk(−λ), whereα runs through a discrete

set of real numbers withα → −∞, andk = 0,1. In particular, we will be interested in
the constant and logarithmic terms, so we write

T (λ, x) = · · · + A(x) log(−λ) + B(x) + · · ·

Then, z(s, x) can be analytically extended ats = 0 and

z(0, x) = −A(x), z′(0, x) = −B(x) + T (0, x).

Proof. Integrating by part, first inλ and hence int, the given complex representation for
z(s, x), we get

z(s, x) = s

Γ (s)

∫ ∞

0
ts−1 1

2πi

∫
Λc

e−λt

−λ T (λ, x) dλdt.

Next, since by definition the zeta function is well defined for larges

z(s, x) = s2

Γ (s+ 1)

∫ 1

0
ts−1 1

2πi

∫
Λc

e−λt

−λ T (λ, x) dλdt + s2f (s),

wheref is regular nears = 0. Because of the pole atλ = 0, we have to split the complex
integral as follows to use the expansion for largeλ (small t):

∫
Λc

=
∫
Λ−c

−
∫
Cc

=
∫
Λ−c

+T (0, x),

whereCc is a circle around the origin of radiusc. Moreover, by assumption (b)∫
Λ−c

e−λt

−λ T (λ, x) dλ =
∫
Λ−c

e−λ

−λ T
(
λ

t
, x

)
dλ

= · · · + γA(x) + A(x) log t − B(x) + · · ·
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where we have explicited only the relevant part and the Euler constantγ = −ψ(1)
[18, 8.366.1]appears applying the following formula

1

2πi

∫
Λ−c

e−λ

(−λ)a
log(−λ) dλ = − d

da

1

2πi

∫
Λ−c

e−λ

(−λ)a
dλ = d

da

1

Γ (a)
= −ψ(a)

Γ (a)
,

where we have used[18, 8.315.1]. This means that we can write

z(s, x) = s

Γ (s+ 1)

[
γA(x) − B(x) − 1

s
A(x) + T (0, x)

]
+ s2g(s),

where againg is regular nears = 0, and from that, the thesis follows at once.

Applying this argument to the functionζ(s, Sν), we have

T (λ, ν) = ν log lz− log Iν(lz) − log 2νΓ (ν + 1),

and thisT (λ, ν) is precisely the function that we will use in the next section to deal with
the general case. For completeness, we conclude the computations for the one-dimensional
case (compare with[31]). We have

A(ν) = 1
2(ν + 1

2),

B(ν) = 1
2 log 2π + (ν + 1

2) log l− log 2νΓ (ν + 1), T (0, ν) = 0.

and this gives:

Res0(ζ(s, Sν), s = 0) = −1
2(ν + 1

2),

Res0(ζ′(s, Sν), s = 0) = log
2ν−1/2Γ (ν + 1)√

πlν+1/2
.

4. The zeta function on the cone

We introduce the zeta function associated to the operatorLν by the formal series

ζ(s, Lν) =
∞∑
k=1

+∞∑
n=−∞

λ−s
νn,k = l2s

∞∑
k=1

j−2s
0,k + 2l2s

∞∑
n,k=1

j−2s
νn,k,

that, by classical estimate on the zeros of a Bessel functions[35, 15.40] and standard
argument on double series[37, 2.5], is well defined for Re(s) > 1. The first term can be
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treated by the means provided in the previous section, so the problems lay in understanding
the function

z(s, ν) =
∞∑

n,k=1

j−2s
νn,k.

The remaining of this section is dedicated to the proof ofTheorem 1and its corollary
and is split in four parts: in the first we outline a quite general method to deal with the
zeta invariants of a double series, in the second we apply the method to the case under
study, in the third we complete calculations and in the fourth we give the proof of the
corollary.

