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We study the self-adjoint extensions of a class of nonmaximal multiplication op-
erators with boundary conditions. We show that these extensions correspond to
singular rank 1 perturbations �in the sense of Albeverio and Kurasov �Singular
Perturbations of Differential Operaters �Cambridge University Press, Cambridge,
2000��� of the Laplace operator, namely, the formal Laplacian with a singular delta
potential, on the half space. This construction is the appropriate setting to describe
the Casimir effect related to a massless scalar field in the flat space-time with an
infinite conducting plate and in the presence of a pointlike “impurity.” We use the
relative zeta determinant �as defined in the works of Müller �“Relative zeta func-
tions, relative determinants and scattering theory,” Commun. Math. Phys. 192, 309
�1998�� and Spreafico and Zerbini �“Finite temperature quantum field theory on
noncompact domains and application to delta interactions,” Rep. Math. Phys. 63,
163 �2009��� in order to regularize the partition function of this model. We study
the analytic extension of the associated relative zeta function, and we present ex-
plicit results for the partition function and for the Casimir force. © 2010 American
Institute of Physics. �doi:10.1063/1.3397551�

I. INTRODUCTION

Recently, there has been a growing interest in the Casimir effect, namely, the manifestation of
vacuum energy at experimental as well as at theoretical level �see, for example, Refs. 22 and 23
and references therein�. Because of the increasing interest in the Casimir effect and in spite of
several results which have already been obtained, “a solvable model” that permits one to obtain
systematically explicit results is of the greatest interest. In this paper, we present such a model.
Moreover, we put at work mathematical techniques, which are of interest by themselves.

We shall study the Casimir effect related to a massless scalar field in a flat space-time modi-
fied by the presence of a pointlike �uncharged� “impurity,” modeled by deltalike potentials, in
manifolds with and without boundary.

The boundaryless delta potential case has been already treated �see, for example, Refs. 1, 7,
21, 26, 28, and 29�. This case is also referred to as semitransparent boundary conditions �see Refs.
8, 16, 18, and 20 and references therein�. Here, we shall deal with the new case of a delta potential
on the half space.

On general grounds, from one side, we present a rigorous mathematical description of the
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Schrödinger-like operators with deltalike potentials, and from the other side, we will make use of
a technique to regularize the functional determinant of self-adjoint elliptic operators defined on
noncompact manifolds associated with continuous spectrum.

In order to start formulating the problem, we use the approach of finite temperature quantum
field theory based on the imaginary time formalism �see, for example, Refs. 15, 13, 9, 14, 10, and
25 and references therein�. We consider a massless scalar free field in four dimensional Minkowski
space-time interacting with an external field represented by a potential V. Thus, one is dealing with
the manifold X�T�=S�/2�

1 �M, where Sr
1 is the circle of radius r, �=1 /T, the period of the

imaginary compactified time, is the inverse of the temperature, and M is a three dimensional
manifold. The relevant operator reads as H=−�X�T�+V=−�u

2−�M +V=−�u
2+LM, where �Y is the

Laplace–Beltrami operator on a manifold Y defined by some Riemannian structure, and V :M
→R is a suitable potential.

The canonical partition function at temperature T of this model may be formally written as

log Z = −
�

2 �
��Sp LM

�1/2 − �
��Sp LM

�1 − e−���� . �1�

Here, Sp LM is the spectrum �a self-realization of� LM. We are assuming M to be a compact
manifold and V a smooth potential. The first term on the right-hand side of Eq. �1� corresponds to
the vacuum energy contribution �Casimir energy� given by

Ec = − lim
�→�

�� log Z =
1

2 �
��Sp LM

�1/2, �2�

while the second one, corresponding to the statistical sum contribution, is vanishing in the zero
temperature limit. In order to give a meaning to the divergent first term in Eq. �1�, one may make
use of the well-known zeta function regularization, namely, one introduces the generalized zeta
function, defined for large values of the real part of s by

��s;LM� = �
��Sp LM

�−s,

and by analytic continuation elsewhere, and one replaces Eq. �2� by Ec= 1
2��−1 /2;LM�.

Nevertheless, this approach does not work in general because it may happen that ��s ;LM� is
singular in s=−1 /2. A possible approach is to consider log Z as a regularized functional determi-
nant of the operator H=−�u

2+LM, namely, log Z=− 1
2���0,H� �see, for example, Ref. 12�. As a

consequence, it is possible to show that it can be expressed in terms of some invariants of the
geometric zeta function, i.e., the zeta function of the restriction of H to M, and introducing another
spectral function, the generalized Dedekind eta function,25 defined for a positive operator A with
discrete spectrum by

��	;A� = �
��
�A�

�1 − e−	��� .

In fact, assuming that −�M +V has trivial kernel, by Proposition 3 of Ref. 25 �see also Refs. 9,
14, and 12�, we have

��0;H� =
1

T
Res1
s=−1/2

��s;− �M + V� ,

while by Corollary 1 of Ref. 25,

063502-2 Albeverio et al. J. Math. Phys. 51, 063502 �2010�

Downloaded 11 Nov 2012 to 143.107.252.54. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



���0;H� = −
1

2T
Res0
s=−1/2

��s;− �M + V� −
1 − log 2

T
Res1
s=−1/2

��s;− �M + V� − 2 log �� 1

T
;− �M + V	 ,

where, for a meromorphic function f�s�, Res0 and Resk are defined by means of the Laurent
expansion

f�s� = Res0
s=s0

f�s� + �
k=1

�
1

�s − s0�kResk
s=s0

f�s� .

In this paper, we will consider explicitly differential operators with a singular potential on
noncompact manifolds with or without boundary. Thus, we shall need to generalize the above
results to the noncompact case. This will be done in detail in the next sections.

Now let us introduce the class of models we are going to investigate. In order to describe the
class of operators, we shall deal with, we start with an heuristic treatment which will be math-
ematically justified in the next sections. We first recall the Lipmann–Schwinger equations for an
operator H=H0+V defined in L2�Rn�, where H0=−� is minus Laplacian and V is a suitable
nonconfining potential. They are given by

���x� = �0
��x� + 


Rn
Gk

�0��x,y�V�y����y�dy, x � Rn,

where Gk
�0��x ,y� is the Green’s function of the unperturbed operator H0, namely,

�H0 − k2�Gk
�0��x,y� = �x − y� .

For example, for n=1, one has

Gk
�0��x,y� =

i

2k
eik�x−y�.

The above integral equation is the counterpart of the well-known resolvent identity associated
with the resolvent of the operator H.

We shall consider singular perturbations of the form

V�x� = g�x − a� ,

where g is the real coupling constant, and we limit our analysis to the cases n=1,2 ,3, since only
within these cases, one may implement deltalike interactions by self-adjoint operators in Hilbert
space �see, for example, Ref. 2�. Hence, heuristically

H = − � + g�x − a� . �3�

In this case, one formally has as solution

���x� = �0
��x� + gGk

�0��x,a����a� .

Since Gk
�0��x ,a� is singular when x→a for n=2,3, the above solution of the original integral

equation is inconsistent and one has to deal with a regularization and a renormalization procedure,
first introduced in Ref. 5. Here, we describe a regularization in the configuration space. First, the
regularization may be achieved by making the replacement g→g��� and Gk

�0��x ,a�→Gk
�0��x

+� ,a�, for y�0. As a result, neglecting terms which vanish as the cutoff � is removed, i.e., when
�→0, we may solve the above equation and arrive at

���a� = �0
��a� + g���Gk

�0��a,a + �����a� .

Thus, the regularized solution may be written as

063502-3 Singular perturbations with boundary conditions J. Math. Phys. 51, 063502 �2010�
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���x� = �0
��x� +

1

1

g���
− Gk

�0��a,a + ��
Gk

�0��x,a��0
��a� . �4�

Furthermore, the renormalization consists of assuming that g��� vanishes in the limit �→0 in
such a way that

1

g���
− Gk

�0��a,a + �� =
1

gR
− Res0

�=0
Gk

�0��a,a + �� + O���

for some gR�0. As a consequence, one may remove the cutoff and one arrives at a finite expres-
sion, where renormalized quantities appear, that is,

���x� = �0
��x� +

1

1

gR
− Res0

z=a
Gk

�0��a,z�
Gk�x,a��0

��a� .

For n�3, formally the above expression is still valid, but the interpretation of ���x� as
scattering states related to a self-adjoint Hamiltonian defined on an Hilbert space no longer holds.

As an example, let us consider n=3 and a=0. Then, one has

Gk
�0��x� =

1

4��x�
eik�x�

and

���x� = e�ikx +
1

1

gR
− ik

eik�x�

�x�
.

Instead, for n=2, one has

Gk�x,y� =
i

4
H0

�1��k�x − y�� ,

with H0
�1� being a Hankel function. Due to the presence of a logarithmic singularity for x=y, the

regularization procedure leads to the appearance of an arbitrary dimensional scale � and the
regularized coupling constant has to be “running” in order to ensure the independence of the
physical observables from �. The result is

���x� = �0
��x� +

�i/4�H0
�1��k�x��

1

gR���
+

1

2�
�ln�k�/2i� − ��1��

.