4.1. Spectral decomposition

The main feature of our approach is the following ‘spectral decomposition’ of the function
z(s, ν). For Re(s) > 1, we can reorder the terms in the double series and write

z(s, ν) =
∞∑
n=1

(νn)−2s
∞∑
k=1

(
jνn,k

νn

)−2s

. (1)

This decomposition will allow us to deal effectively with the double sum by using the tools
introduced inSection 3. In fact, thanks to the uniform convergence of integrals and series,
we get the complex integral representation

z(s, ν) = s2

Γ (s+ 1)

∫ ∞

0
ts−1 1

2πi

∫
Λc

e−λt

−λ T (s, λ, ν) dλdt,

where

T (s, λ, ν) =
∞∑
n=1

(νn)−2stn(λ, ν),

andtn(λ, ν) is defined using the correspondent function on the line segment, namely

tn(λ, ν) = −
∞∑
k=1

log

[
1 + (νn)2(−λ)

j2
νn,k

]

= − logIνn(νnz) − νn log 2+ νn logz− logΓ (νn+ 1) + νn log(νn).

To proceed further, we need a generalization ofLemma 1. In fact, the functionT (s, λ, ν) is
not necessarily analytic insat s = 0. This depends on the behavior oftn(λ, ν) for largen:
more precisely, a singular behavior can appear only from a term1

n
in the expansion oftn.

This suggests to split it in two terms as follows. From the definition (see alsoSection 4.2),
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tn(λ, ν) has a uniform expansion in some domain of the complexλ plane for largeνn (recall
ν is a fixed parameter). Setpn(λ, ν) = tn(λ, ν) − 1

νn
f (λ, ν), wheref (λ, ν) is the coefficient

of the term in 1
νn

in the above expansion oftn(λ, ν) for largeνn. Then

tn(λ, ν) = pn(λ, ν) + 1

νn
f (λ, ν),

and

z(s, ν) = s2

Γ (s+ 1)

∫ ∞

0
ts−1 1

2πi

∫
Λc

e−λt

−λ P(s, λ, ν) dλdt

+ ν−2s−1 s2

Γ (s+ 1)
ζR(2s+ 1)

∫ ∞

0
ts−1 1

2πi

∫
Λc

e−λt

−λ f (λ, ν) dλdt,

where

P(s, λ, ν) =
∞∑
n=1

(νn)−2spn(λ, ν),

is regular ats = 0. Thus, the first term inz(s, ν) can be treated precisely by the same means
as inLemma 1; this gives

s2

Γ (s+ 1)

∫ 1

0
ts−1 1

2πi

∫
Λc

e−λt

−λ P(s, λ, ν) dλdt

= s2

Γ (s+ 1)

∫ 1

0
ts−1[γA(s, ν) + A(s, ν) log t − B(s, ν) + P(s,0, ν)] dt

= s

Γ (s+ 1)

[
γA(s, ν) − B(s, ν) − 1

s
A(s, ν) + P(s,0, ν)

]
,

plus a regular term, vanishing with its derivative ats = 0; here

A(s, ν) =
∞∑
n=1

(νn)−2san(ν), B(s, ν) =
∞∑
n=1

(νn)−2sbn(ν),

andan andbn are the coefficients appearing in the asymptotic expansion ofpn(λ, ν) for
fixedn and largeλ in the appropriate domain3

pn(λ, ν) = · · · + an(ν) log(−λ) + bn(ν) + · · ·

3 The existence of such an expansion follows from the definition.
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We have obtained the following expression for the functionz(s, ν)

z(s, ν) = s

Γ (s+ 1)

[
γA(s, ν) − B(s, ν) − 1

s
A(s, ν) + P(s,0, ν)

]

+ ν−2s−1 s2

Γ (s+ 1)
ζR(2s+ 1)

∫ ∞

0
ts−1 1

2πi

∫
Λc

e−λt

−λ f (λ, ν) dλdt

+ s2

Γ (s+ 1)
h(s), (2)

whereh is analytic ats = 0. The method outlined is quite general, but to proceed further
we need the explicit expressions off andP; this is in the next subsection.

4.2. The values ofz(0, ν) andz′(0, ν)

To get explicit expressions forP(s, λ, ν) andf (λ, ν) we use the representation[25,
10.7]of the Bessel functionIν(νx):

Iν(νz) = 1

1 + η2,1(ν,∞)

eνξ(z)√
2πν(1 + z2)1/4

[
1 + 1

ν
U1(z) + η2,1(ν, z)

]
,

where

ξ(z) =
√

1 + z2 + log
z

1 + √
1 + z2

, U1(z) = 1

8
√

1 + z2
− 5

24(1+ z2)3/2
,

andη2,1(ν, z) is the error term, bounded for largeν uniformly in z in the opportune domain.
Inserting this in the expression oftn(λ, ν) we get

f (λ, ν) = −U1(
√−λ),

pn(λ, ν) = − logIνn(νnz) + νn log(νnz) − νn log 2− logΓ (νn+ 1) + 1

νn
U1(z).

We start by computing

∫ ∞

0
ts−1 1

2πi

∫
Λc

e−λt

−λ f (λ, ν) dλdt = −
∫ ∞

0
ts−1 1

2πi

∫
Λc

e−λt

−λ U1(
√−λ) dλdt.

For c > 1, consider

1

2πi

∫
Λc

e−λt

−λ
1

(1 − λ)a
dλ;
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where c < 1; this can be computed in the new variablez = λ− 1 (see [37, 12.22,
18,8.353.3])

− 1

2πi
e−t

∫
Λc−1

e−zt

z+ 1
(−z)−a dz = 1

π
sin(πa)Γ (1 − a)Γ (a, t).

Recalling the relation between the incomplete Gamma function[18, 8.35]and the prob-
ability integral[18, 8.25], this gives

∫ ∞

0
ts−1 1

2πi

∫
Λc

e−λt

−λ f (λ, ν) dλdt = Γ (s+ 1/2)

12
√
π

(
1

s
+ 5

)
.

Next, we need the asymptotic expansion ofpn(λ, ν) for largeλ and fixedn; By classical
asymptotics of Bessel and Gamma functions[18, 8.451.5, 8.344], we get

pn(λ, ν) = −νn
√
λ+ an(ν) log(−λ) + bn(ν) + O((−λ)−1/2),

where the interesting terms are:

an(ν) = 1
2(νn+ 1

2),

bn(ν) = 1
2 log 2π + (νn+ 1

2) log νn− νn log 2− log Γ (νn+ 1).

This gives

A(s, ν) =
∞∑
n=1

(νn)−2san(ν) = 1
2ν

1−2sζR(2s− 1) + 1
4ν

−2sζR(2s),

B(s, ν) =
∞∑
n=1

(νn)−2sbn(ν) = −
∞∑
n=1

(νn)−2s

× logΓ (νn+ 1) + 1
2ν

−2s log(2πν)ζR(2s) + ν1−2s log ν
2ζR(2s− 1)

− 1
2ν

−2sζ′R(2s) − ν1−2sζ′R(2s− 1).

The last step isP(s,0, ν). Recalling the behavior ofIν(z) for smallz[18, 8.445], we evaluate

pn(0, ν) = − 1

12

1

νn
,

and hence

P(s,0, ν) =
∞∑
n=1

(νn)−2spn(0, ν) = − 1
12ν

−2s−1ζR(2s+ 1).
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Now the explicit expressions for all the quantities involved in the definition of the function
z(s, ν) are available. From Eq.(2), we get

z(s, ν) = s

Γ (s+ 1)

[
γA(s, ν) − B(s, ν) − 1

s
A(s, ν) + P(s,0, ν)

]

+ ν−2s−1 s2

Γ (s+ 1)
ζR(2s+ 1)

Γ (s+ 1/2)√
π

(
1

12s
+ 5

12

)
+ s2

Γ (s+ 1)
h(s).

From this, by using the known behavior of the Riemann’s zeta functionζR(z) near its singular
point z = 1 [18, 9.533.2], that gives nears = 0

ζR(2s+ 1) = 1

2s
+ γ + o(s),

and the fact that all the other quantities are regular ats = 0, we can compute

z(0, ν) = −A(0, ν) + 1

24ν
= −1

2
νζR(−1) − 1

4
ζR(0) + 1

24ν
= 1

24
ν + 1

8
+ 1

24ν
.