Going back to the n=3 case, one may obtain the physical meaning of gR, considering the
nonrelativistic scattering of a particle of mass m�0. In this case, the operator H0 is the kinetic
energy �the Planck constant being taken to be 1� and we have for the scattering wave functions
���x�

���x�� = e�ikx +
2mgR

1 − 2imgRk

eik�x�

�x�
.

The scattering amplitude can be read off and is

063502-4 Albeverio et al. J. Math. Phys. 51, 063502 �2010�
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f�k� =
2mgR

1 − 2imgRk
,

and the differential cross section is given by

d


d�
= �f�k��2 =

4m2gR
2

1 + 4m2gR
2k2 .

The scattering length may be defined as

a2 = lim
k→0

�f�k��2,

in such a way that limk→0 
�k�=4�a2. Thus,

a2 = 4m2gR
2 ,

namely, the regularized coupling constant is proportional to the scattering length of the related
nonrelativistic three dimensional scattering process.

It is easy to show that Eq. �4� is equivalent to the following expression for the kernels of the
resolvents:

G��x,y� = G�
�0��x,y� +

1

1

gR
− Res0

z=a
Gk

�0��a,z�
G�

�0��x,a�G�
�0��y,a� . �5�

This formula is valid in general. For example, when the unperturbed operator H0 is the
opposite of the Laplace operator defined in the manifold with boundary R+�Rn−1, we may repeat
the above arguments and arrive at Eq. �5�, in which G�

�0��x ,y� and G��x ,y� now satisfy a suitable
boundary condition, for example, the Dirichlet boundary condition

G�
�0��0,y� = 0.

In the physically relevant case of n=3, we have

G�
�0��x,y� =

1

4�
� ei���x−y�

�x − y�
−

ei���x−Ry�

�x − Ry�
	 ,

where R is the spatial reflection with respect to the plane that forms the boundary R2. For example,
in this case, the renormalization leads to

1

g���
− G�

�0���� =
1

gR
−

�

4�
−

e−2�a

2a
+ O��� . �6�

Again, for n�3, one may formally consider the above expressions, but without any references
to some Hilbert space.

In the following sections, making use of the method of self-adjoint extensions and the general
theory of singular perturbations, we will present a rigorous mathematical derivation of the above
heuristic results.

II. SELF-ADJOINT EXTENSIONS OF NONMAXIMAL MULTIPLICATION OPERATORS

A. General setting

Let H be an Hilbert space �complete and separable� and A a self-adjoint operator in H. Fixing

a suitable restriction Ȧ of A, it is possible to construct a one parameter family of self-adjoint
operators A� containing the initial operator A. This quite general setting was developed in Ref 3,

063502-5 Singular perturbations with boundary conditions J. Math. Phys. 51, 063502 �2010�
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Sec. 1.2.2. We recall here the main points of the construction, and we give a new proof of the main
result, stated in Lemma 1.2.3 of Ref. 3. Let �A�= �A†A�1/2, and for s�0, let

Hs = dom��A�s/2� = �v � H���A� + I�s/2v � H .

Note that H2=dom�A� and H0=H. Hs is a complete Hilbert space with scalar product

�u,v�s = ���A� + I�su,v�0.

Obviously, ��A�+zI�s/2 is an isometry of Hs onto H for all s and for all z that is neither zero nor
a negative real number. Let H−s=Hs

† be the adjoint space of Hs. We define the mapping

��A� + zI�s/2:H → H−s,

��A� + zI�s/2:u � ��A� + zI�s/2u ,

by

���A� + zI�s/2u��v� = �u,��A� + zI�s/2v�0

for all v�Hs, and Re�z��0. On the other hand, for each u�H−s, there exists a vector u��Hs

such that

u�v� = �u�,v�s

for all v�Hs. It follows from the definition of Hs that ��A�+zI�s/2u��H and

u�v� = �u�,v�s = ���A� + zI�s/2u�,��A� + zI�s/2v�0,

for Re�z��0. Therefore, we have a map

��A� + zI�−s/2:H−s → H ,

��A� + zI�−s/2:u � ��A� + zI�s/2u�.

It is easy to see that the mapping ��A�+zI�−s/2 and ��A�+zI�s/2 are inverse to each other. If we
define the scalar product

�u,v�−s = ���A� + zI�−s/2u,��A� + zI�−s/2v�0,

both maps preserve this scalar product. We have proved that ��A�+zI�s is an isometry of Ht+2s onto
Ht for all real s and t, and all z with Re�z��0, and �A�= �A� when both s , t�0. Beside these
isometries, we have the obvious inclusion Hs�Ht for all s� t. We also note that using the scalar
product in H−s, the action of the functional u�H−s is

u�v� = �u,��A� + zI�sv�−s

for all v�Hs, Re�z��0.
Lemma 2.1: Let A be a self-adjoint operator in the Hilbert space H, and e�H−2−H. Then,

the restriction Ȧ of A defined by the domain

dom�Ȧ� = �v � H�Av � H,e�v� = 0

is symmetric and has deficiency indices �1,1�. The solutions of the equation

�Ȧ† � iI�v = 0, �7�

are all given by

063502-6 Albeverio et al. J. Math. Phys. 51, 063502 �2010�

Downloaded 11 Nov 2012 to 143.107.252.54. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



u� = c��A� � iI�−1e ,

with c�C.
Proof: Note that the domain is well defined. Av�H if and only if v�dom�A�. First, we prove

that Ȧ is symmetric. We show that dom�Ȧ��= �0, where the orthogonal complement is in H. In
fact, if this is the case, then

�dom�Ȧ���� = H ,

and �dom�Ȧ����=dom�Ȧ� since dom�Ȧ� is a subspace, and the thesis follows. By definition,

dom�Ȧ�� = �v � H��v,w�0 = 0, ∀ w � dom�Ȧ� .

We show that a vector v satisfies the equation

�v,w�0 = 0 �8�

for all w�dom�Ȧ� if and only if v is a multiple of e under the inclusion of H in H−2 �one

implication is obvious since w�dom�Ȧ��. This implies that the unique solution v in H of the
above equation is v=0. We have the following facts:

�a� if w�dom�Ȧ��H2, then

��A� + I�w = ��A� + I�−1��A� + I�2w � H ,

and hence ��A�+ I�2w�H−2;

�b� by definition, w�dom�Ȧ� if and only if

0 = e�w� = �e,��A� + I�2w�−2, �9�

�c� dom�Ȧ��H2, and hence it is isometric to a subspace D of H−2, D= ��A�+ I�2dom�Ȧ�; and
�d� each v�H defines a functional v on H2 by v�w�= �v ,w�0; thus, we rewrite Eq. �8� as

0 = �v,w�0 = v�w� = ���A� + I�v,��A� + I�w�−2 = �v,��A� + I�2w�−2 �10�

for all w�dom�Ȧ�, with v=v�H�H−2.

By point �c�, Eq. �9� means that D=L�e��−2, where �−2 means that the orthogonal comple-
ment is in H−2. By point �d�, v satisfies Eq. �8� if and only if v�D�−2. Since H−2=L�e�
� L�e��−2, it follows that D�−2 = �L�e��−2��−2 =L�e�, and hence v satisfies Eq. �8� if and only if
v�L�e�, as required.

Next, we prove that the vectors u� are the unique solutions of the deficiency equation �7�.
Note that since e�H−2, it follows that u��H and Ȧu��H. We show that u��D�Ȧ† �. By
definition,

dom�Ȧ†� = �v � H� ∃ u � H,�Ȧw,v�0 = �w,u�0, ∀ w � dom�Ȧ� .

If we take u= � iu�, then

�Ȧw,u��0 − �w, � iu��0 = �Ȧw,u��0 − � � iw,u��0 = ��Ȧ � iI�w,u��0

= ��A � iI�w,u��0 = �w,�A � iI�u��0 = e�w� = 0

since A= Ȧ on dom�Ȧ� and A is self-adjoint, and hence u� belong to dom�Ȧ†�. This also means that

Ȧ†u�= iu�, and therefore, the u� are solutions of Eq. �7�. It remains to show that these are the
unique solutions. Note that the solutions of Eq. �7� are elements of the space

063502-7 Singular perturbations with boundary conditions J. Math. Phys. 51, 063502 �2010�
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ker�iI − Ȧ†� = �ran�− iI − Ȧ���,

and u� �ran�−iI− Ȧ��� if and only if

�u,�− iI − Ȧ�w�0 = 0 �11�

for all w�dom�Ȧ�. By point �c� above, if w�dom�Ȧ�, then ��A�+ I�2w�H−2, so Eq. �11� means
that

0 = �u,�− iI − Ȧ�w�0 = �u,�− iI − A�w�0 = �u,�− iI − A���A� + I�−2��A� + I�2w�0

= ��iI − A�u,��A� + I�2w�−2,

since A is self-adjoint. This implies that �iI−A�u�D�−2 �where the space D was defined in point
�c� above�. Since D�−2 =L�e�, this completes the proof.