This proves the first part ofTheorem 1. Eventually, we can derive with respect tos, and
evaluate the derivative ats = 0. We get

z′(0, ν) = P(0,0, ν) − A′(0, ν) − B(0, ν) + 1

12ν

(
γ − log 2ν + 5

2

)
= η(0, ν) + 1

4 log 2π − ν
12 log 2+ 1

12ν

(
γ − log 2ν + 5

2

)
,

where

η(s, ν) =
∞∑
n=1

(νn)−2s logΓ (νn+ 1) − 1
12ν

−2s−1ζR(2s+ 1),

and to complete the proof ofTheorem 1we need the explicit computation ofη(0, ν); this is
done in the next subsection.

4.3. Computation ofη(0, ν)

By definitionη(s, ν) is regular ats = 0. On the other side, it is clearly not allowed to
get its value ats = 0 by simple substitution of the values = 0 in the defining expression,
because the two terms are not regular independently at this value ofs. To get rid of the
singularity, we use the series representation for the logarithm of the Gamma function[18,
8.343.2]
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η(s, ν) =
∞∑
n=1

(νn)−2s
[
logΓ (νn) − 1

12

1

νn

]
+ ν−2s logνζR(2s) − ν−2sζ′R(2s)

=
∞∑
n=1

(νn)−2s

[
νn logνn− νn− 1

2 logνn+ 1
2 log 2π

+ 1

12

∞∑
k=1

1

(νn+ k)2
+ 1

2

∞∑
m=2

m

(m+ 1)(m+ 2)

∞∑
k=1

1

(νn+ k)m+1
− 1

12
1
νn

]

+ ν−2s[log νζR(2s) − ζ′R(2s)]

= ν1−2s logνζR(2s− 1) − ν1−2sζ′R(2s− 1) − ν1−2sζR(2s− 1)

+ 1
2ν

−2s logνζR(2s) − 1
2ν

−2sζ′R(2s) + 1
2 log 2πν−2sζR(2s)

+M(s, ν) + δ(s, ν),

where

M(s, ν) = 1

12

∞∑
n=1

(νn)−2s

[ ∞∑
k=1

1

(νn+ k)2
− 1

νn

]
,

and

δ(s, ν) = 1

2

∞∑
m=2

m

(m+ 1)(m+ 2)

∞∑
n,k=1

(νn)−2s

(νn+ k)m+1
.

Now, all the terms are regular ats = 0 and we can computeη(0, ν). In particular, for what
concernsM, it is convenient to decompose it as follows4

M(s, ν) = 1

12

∞∑
n=1

(νn)−2s
[
ζH (2, νn+ 1) − 1

νn+ 1

]
− 1

12

∞∑
n=1

(νn)−2s
[

1

νn(νn+ 1)

]

this gives

M(0, ν) = 1

12

∞∑
n=1

[
ζH (2, νn+ 1) − 1

νn+ 1

]
− 1

12ν

[
γ + ψ

(
1 + 1

ν

)]
.

4 WhereζH is the Hurwitz zeta function.
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We can provide two alternative integral and series representations forM(0, ν) by using the
Plana theorem[35, p. 146]:

M(0, ν) = 1

12

{
1

2
ζH (2, ν + 1) + 1

ν
[log ν − ψ(ν + 1)] +N(ν) − γ

ν

}
,

where

N(ν) = i

∫ ∞

0

ζH (2, ν(1 + iy) + 1) − ζH (2, ν(1 − iy) + 1)

e2πy − 1
dy,

or

N(ν) =
∞∑
k=0

∞∑
n=1

|B2k+2| ν2k+1

(n+ ν)2k+3
,

and theBi are the Bernoulli numbers[18, 9.71]. Eventually, the expression forη(0, ν) is

η(0, ν) = − 1
12ν(logν − 1) − νζ′R(−1) − 1

4 logν +M(0, ν) + δ(0, ν),

whereM(0, ν) is given above and

δ(0, ν) = 1

2

∞∑
m=2

m

(m+ 1)(m+ 2)

∞∑
n,k=1

1

(νn+ k)m+1
.