Using the standard von Neumann theory of self-adjoint extensions, we characterize the adjoint

and the self-adjoint extensions of Ȧ as follows.6,11,27

Lemma 2.2: The adjoint operator Ȧ† is

dom�Ȧ†� = �w � c+u+ � c−u−,w � dom�Ȧ�,c� � C ,

Ȧ†�w + u+ + u−� = Ȧw + iu+ − iu−.

Lemma 2.3: All the self-adjoint extensions A�, 0���2�, of the operator Ȧ are

dom�A�� = �w � c+�u+ � ei�u−�,w � dom�Ȧ�,c+ � C ,

A��w + u+ + u−� = Ȧ†�w + u+ + u−� = Ȧw + iu+ − iu−.

For proofs of these lemmas, see, for example, Refs. 3 and 4. An equivalent description of the
self-adjoint extensions can be given by boundary conditions on the domain of the adjoint operator
as

dom�A�� = �u � dom�Ȧ†���u−,u�0 = ei��u+,u�0 .

Remark 2.4: Note that the case �=� gives the maximal operator, namely, A��A�, for all �.

v�dom�Q�� if and only if v=w+c+�u+−u−�, with w�dom�Ȧ�, and c+�C. However it is easy to

see that the function u=u+−u−=2i�A2+ I�−1e is such that u�L2��n� and Ȧu�L2��n�. This means
that u�dom�A�, and the statement follows.

Next we characterize the resolvent of the self-adjoint extensions A� of Ȧ. This should be
compared with Theorem 1.2.1 of Ref. 3.

Lemma 2.5: Let A� be one of the self-adjoint extensions of the operator Ȧ described in Lemma

2.3. Let ����A�����A��, then the resolvent of A� of Ȧ is

R��,A��v = R��,A��v + c�����u�̄,v�0u�,

where c���� is some function of �, and

u� = ��A� − �I�−1e .

Moreover, the difference of the resolvents R�� ,A��−R�� ,A�� is of trace class, and

Tr�R��,A�� − R��,A��� = c���̄��u�̄,u��0.
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Proof: Let ����A�����A��. Consider

�R��,A�� − R��,A���v = ���I − A��−1 − ��I − A��−1�v .

Since for all u� ran��I− Ȧ�, we have that ��I−A��−1u= ��I− Ȧ�−1u, it follows that

�R��,A�� − R��,A���v = ���I − A��−1 − ��I − A��−1�P�ran��I − Ȧ���v ,

where P�ran��I − Ȧ��� denotes the projection onto �ran��I− Ȧ���. However, it is easy to see that the

proof of Lemma 2.6 generalizes for any �� i in the resolvent set, thus �ran��I− Ȧ���= �u�̄�, with

u� = ��A� − �I�−1e .

It follows that

�R��,A�� − R��,A���v = ���I − A��−1 − ��I − A��−1��u�̄,v�0u�̄.

Now, the vector y= ���I−A��−1− ��I−A��−1�u�̄ itself belongs to �ran��̄I− Ȧ���. For, since Ȧ† is
an extension of A� for all �,

��I − Ȧ†�y = ��I − Ȧ†����I − A��−1 − ��I − A��−1�u�̄ = 0,

implies that y�ker��I− Ȧ†�. Therefore, we have proved that for all v�dom��I−A��−1,

�R��,A�� − R��,A���v = �u�̄,v�0c����u�.

This means that

Tr�R��,A�� − R��,A��� = c���̄��u�̄,u��0 � � ,

by the definition of u� since e�H−2.

B. Multiplication operators

We pass now to consider a more concrete situation, namely, multiplication operators. These
operators provide the most natural setting where the results given in the previous section for
abstract operators apply. Dually, all the results of the present section can be proven independent of
the theory developed in Sec. II A, but working directly in the concrete Sobolev spaces described
below. We will not give complete proofs in this concrete setting since they are precisely the same
as the one provided in the abstract presentation of Sec. II A. The main advantage working in this
concrete setting is that all the spaces Hs of Sec. II A are subspaces of some large function space,
and therefore, all the functionals can be identified with some concrete functions in these spaces.
First, some preliminaries and notations. The measure appearing in all integrals is going to be
Lebesgue’s measure. Correspondingly, measurable sets and functions are understood in the sense
of Lebesgue’s integration theory. Let �n be some unbounded measurable subset of Rn. Let s be
real, q :�n→C be a measurable function, and

ms�x� = �1 + �q�x���s/2.

We define the spaces

L2,s��n� = �f � map��n,C��fms � L2��n� .

Note that L2��n�=L2,0��n� and L2,s��n��L2,s���n� if s�s�. In L2,s��n�, we have the scalar
product
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�f ,g�L2,s��n� = 

�n

f̄�x�g�x��ms�x��2dnx ,

and with this scalar product, the spaces L2,s��n� are complete separable Hilbert spaces and are the
Fourier images of the Sobolev spaces W2,s��n�. We will use the notation BN

n for the intersection of
�n and the closed disk DN

n of radius N centered at the origin of Rn.
The maximal multiplication operator Q associated with q is the operator in L2��n� defined by

dom�Q� = �f � L2��n��qf � L2��n� ,

Qf = qf .

The operator Q is a �closed� self-adjoint operator with core C0
���n�. If q�x��0 almost every

in �n, then Q is injective. If q�x��c, for some c, almost every in �n, then ran�Q�=L2��n�, so
Q :dom�Q�→L2��n� is bijective.

C. Nonmaximal multiplication operators and their extensions

Let e :�n→C be a fixed measurable function. Assume that the functions q and e decrease
faster than some power, namely, there exist constants �, �, c, and c� such that

�x−�q�x�� � c ,

�x−�e�x�� � c�.

Consider in L2��n� the operator

dom�Q̇� = � f � L2��n��qf � L2��n�,

�n

ē�x�f�x�dnx = 0� ,

Q̇f = qf .

It is clear that dom�Q̇� is a subspace of L2��n�, so the definition is well posed. Also,

dom�Q̇��dom�Q�, so Q̇ is a multiplication operator, but, in general, it is not maximal.

Lemma 2.6: If �−��n /2, then Q̇ is symmetric.
Proof: This follows from the first statement of Lemma 2.1 provided that e�H−2. In the

present case, �A�= �Q�, and therefore, H−2=L2,−2��n�. Thus, e�H−2 if



�n

�e�x��2�1 + �q�x���−2dnx � � .

We only need to check the convergence for large r= �x�. For large r, the integral behaves like
r2�−2�+n−1, and therefore, it is convergent if 2�−2�+n�0.

Lemma 2.7: Assume that q is a real function, �−��n /2, and ��−n /2. Then the operator Q̇
has deficiency indices �1,1�, and the solutions of the equation

�Q̇† � iI�u = 0

are all given by the functions

���x� = c
e�x�

q�x� � i
,

where c�C, x��n.
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Proof: This follows from the second statement of Lemma 2.1 provided that e�H−2 and that
q���L2��n�. The first requirement implies that �−��n /2, as in the proof of the previous
lemma. For the second one, consider the integral



�n

�q�x��+�x��2dnx = 

�n

�q�x�e�x��2

�q�x� + 1�2
dnx .

This integral behaves for large r= �x� as r2�+n and therefore does not converge if ��n /2.
Remark 2.8. Note that the conditions �−��n /2 and ��−n /2 imply that ��0. For −�

�n /2, and hence n /2��−���+n /2.
We are now in the position of using the results in Lemmas 2.2 and 2.3 to characterize the

adjoint of Q̇ and to parametrize all the self-adjoint extensions using the parameter �. With this
parametrization, the maximal multiplication operator Q corresponds to the self-adjoint extension
defined by �=� �see Remark 2.4�. Using Lemma 2.5, we also have a general formula for the
resolvent and we know that the difference between the resolvents of a self-adjoint extension and
of the maximal operator is of trace class.

We proceed by studying the particular case where q�x�= �x�2 and e is a bounded function. In

this case, we give a more useful characterization of the self-adjoint extensions of Q̇ by some
explicit integral boundary conditions. We will parametrize the self-adjoint extensions by a real
non-negative parameter �. By the assumptions on q and e, we have �=2 and �=0, and the
conditions in Lemmas 2.6 and 2.7 are satisfied if and only if n=1, 2, or 3. Therefore, we proceed
assuming n to be in this range. In this case, if

���x� =
e�x�

�x�2 − �
,

and assuming Im ��0, we have the following expansion for large N:



BN

n
ē�x����x�dnx = 


BN
n

�e�x��2

�x�2 − �
dnx = dn�N� + gn��� + o�N�n/2�−1�, n = 1,2,3. �12�

Note that dn�N� does not depend on �. The functions dn�N� and gn��� depend on the explicit
form of e�x�. The values for the relevant choices of e�x� are given in Lemma A.1 in the Appendix.
In particular, it is always true that

d1�N� = O� 1

N
	, d2�N� = O�log N�, d3�N� = O�N� .

From Eq. �12�, it follows that



BN

n
ē�x���+�x� + ei��−�x��dnx = �1 + ei��dn�N� + gn�i� + ei�gn�− i� + o�N�n/2�−1�

= i�1 − ei����dn�N� + �bn + an� + o�N�n/2�−1� ,

where �, an, and bn are real numbers given by

� = ctg
�

2
,

an = ��+�2 = ��−�2 = 

�n

�e�x��2

1 + x4 dnx =
gn�i� − gn�− i�

2i
,
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bn =
gn�i� + gn�− i�

2
.

Therefore, � is the real number which specifies the chosen self-adjoint extension.
This suggests the following description of the boundary conditions of the self-adjoint exten-

sions of Q̇ in all the cases n=1,2 ,3.

Proposition 2.9: All the self-adjoint extensions of the operator Q̇ are given by the following
integral boundary condition:

dom�Q�� = � f � L2��n��qf − �ce � L2��n�,

BN

n
ē�x�f�x�dnx

= c��dn�N� + �bn + an� + o�1� for large N� ,

with c being an arbitrary complex constant, dn�N� the functions given in Eq. (12), and � a real
number. The operator Q� acts on f �dom�Q�� as follows:

�Q�f��x� = �x�2f�x� − �ce�x�

= �x�2f�x� −
2�

� − i
��+, f�e�x� = �x�2f�x� − lim

N→�

�e�x�
�dn�N� + �bn + an



BN

n
ē�x�f�x�dnx .

Remark 2.10: In dimensions 2 and 3, dn�N� are divergent quantities and so the constants an,
and bn can be dropped in the latter equation, while in dimension n=1, one can drop d1�N� and
take the integral on the whole space.

Proof: Let f �dom�Q��, that is, f =h+c+��++ei��−� with h�dom�Q̇�. Then,



BN

n
ē�x�f�x�dnx = 


BN
n

ē�x�h�x�dnx + c+

BN

n
ē�x���+�x�dnx + ei��−�x��dnx

= 

BN

n
ē�x�h�x�dnx + c��dn�N� + �bn + an� + o�N�n/2�−1� ,

with c= i�1−ei��c+. Now we have to show that for large N, the integral in the latter equation
always gives contributions, which are negligible with respect ��dn�N�+bn�+an. This is, however,

a direct consequence of the fact that h�dom�Q̇�. For by hypothesis, we have



�n

ē�x�h�x�dnx = 0,

since �n=�NBN
n , this implies that

lim
N→�



BN

n
ē�x�h�x�dnx = 0,

namely, that



BN

n
ē�x�h�x�dnx = o�1�

for large N.
The formula for the action of Q� easily follows.
Next, we give the resolvent of each extension.
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Proposition 2.11: Let Q� be one of the self-adjoint extensions of the nonmaximal multiplica-

tion operator Q̇ described in Proposition 2.9. Then, for all ����Q�����Q0�, Q� has the resol-
vent

R��,Q��� = R��,Q0�� +
1

an

�
+ bn − gn���



�n

ē�x��R��,Q0����x�dnx��,

���x� =
e�x�

�x�2 − �
,

where the gn��� are the functions appearing in the asymptotic expansion of the integral boundary
condition defining Q� applied to the function ��, as given in Eq. (12), and Q0 is the maximal
multiplication operator Q. Moreover, the difference of the resolvents R�� ,Q��−R�� ,Q0� is of
trace class.

Proof: By Lemma 2.5,

R��,Q��� = R��,Q0�� + c���,����.

In order to find the value of c��� ,��, first we note that f =R�� ,Q����dom�Q��; therefore, it
must satisfy the conditions given in Proposition 2.9, namely,



BN

n
ē�x�f�x�dnx = 


BN
n

ē�x��R��,Q�����x�dnx = c�an + �bn + �dn�N�� + o�1� . �13�

On the other hand, using Eq. �12� we explicitly have



BN

n
ē�x��R��,Q�����x�dnx = 


BN
n

ē�x��R��,Q0����x�dnx + c���,��

BN

n
ē�x����x�dnx

= 

BN

n
ē�x��R��,Q0����x�dnx + c���,���dn�N� + gn���� + o�N�n/2�−1� .

�14�

Now, since R�� ,Q0���dom�Q0�, by Proposition 2.9,



BN

n
ē�x��R��,Q0����x�dnx = can + o�1�

for large N. Note that the constant an does not depend on the extension by definition.
This means that we are able to make the comparison between Eqs. �13� and �14�. We have



�n

ē�x��R��,Q0����x�dnx + c���,���dn�N� + gn���� − c�an + �bn + �dn�N�� = o�1� ,

and this implies that c��� ,��=�c and

c���,�� =
�

an + �bn − �gn���
�n
ē�x��R��,Q0����x�dnx =

1

an

�
+ bn − gn���



�n

ē�x���x�
� − �x�2

dnx .

Note that in the case n=1, we are comparing constants since d1�N� is small in this case �see
Remark 2.10�.
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In order to give the kernel of the resolvent, we need a suitable delta function in the space �n.
This will be denoted by �n and is defined by the property



�n

�n�x − a�f�x�dnx = f�a�

in the appropriate space of test functions over Rn. Explicit formulas will be given in the concrete
examples studied below.

Corollary 2.12: The operator R�� ,Q�� of Proposition 2.11 is an integral operator with kernel

ker�x,y ;R��,Q��� =
�n�x − y�

� − �x�2
−

1

an

�
+ bn − gn���

e�x�ē�y�
�� − �x�2��� − �y�2�

.

Proof: Since

�R��,Q0����x� =
��x�

� − �x�2
,

we have that the operator

�A����x� = ���x�

�n

ē�y��R��,Q0����y�dny

= ���x�

�n

ē�y�
��y�

� − �y�2
dny

= 

�n

e�x�ē�y�
��x�2 − ���� − �y�2�

��y�dny

is an integral operator with kernel

ker�x,y ;A���� = −
e�x�

� − �x�2
ē�y�

� − �y�2
.

Corollary 2.13: The difference of the resolvents R�� ,Q��−R�� ,Q0� of Proposition 2.11 is a
trace class operator with trace

Tr�R��,Q�� − R��,Q0�� = −
1

an

�
+ bn − gn���



�n

�e�x��2

��x�2 − ��2dnx .

Remark 2.14: Assuming that Im ��0, we have the bound

�Tr�R��,Q�� − R��,Q0��� � K
1

�an

�
+ bn − gn���� ��n/2−2� ,

with some positive constant K. By Corollary 2.12,

ker�x,y ;R��,Q�� − R��,Q0�� = −
1

an

�
+ bn − gn���

e�x�ē�y�
�� − �x�2��� − �y�2�

.

Since Im ��0, we can integrate obtaining
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�Tr�R��,Q�� − R��,Q0��� =
1

�an

�
+ bn − gn����
�n

�e�x��2

��x�2 − ��2dnx

�
1

�an

�
+ bn − gn����
Rn

�e�x��2

��x�2 − ��2dnx

�
K

�an

�
+ bn − gn���� ��n/2−2� .

In the latter line we have used Lemma A.4 in the Appendix.
We conclude this section, giving the continuum spectrum of the operators Q�. Possible iso-

lated eigenvalues of finite multiplicity will be detected by an explicit study of the resolvent of
particular examples in the following sections.

Lemma 2.15: The continuum spectrum of the operator Q� coincides with the non-negative real
axis, i.e., Spc Q�= �0,��.

Proof: We recall that Spc�Spe for closed operators, and Spe=Spc�Spp�Spp
� for self-adjoint

operators. Then, the thesis follows since all self-adjoint extensions have the same essential spec-
trum, and the maximal operator Q0 is known to have the pure continuous spectrum Sp Q0

=Spc Q0= �0,��.

D. The basic example in the whole space

Let �n=Rn, e�x�=eiax, where a�Rn, and n=1,2 ,3. We study in this section the self-adjoint

extensions of the �closure of the� operator Q̇ in L2�Rn� defined by

dom�Q̇� = � f � L2�Rn��qf � L2�Rn�,

Rn

e−iaxf�x�dnx = 0� ,

Q̇f = qf ,

where q�x�= �x�2. We have �e�=1 and BN
n =DN

n . In order to apply Proposition 2.9, we have to
compute the functions dn�N� and gn��� appearing in Eq. �12�. They are explicitly given in Lemma
A.1 in the Appendix.

In the following, we shall assume that Im ���0, then from Lemma A.1 in the Appendix, for
n=3,2 ,1, we have, respectively,

n = 3, �
DN
3

1

�x�2 − �
d3x = 4�N + 2�2i�� sgn�Im ��� + o�1� ,

d3�N� = 4�N, g3��� = 2�2i��, a3 = �2�2, b3 = − �2�2,
�

n = 2, �
DN
2

1

�x�2 − �
d2x = 2� log N − � log�− �� + o�1� ,

d2�N� = 2� log N, g2��� = − � log�− ��, a2 =
�2

2
, b2 = 0,�
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n = 1, �
DN
1

1

�x�2 − �
dx =

i�
�� sgn�Im ���

−
2

N
+ o� 1

N
	 ,

d1�N� = −
2

N
, g1��� =

i�
��

, a1 =
�

�2
, b1 =

�

�2
.�

Applying Propositions 2.9 and 2.11 and Corollary 2.13, we easily prove the following results.