This completes the proof ofTheorem 1.

4.4. Proof of Corollary 1

The direct computation of the limit forν = 1 of the expression given inTheorem 1is
not easy,5 so we proceed in the following alternative way. First, introduce the function (see
alsoLemma 2)

χ(s) =
∞∑

n,k=1

(n+ k)−s,

for Re(s) > 2. The double sum corresponds to the ordinary one

χ(s) =
∞∑
n=2

(n− 1)n−s,

5 Although, notice thatM(0,1) can be simplified giving1
12

(
1 − π2

6

)
.
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simply by recollecting the terms. Hence:

χ(s) = ζR(s− 1) − ζR(s),

andχ′(0) = ζ′R(−1) + 1
2 log 2π. On the other side, if we analyzeχ(s) by the same means

that we have used to analyzez(s, ν), we obtain

χ′(0) = η(0,1) + 1
4 log 2π + 1

12γ,

and therefore

η(0,1) = 1
4 log 2π + ζ′R(−1) − 1

12γ.

5. Comments and remarks

The value at the origin of the zeta function associated to the Laplace operator on a compact
Riemannian manifoldMof dimensionmwith boundary is well known[6]. Namely, provided
the heat kernel operator has the expansion

∞∑
n=0

ant
(n−m)/2,

for small t, thenζ(0,∆M) = am − dimker∆M . The first coefficients can be computed in
terms of local geometric quantities[6,17 4.5], in particular on the discD = C1 of radiusl,
Lxx = 1

x
, and

a2 = 1

24π

∫
∂D

2Lxx|x=l dθ = 1
6,

in agreement withCorollary 1. The situation on the cone is more delicate, since a singular
term appears. This problem has been studied in[8], by analyzing the asymptotic expansion
of the resolvent, and gives for the Laplacian on the coneCν

a2 = 1
12

(
ν − 1

ν

)
+ a

reg
2 ,

where the regular coefficient can be computed as above, and isa
reg
2 = 1

6ν .
We conclude by providing an alternative representation forζ′(0, Lν). This can be obtained

studying the two-dimensional Hurwitz zeta function (Re(α) > 0)

χ(s, α) =
∞∑
n=1

∞∑
k=1

(k + αn)−s,
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that generalizes the functionχ introduced inSection 4.4. This function can be studied using
the Plana theorem as in[30]. As a result we get the following lemma.

Lemma 2. The functionχ(s, α) has a regular analytic continuation to the whole complex
plane up to simple poles ats = 1 and2 with residua−1

2(1 + 1
α
) and 1

α
respectively. The

point s = 0 is regular and

χ(0, α) = 1

4
+ 1

12α
+ α

12
,

χ′(0, α) = 1

2
logΓ (α+ 1) + 1

4
log 2π − 1 − 1

α
ζH (−1, α+ 1) − 1

α
ζ′H (−1, α+ 1)

+ i

∫ ∞

0
log

Γ (α(1 + it))

Γ (α(1 − it))

dt

e2πt − 1
.

Alternatively, we can apply the method used inSection 4to computeχ′(0, α):

χ′(0, α) = η(0, α) + 1

4
log 2π + 1

12α
(γ − logα).

By comparison of the results we get the integral representation for theη(0, α)

η(0, α) = 1

2
(α− 1) + i

∫ ∞

0
log

Γ (α(1 + iy))

Γ (α(1 − iy))

dy

e2πy − 1
+ 1

2
logΓ (α+ 1)

+ 1

12α
(1 − γ + logα) − 1

α
ζ′H (−1, α+ 1),

and using this expression withα = ν, we obtain the following alternative representation for
the derivative ofζ(s, Lν) at s = 0:

ζ′(0, Lν) = 1
6

(
ν + 1

ν

)
log l+ ν − 1 − 1

6
ν log 2+ (7 − 2 log 2)

1

12ν

+ 2i
∫ ∞

0
log

Γ (ν(1 + iy))

Γ (ν(1 − iy))

dy

e2πy − 1
+ logΓ (ν + 1) − 2

ν
ζ′H (−1, ν + 1).
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