Lemma 2.16: The self-adjoint extensions of Q̇ are

n = 3, �
dom�Q�� = � f � L2�R3��Q�f � L2�R3� ,
 �
� 
DN

3 e−iaxf�x�d3x = c�4�N� − �2�2� + �2�2� + o�1�,c � C� ,

�Q�f��x� = �x�2f�x� − lim
N→�

eiax

4�N



DN
3

e−iaxf�x�d3x ,
�

n = 2, �
dom�Q�� = � f � L2�R2��Q�f � L2�R2� ,
 �
� 


DN
2

e−iaxf�x�d2x = c�2�� log N +
�2

2
	 + o�1�,c � C� ,

�Q�f��x� = �x�2f�x� − lim
N→�

eiax

2� log N



BN
2

e−iaxf�x�d2x ,
�

n = 1, �
dom�Q�� = � f � L2�R��Q�f � L2�R� ,
 �
� 


DN
1

e−iaxf�x�dx = c�−
2�

N
+

��

�2
+

�

�2
	 + o�1/N�,c � C� ,

�Q�f��x� = �x�2f�x� −
�2�eiax

��� + 1�
R
e−iaxf�x�dx .

�
Lemma 2.17: Let Q� be any of the self-adjoint extensions of the nonmaximal multiplication

operator Q̇ described in Lemma 2.16. Then, for all ����Q�����Q0�, Q� has the resolvent

n = 3, R��,Q��� = R��,Q0�� +
1

�2�2� 1

�
− 1 − i�2�	
R3

e−iax�R��,Q0����x�d3x��,

n = 2, R��,Q��� = R��,Q0�� +
1

�2

2�
+ � log�− ��



R2

e−iax�R��,Q0����x�d2x��,

n = 1, R��,Q��� = R��,Q0�� +
1

�

�2�
+

�

�2
−

i�
��



R

e−iax�R��,Q0����x�dx��,

where ���x�=eiax / �x�2−� for all the cases.
Corollary 2.18: The operator R�� ,Q�� of Lemma 2.17 is an integral operator with kernel

063502-16 Albeverio et al. J. Math. Phys. 51, 063502 �2010�

Downloaded 11 Nov 2012 to 143.107.252.54. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



n = 3, ker�x,y ;R��,Q��� =
�x − y�
� − �x�2

−
1

�2�2� 1

�
− 1 − i�2�	

eia�x−y�

�� − �x�2��� − �y�2�
,

n = 2, ker�x,y ;R��,Q��� =
�x − y�
� − �x�2

−
1

�2

2�
+ � log�− ��

eia�x−y�

�� − �x�2��� − �y�2�
,

n = 1, ker�x,y ;R��,Q��� =
�x − y�
� − �x�2

−
1

�

�2�
+

�

�2
−

i�
��

eia�x−y�

�� − �x�2��� − �y�2�
,

where ����Q�����Q0� and x ,y�Rn, n=3,2 ,1, respectively.
Moreover, we have
Lemma 2.19: Let Q� be any of the self-adjoint extensions of the nonmaximal multiplication

operator Q̇ described in Lemma 2.16, then the difference R�� ,Q��−R�� ,Q0� is a trace-class
operator and, assuming that Im ���0,

n = 3, Tr�R��,Q�� − R��,Q0�� =
1

i�2�� 1

�
− 1 − i�2�	 ,

n = 2, Tr�R��,Q�� − R��,Q0�� =
�

�

1

�2

2�
+ � log�− ��

,

n = 1, Tr�R��,Q�� − R��,Q0�� =
i

2�3/2
1

1
�2�

+
1
�2

−
i

��

.

Proof: One has to compute the L2-trace using the kernel given in Corollary 2.18 and the
results of Lemma A.4 in the Appendix.

E. The basic example in the half space

Let �n=Hn= �0,���Rn−1, e�x�=sin�ax�, where a�Hn, and n=1,2 ,3. We study in this sec-

tion the self-adjoint extensions of the �closure of the� operator Q̇ in L2�Hn� defined by

dom�Q̇� = � f � L2�Hn��qf � L2�Hn�, f��0 � Rn−1� = 0,

Hn

sin�ax�f�x�dnx = 0� ,

Q̇f = qf ,

where q�x�= �x�2. We have �e�=1, and BN
n =DN

n �Hn, and the functions dn�N� and gn��� appearing in
Eq. �12� are given in Lemma A.3 in the Appendix.

Recalling that the space of the functions satisfying Dirichlet boundary condition on the bound-
ary of the half space naturally identifies with the space of the odd functions on the whole space,
we realize the delta function in the half space as
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Hn�x − a� = 1
2 ��x − a�� − �x − Pn�a�� ,

where Pn is the reflection on the last coordinate.

Now we are able to write down explicitly all relevant quantities concerning the operator Q̇ in
the half space Hn for n=3,2 ,1.

Assuming that Im ���0, from Lemma A.3 in the Appendix, we have

n = 3, �
BN
3

sin2�ax�
�x�2 − �

d3x = �N +
i�2

2
�� sgn�Im ��� −

�2

4a
e2ia�� sgn�Im ��� + o�1� ,

d̂3�N� = �N, ĝ3��� =
i�2

2
�� −

�2

4a
e2ia��,

â3 =
�2

4
��2 +

e−�2a sin��2a�
2a

	, b̂3 = −
�2

4
��2 +

e−�2a cos��2a�
2a

	 ,
�

n = 2, �
BN
2

1

�x�2 − �
d2x =

�

2
log N −

�

4
log�− �� +

�

2
K0�2a�− �� + o�1� ,

d̂2�N� =
�

2
log N, ĝ2��� = −

�

4
log�− �� +

�

2
K0�2a�− �� ,

â2 =
�

4
��

2
+ iK0�2a�i� − iK0�2a�− i�	, b̂2 = −

i�

4
�K0�2a�i� + K0�2a�− i�� ,

�
n = 1, �



BN

1

1

�x�2 − �
dx =

i�

4�� sgn�Im ���
�1 − e2ia�� sgn�Im ���� −

1

2N
+ o� 1

N
	 ,

d̂1�N� = −
2

N
, ĝ1��� =

i��1 − e2ia���
4��

,

â1 =
�

4�2
�1 − e−�2a�cos��2a� + sin��2a��� ,

b̂1 =
�

4�2
�1 − e−�2a�cos��2a� − sin��2a��� ,

�
with K0�z� being a Bessel function. Here we use the “hat” to distinguish the latter quantities with
respect to the ones appearing in the example discussed in Sec. II D, concerning the case of the
whole space.

Now, applying Propositions 2.9 and 2.11 and Corollary 2.13, we prove the following results.

Lemma 2.20: The self-adjoint extensions of Q̇ are

n = 3, �
dom�Q�� = � f � L2�R3��Q�f � L2�R3�, f��0 � R2� = 0,
 �

�

BN

3
sin�ax�f�x�d3x = c��N� + �b̂3 + â3� + o�1�,c � C� ,

Q�f = �x�2f�x� − lim
N→�

sin�ax�
�N



BN

3
sin�ax�f�x�d3x ,

�
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n = 2, �
dom�Q�� = � f � L2�H2��Q�f � L2�H2�, f��0 � R� = 0,
 �

�

BN

2
sin�ax�f�x�d2x = c��� log N

2
+ �b̂2 + â2	 + o�1�,c � C� ,

�Q�f��x� = �x�2f�x� − lim
N→�

2 sin�ax�
� log N



BN

2
sin�ax�f�x�d2x ,

�
n = 1, �

dom�Q�� = � f � L2�R��Q�f � L2�R�, f�0� = 0,
 �
� 


BN
1

sin�ax�f�x�dx = c�−
2�

N
+ �b̂1 + â1	 + o�1/N�,c � C� ,

�Q�f��x� = �x�2f�x� −

4�2� sin�ax�

H1

sin�ax�f�x�dx

��1 + ���1 − e−�2a cos��2a�� − ��1 − ��e−�2a sin��2a�
.
�

Lemma 2.21: Let Q� be any of the self-adjoint extensions of the nonmaximal multiplication

operator Q̇ described in Lemma 2.20. Then, for all ����Q�����Q0�, Q� has the resolvent (we
assume Im �� to be positive)

n = 3, R��,Q��� = R��,Q0�� +



H3

sin�ax��R��,Q0����x�d3x

â3

�
+ b̂3 − � i�2��

2
−

�2e2ia��

4a
	��,

n = 2, R��,Q��� = R��,Q0�� +



H2

sin�ax��R��,Q0����x�d2x

â2

�
+ b̂2 +

� log�− ��
4

−
�K0�2a�− ��

2

��,

n = 1, R��,Q��� = R��,Q0�� +



H1

sin�ax��R��,Q0����x�dx

â1

�
+ b̂1 −

i��1 − e2ia���
4��

��,

where ���x�=sin�ax� / �x�2−� for all the cases.
Corollary 2.22: The operator R�� ,Q�� of Lemma 2.21 is an integral operator with kernel

n = 3, ker�x,y ;R��,Q��� =
H3�x − y�

� − �x�2
−

1

â3

�
+ b̂3 − � i�2��

2
−

�2e2ia��

4a
	

sin�ax�sin�ay�
�� − �x�2��� − �y�2�

,

n = 2, ker�x,y ;R��,Q��� =
H2�x − y�

� − �x�2
−

1

â2

�
+ b̂2 +

� log�− ��
4

−
�K0�2a�− ��

2

sin�ax�sin�ay�
�� − �x�2��� − �y�2�

,
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n = 1, ker�x,y ;R��,Q��� =
H1�x − y�

� − �x�2
−

1

â1

�
+ b̂1 −

i��1 − e2ia���
4��

sin�ax�sin�ay�
�� − �x�2��� − �y�2�

,

where ����Q�����Q0�, x ,y�Hn, n=3,2 ,1.
Moreover, we have the following.
Lemma 2.23: Let Q� be any of the self-adjoint extensions of the nonmaximal multiplication

operator Q̇ described in Lemma 2.16, then the difference R�� ,Q��−R�� ,Q0� is a trace-class
operator and, assuming that Im ���0,

n = 3, Tr�R��,Q�� − R��,Q0�� =
�2�1 − e2ia���

2i��

1

â3

�
+ b̂3 − � i�2��

2
−

�2e2ia��

4a
	 ,

n = 2, Tr�R��,Q�� − R��,Q0�� =
��1 + 2iaK1�− 2ia����

2�

1

â2

�
+ b̂2 +

� log�− ��
4

−
�K0�2a�− ��

2

,

n = 1, Tr�R��,Q�� − R��,Q0�� = � i��1 − e2ia���
4�3/2 −

�ae2ia��

2�
	 1

â1

�
+ b̂1 −

i��1 − e2ia���
4��

,

where K1 is a Bessel function.
Proof: All latter integrals are computed in Lemma A.5 in the Appendix.

III. THE LAPLACE OPERATOR WITH DELTA POTENTIAL

We show in this section how the extensions of the multiplication operators introduced in Sec.
II C are used in order to define a self-adjoint differential operator corresponding to the formal
Laplacian operator with a delta type potential, discussed in Sec. I. This was the original approach
of Berezin and Fadeev.5 Let

− d = − �
j=1

n
�2

�xj
2 ,

denote the formal Laplace operator on �n, where �n is either Rn or Hn. Let a be a point in �n and

F denote the Fourier transform in �n. Then, the operator −�̇=F−1Q̇F is a �closed� symmetric
operator in L2��n�, with deficiency indices �1,1�, for n�3, and domain

dom�− �̇� = �f � W2,2��n��f�a� = 0, − �̇f = − df ,

unitary equivalent to the operator Q̇ defined at the beginning of Sec. II C, with e�x� either eiax

when �n=Rn or sin�ax� when �n=Hn. This follows immediately in both cases by the definition of

Fourier transform. Therefore, all the self-adjoint extensions of −�̇ are the operators −��

=F−1Q�F, where the operators Q� were defined, in general, in Proposition 2.9, and in the par-
ticular case of dimensions n=3, 2, and 1, in Lemmas 2.16 and 2.20, respectively, when �n=Rn or
Rn. In all cases, the maximal operator is −�0 with

dom�− �0� = W2,2, − �0f = − df ,
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It is worth to observe here that the operator �̇ can also be introduced directly �this is the
approach of Ref. 2� as the closure of the operator

dom�− �̃� = C0
���n − �a�, − �̃f = − df .

This follows adapting the standard proof for the maximal operators �see, for example, Ref. 31,

Sec. 10.11�. For it is clear that if f �dom�−�̇�, then f�a�= �F−1Ff��a�=0, and therefore f

�dom�Q̇�. Conversely, given f �dom�Q̇�, we have that �F−1f��a�=0. Since the closure of the

restriction of Q̇ on C0
���n� is closed, given a sequence �hn in C0

���n� such that hn→h=F−1f , and

Q̇hn→ Q̇h, the condition h�a�=0 can only be satisfied if the functions hn have support away from
a.

Next we interpret the operators −�� as a perturbation of the maximal operator −�0, using the
theory of singular perturbation developed in Sec. 1 of Ref. 3, that we recall here briefly. Let A be
a self-adjoint operator in the Hilbert space H as in Sec. II A. Let � be a real number and a
�H−2 with norm 1. A singular rank 1 perturbation of the operator A is the operator defined by the
following formula:

A� = A + �ac� · �a ,

where ac is either a or a linear bounded extension of a �Ref. 3, Sec. 1.3.2�, depending whether
a�H−1−H or a�H−2−H−1. A rigorous definition of this type of operators acting on the dual
space of functionals H−2 has been given in Ref. 3, Sec. 1.3. The domain and the action of the
operator are described in Theorems 1.3.1 and 1.3.2, respectively. Using this approach, we can
define singular perturbed operators in the Hilbert space H, by taking the restrictions of the opera-
tors A� just defined �see Eq. �1.45� of Ref. 3 for the domain�. We will use this definition and we
will use the same notation. The operators defined in this way are self-adjoint.

If Ȧ is a symmetric operator in H with deficiency indices �1,1�, as in Sec. II A, the self-adjoint

extension A� of Ȧ described in Proposition 2.3, with �=ctg � �or in Prop. 2.9, when Ȧ= Q̇�,
coincides with the singular rank 1 perturbation A� of the operator A0 if

1

�
=

1

�
− c ,

by Theorem 1.3.3 and the results of Sec. 1.3 of Ref. 3, and where c is a real number. Now, the
mapping

d:f � 

�n

�n�x − a�f�x�dnx ,

defines a functional on H2=W2,2��n�, and it is easy to see that d�H−2−H−1 �see also Ref. 3, Sec.
1.5.1�. However, �d�−2�1, thus we need to take in account a normalization factor and we define
a=a / �d�−2 �note that �d�−2�0�. Since

a�f� =
f�a�

�d�−2
,

the operator −�� corresponds to the singular rank 1 perturbation of the operator −�0=−�0,

− �� = − �0 + �ac� · �a = − �0 +
�

�d�−2
2 dc� · �d ,

if we take 1 /�=1 /�−c, for any real c. If we compare this with the formal regularization −�gR

=−�+gR of the formal perturbed operator −�g=−�0+g introduced in Sec. I �see Eqs. �3� and
�5��, we get gR=� / �d�−2

2 and, hence,
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�d�−2
2

�
=

1

gR
+ c�d�−2

2 .

Summing up, we have proved that the regularized formal operator −�gR =−�+gR, describing
the Laplace operator with a delta type interaction considered in the introduction, corresponds to
the operator −��=−��=�/�1+c��, with �= �d�−2

2 gR, and with any real c, and therefore, it is unitary
equivalent to the operator Q�=�/�1+c��, defined explicitly in Secs. II D and II E, respectively, when
�n=Rn or Hn. The resolvents are given by taking Fourier transform of the resolvents given in
Lemmas 2.17 and 2.21, In all cases, the operator −�0 is the maximal operator, and the difference
of the resolvents R�� ,−�gR�−R�� ,−�0� is of trace class. The trace is given in Lemmas 2.19 and
2.23.

In particular, we use this result in the formula for the difference of the resolvents given in
Proposition 2.11. Since e is the Fourier transform of d, �d�−2

2 = �e�−2
2 = ��+�0

2=an, we obtain

�R��,− �gR� − R��,− �0��� =
1

1

gR
+ anc + bn − gn���



�n

ē�x��R��,− �0����x�dnx��. �15�

As observed in Ref. 3, we have two free constants in this formula, and therefore, a two
parameter family of operators. While the constant gR has a physical meaning, since it is the
coupling constant discussed in Sec. I, the constant c should be fixed. However, a prescription to fix
the constant c has been introduced in Sec. 1.3.3 of Ref. 3 for the class of the homogeneous
operators, defined as follows. Suppose there exists a group G of unitary transformations of the
Hilbert space H. An operator A is said to be homogeneous if it rescales in an appropriate way
under the action of G, as in Lemma 1.3.2 of Ref. 3. Now, suppose the operator A0 is homogeneous
according to this definition. If this is the case, in the same lemma a condition is given for the
existence of a singular rank 1 perturbation A� of A0, and its unicity is proved. The proof is based
on the fact that the self-adjoint operator A� satisfies the same symmetry property as A0 for one and
only one value of the constant c. This condition fixes the value of c. The case of the Laplace
operator −� in R3 was discussed in Sec. 1.5.5 of Ref. 3, where it is shown that −� is an
homogeneous operator with respect to the group of the scaling transformations of L2�R3�. We
review this case and we also investigate the one dimensional case in Sec. IV B. However, as
observed at the end of Sec. 1.3.3 of Ref. 3, in the two dimensional case, the Laplace operator is
homogeneous but the condition for the existence of the singular rank 1 perturbation is not satisfied.
It follows that singular rank 1 perturbations of the Laplace operator in dimension 2 do not exist.

The situation is more difficult for the case of the Hilbert space L2�Hn�, n=1,2 ,3. In this case,
we do not have the group of symmetry given by scaling transformations and, consequently, the
prescription described above does not apply. On the other side, the situation is more delicate
because of the following reason. If we compare the formula for the resolvent given in Eq. �15�
with the heuristic formula given in Eq. �5�, a straightforward calculation shows that the two
coincide if and only if we identify

1

gR
=

1

gR
+ anc + bn.

This condition can be satisfied either reregularizing the coupling constant, or assuming the
condition c=−bn /an. Since the constants an and bn depend on the geometry through the parameter
a, the first possibility contradicts the plausible physical requirement that the coupling constant
should not depend on the geometry. Therefore, we will assume the second possibility. With this
choice, the self-adjoint extension associated with the coupling constant gR is characterized in the
following proposition and its corollary, whose proofs follow by the results of the previous sec-
tions.

Proposition 3.1: The operator −�gR is the self-adjoint extension of the nonmaximal multipli-

cation operator −�̇ with resolvent
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R��,− �gR�� = R��,− �0�� +
1

1

gR
− gn���



�n

ē�x��R��,− �0����x�dnx��,

���x� =
e�x�

�x�2 − �
,

where ����−�gR����−�0�, and either e�x�=eiax and the functions gn��� are given for n
=3,2 ,1 and �n=Rn in Sec. II D or e�x�=sin�ax� and the gn��� are given for n=3,2 ,1 and �n

=Hn in Sec. II E. We assume gRgn����1, which corresponds to pure continuum spectrum (see
Lemma 3.4).

Corollary 3.2: The difference of the resolvent R�� ,−�gR�−R�� ,−�0� is trace class with trace

Tr�R��,− �gR� − R��,− �0�� = −
1

1

gR
− gn���



�n

�e�x��2

��x�2 − ��2dnx .

Remark 3.3: In other words, we obtain formulas for the trace of the difference of the resol-
vents Tr�R�� ,−�gR�−R�� ,−�0�� simply by taking the correspondent formulas given in Lemmas

2.19 and 2.23 and making the substitution 1 /gR=1 / �an /�+bn� or 1 /gR=1 / �ân /�+ b̂n�, respec-
tively.

Explicit formulas for the trace for the cases of interest will be given in Sec. IV.
We conclude this section by studying the eigenvalues of the operators −�gR.
Lemma 3.4: Let −�gR be the operator with resolvent given in Proposition 3.1. Then, the point

spectrum of −�gR, Spp�−�gR�=Spd�−�gR�, is given as follows:

• if �n=R3 or �n=R1, then Spp�−�gR�=� if gR�0, while there is one negative eigenvalue
otherwise;

• if �n=H3, then Spp�−�gR�=� if a�−2gR /�2, while there is one negative eigenvalue other-
wise; and

• if �n=H1, we distinguish two cases: if gR is finite, then Spp�−�gR�=� if a�2gR /�, while
there is one negative eigenvalue otherwise; if gR=�, then Spp�−�gR�= ��2k2 /a2k�Z0

.

Proof: Assume that Im ���0. Consider first the case of �n=Rn. Then, the first statement
follow from Theorems 1.1.4 and 3.1.4 of Ref. 2.

Next, consider the case of �n=Hn. If n=3, the possible eigenvalues are the solutions of the
equation

1

gR
−

�2

2
i�� +

�2

4a
e2ia�� = 0. �16�

Let ��=x+ iy. Then, Eq. �16� becomes

b − i�x + iy� +
e2ia�x+iy�

2a
= b + y − ix +

e−2ay

2a
�cos�2ax� + i sin�2ax�� = 0,

with b=2 /�2gR, and separating the real and imaginary parts

�b + y +
e−2ay

2a
cos�2ax� = 0

x −
e−2ay

2a
sin�2ax� = 0. � �17�
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Since �=x2−y2+2ixy must be real, ��=x+ iy must be purely real or purely imaginary. Thus,
we look for solutions with x=0 or y=0. In the first case, x=0, the system in Eq. �17� reduces to
the equation

y = − b −
e−2ay

2a
,

that can be solved graphically with f1�y�=y, f2�y�=−b−e−2ay /2a. Since we have assumed y�0,
the existence of solutions depends on the value of f2�0�. If f2�0��0, then there are no solutions.
Since

f2�0� = − b −
1

2a
,

and this quantity is negative for all a if gR�−2a /�2, it follows that there are no solutions for all
a and gR�−2a /�2, and there is one negative eigenvalue otherwise. In the second case, y=0, and
the system becomes

�b +
1

2a
cos�2ax� = 0

x −
1

2a
sin�2ax� = 0,�

which has only the trivial solution, x=0 �b=−2 /2a�.
If n=2, the possible eigenvalues are the solutions of the equation

1

gR
−

�

4
log�− �� +

�

2
K0�2a��� = 0. �18�

If n=1, the possible eigenvalues are the solutions of the equation

1

gR
−

�i

4��
�1 − e2ia��� = 0. �19�

With b=4 /gR�, Eq. �19� becomes

ib�� + 1 − e2ia�� = 0,

which gives the system

�1 − by − e−2ay cos�2ax� = 0

bx − e−2ay sin�2ax� = 0.
� �20�

With x=0, we obtain

y =
1

b
−

e−2ay

b
.

Since f2�y�= 1
b −e−2ay /b has tangent with angular coefficient f2��0�=2a /b, the system in Eq.

�20� has one positive solution if and only if a�b /2. With y=0, the system in Eq. �20� becomes

�1 − cos�2ax� = 0

bx − sin�2ax� = 0.
�

This system has only the trivial solution x=0 if b�0 and has infinitely many solutions x
=�k /a, k�Z, if b=0.
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We point out that the spectrum in the case H1= �0,��, gR=�, is as expected since in this case
the operator reduces to the sum of the Laplacian on the positive half line with Dirichlet boundary
conditions, plus the Laplacian on the interval �0,a�.

IV. DETERMINANT AND PARTITION FUNCTIONS

The aim of this section is to study the determinant of the operators described in Sec. III and,
consequently to obtain explicit expression for the partition function of the associated models of the
Casimir effect. We first recall how the zeta function regularization Ref. 19 �see also Ref. 10 and
references therein� is used to define the infinite determinants of self-adjoint positive operators A.
In fact, one defines

det� A = e−���0,A�,

where the zeta function of A is by definition

��s,A� = �
��Sp A

�−s,

for Re�s� sufficiently large and analytically continued elsewhere. Accordingly, we have for the the
partition function Z= �det� �2A�−1/2,

log Z = 1
2���0,A� − 1

2��0,A�log �2,

where �, a real nonvanishing number, is the usual renormalization parameter.
More precisely, we need relative zeta functions and relative zeta determinants. We recall first

the main definitions and some properties of relative zeta determinants in Sec. IV A, and then we
apply this method to the operators of interest in Sec. IV B.

A. Relative zeta determinant and relative partition function

We will use the notation introduced in Ref. 30 for the relative zeta functions and we refer to
that work or to the original paper of Müller for more details.24

Let H be a separable Hilbert space, and let A and A0 be two self-adjoint non-negative linear
operators in H. Suppose that Sp A=Spc A, namely, that A has a pure continuous spectrum. We
recall that R�� ,T�= ��I−T�−1 denotes the resolvent of the operator T and ��T� the resolvent set.
Then, we introduce the following set of conditions on the pair �A ,A0�:

�B1� the operator R�� ,A�−R�� ,A0� is of trace class for all ����A����A0�;
�B2� as �→� in ��A����A0�, there exists an asymptotic expansion of the form

Tr�R��,A� − R��,A0�� � �
j=0

�

�
k=0

Kj

aj,k�− ���j logk�− �� ,

where −�� . . . ��1��0, � j→−�, for large j, and aj,k=0 for k�0; and
�B3� as �→0, there exists an asymptotic expansion of the form

Tr�R��,A� − R��,A0�� � �
j=0

�

bj�− ���j ,

where −1��0��1� . . ., and � j→+�, for large j.
We introduce the further consistency condition
�C� �0��0.
It was proved in Ref. 30 that if the pair of non-negative self-adjoint operators �A ,A0� satisfies

conditions �B1�–�B3�, then it satisfies conditions �1.1�–�1.3� of Ref. 24. In this situation, we define
the relative zeta function for the pair �A ,A0� by the following equation;
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��s;A,A0� =
1

��s�
0

�

ts−1 Tr�e−tAc − e−tA0�dt , �21�

when �0+1�Re�s���0+1, and by analytic continuation elsewhere, and we define the regular-
ized relative determinant of the pair of operators �A ,A0� by

det��A,A0� = e−�d/ds����s ;A,A0��s=0.

Introducing the relative spectral measure, we have the following useful representation of the
relative zeta function.30

Proposition 4.1. Let A be a non-negative self-adjoint operator and assume that there exists an
operator A0 such that the pair �A ,A0� satisfies conditions (B1)–(B3) and (C). Then,

��s;A,A0� = 

0

�

v−2se�v;A,A0�dv ,

where the relative spectral measure is defined by

e�v;A,A0� =
v
�i

lim
�→0+

�r�v2e2i�−i�;A,A0� − r�v2ei�;A,A0�� ,

r��;A,A0� = Tr�R��,A� − R��,A0�� .

The integral, the limit, and the trace exist.
Accordingly, we also define the zeta regularized partition function of a model described by the

operator A, under the assumption that there exists a second operator A0 such that the pair of
operators �A ,A0� satisfies assumptions �B1�–�B3�, by

log Z = 1
2���0;A,A0� − 1

2��0;A,A0�log �2, �22�

where �, a real nonvanishing number, is the usual renormalization parameter.
Next, we recall the main result in Ref. 30 about the decomposition of the relative partition

function of a finite temperature quantum field theory on an ultrastatic space time. Let M be a
smooth Riemannian manifold of dimension n, n�N, and consider the product X=S�/2�

1 �M,
where Sr

1 is the circle of radius r. Let � be a complex line bundle over X, and L a self-adjoint
non-negative linear operator in the Hilbert space H�M� of the L2 sections of the restriction of �
onto M with respect to some fixed metric g on M. Let H be the self-adjoint non-negative operator
H=−�u

2+L in the Hilbert space H�X� of the L2 sections of � with respect to the product metric
du2 � g on X and with periodic boundary conditions on the circle. Assume that there exists a
second operator L0 defined on H�M� such that the pair �L ,L0� satisfies the previous assumptions
�B1�–�B3�. Then, by Lemma 2.2 of Ref. 30, it follows that there exists a second operator H0

defined in H�X� such that the pair �H ,H0� satisfies those assumptions too. Under these require-
ments, we introduce the relative zeta regularized partition function of the model described by the
pair of operators �H ,H0� using Eq. �22�, and we have the following result �Ref. 30 Proposition
3.1.�

Proposition 4.2. Let L be a non-negative self-adjoint operator on M, and H=−�u
2+L, on Sr

1

�M as defined above. Assume that there exists an operator L0 such that the pair �L ,L0� satisfies
conditions (B1)–(B3). Then,

��0;H,H0� = − � Res1
s=−1/2

��s;L,L0� ,

���0;H,H0� = − � Res0
s=−1/2

��s;L;L0� − 2��1 − log 2�Res1
s=−1/2

��s;L,L0� − 2 log ���;L,L0� ,
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where H0=−�u
2+L0, and the relative Dedekind eta function is defined by

log ��	;L,L0� = 

0

�

log�1 − e−	v�e�v;L,L0�dv .

The residues and the integral are finite.

B. Relative determinant for the Laplacian in the whole space

The aim of this section, and of the following one, is to investigate the determinant and the
partition function of the operator −�gR described in Sec. III by means of the technique described
in the previous section. More precisely, we consider in this section the operator acting in the space
L2�Rn�, and in the following section the operator acting in the half space L2�Hn�. However,
recalling the analysis of Sec. III, singular rank 1 perturbations of the Laplace operator on L2�Rn�
according to the definition given in Ref. 3 are well defined only for n�2, n�3. As a consequence,
in the following, we shall restrict ourselves to the cases n=1 and n=3.

Remark 4.3. The operator −�gR in the three dimensional space was originally described in
Ref. 5 and, more recently, in Ref. 2 (Sec. 1.1), and in Ref. 3 (Sec. 1.5). The operator −�gR in the
one dimensional space was investigated in Ref. 1 (Sec. 1.3). In particular, it is worth to observe
that the operators described by Albeverio and Kurasov are obtained as rank 1 singular perturba-
tions of the maximal operator −�0 (in the language of Ref. 3 and Sec. III) fixing the value of the
free parameter c by imposing the preservation of the symmetry under scaling transformations (as
explained in Sec. III), while here we fix the value of the constant c by the condition described at
the end of Sec. III, namely, c=−bn /an. The two different prescriptions, however, define the same
operator as follows by comparing the formulas for the difference of the resolvents given in Ref. 2
(Theorems I.1.1.2 and I.3.1.3) with the ones obtained here using Proposition 3.1 and Lemma 2.17.

The relative zeta function and the relative partition function for the operator −�gR in R3 have
been evaluated in Sec. 4.1 of Ref. 30, and the following results were obtained:

��s;− �gR,− �0� =
1

2

�2�2gR�2s

cos �s
,

log ��	;− �gR,− �0� = log �� 	

4�3gR
	 +

1

2
log

	

4�3gR
−

	

4�3gR
�log

	

4�3gR
− 1	 −

1

2
log 2� ,

log Z = 2�log
�

2�2gR
− 1	 �

8�3gR
− log ���;− �gR,− �0� .

For completeness, we investigate here the one dimensional case. The trace of the difference of
the resolvents is given in Corollary 3.2, and using the results of Sec. II D �see also Remark 3.3�,
we obtain

r��;− �gR,− �0� = Tr�R��,− �gR� − R��,− �0�� = −
1

2��ib�� + 1�
,

where b=1 /�gR. The expansion for large � is

r��� =
1

2ib�3/2 + O� 1

�2	, Im �� � 0,

and for small �

r��� = −
1

2�
+ O�1� .
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It follows that all the conditions �B1�–�B3� of Sec. IV A are satisfied with �0=− 3
2 or �0=

−1, and �0=−1. However, it should be noted that since �0=− 3
2 if b�0, while �0=−1, if b=0, then

condition �C� is satisfied when b�0, but is not satisfied when b=0. This is consistent with the fact
that the limit case b=0 gives gR=�, which corresponds to the limit case of the Laplacian with
Dirichlet boundary condition at x=0, and a relative zeta function cannot be defined in this case.

Next, we evaluate the relative spectral measure

e�v;L,L0� =
v
�i

lim
�→0+

�r�v2e2i�−i�;L,L0� − r�v2ei�;L,L0�� .

We obtain �note that the spectral measure vanishes in both limit cases b=0 and b=�, corre-
sponding to the Laplacian with Dirichlet boundary condition at x=0 and to the free Laplacian�

e�v;− �gR,− �0� = −
b

��1 + b2v2�
,

and a simple calculation using the formula for the zeta function given in Proposition 4.1 gives

��s;− �gR,− �0� = −
��gR�−2s

2 sin��s�
.

Using the definition of the relative Dedekind eta function and Eq. �22� for the partition
function, we also obtain

log ��	;− �gR,− �0� = − log ��gR

2
		 −

1

2
log

gR

2
	 +

gR

2
	�log

gR

2
	 − 1	 +

1

2
log 2� ,

log Z = −
�

4
gR� − log ���;− �gR,− �0� .

C. Relative determinant for the Laplacian in the half space

We pass now to study the case of main interest, namely, the operator −�gR acting in the space
L2�Hn�, n=1 and 3. The case n=2 presents nontrivial technical aspects that we are not able to
tackle at the moment, and therefore, its investigation is postponed to a further occasion.

1. The case n=3

The operator −�gR in H3 is the operator with resolvent given in Proposition 3.1 and corre-
sponds to the Fourier transforms of the operator investigated in Sec. II E. In order to apply the
results of Sec. IV A, we first need to check conditions �B1�–�B3�. By Lemmas 2.15 and 3.4, the
operator −�gR has pure continuous spectrum coinciding with the non-negative real axis for all
gR�0. We will restrict ourselves to this case. Consider the pair �−�gR ,−�0�. By Corollary 3.2 and
Lemma 2.23 �see also Remark 3.3�, the difference of the resolvent is of trace class with trace

r��;− �gR,− �0� = Tr�R��,− �gR� − R��,− �0�� =
�2�1 − e2ai���

2i��� 1

gR
−

�2

2
i�� +

�2

4a
e2ia��	

=
1 − e2ai��

i���b − i�� +
e2ia��

2a
	 , �23�

where b=2 /�2gR and a is a real positive number that gives the position of the delta interaction.
We obtain the expansions for large ���
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r��� =
1

�
−

ib

�3/2 + O� 1

�2	, Im �� � 0,

and for small ���

r��� = −
4a2

1 + 2ab
−

4a3i

1 + 2ab
�� −

16a4�1 − ab�
3�1 + 2ab�2 � + O��3/2� ,

and this shows that all the conditions �B1�–�B3� of Sec. IV A are satisfied with �0=−1��0=0,
and therefore, also condition �C� is satisfied.

Second, we evaluate the relative spectral measure

e�v;L,L0� =
v
�i

lim
�→0+

�r�v2e2i�−i�;L,L0� − r�v2ei�;L,L0�� . �24�

Substitution of the expression in Eq. �23� into Eq. �24� gives

e�v;− �gR,− �0� = −
4a

�

1 − 2ab + 2ab cos�2av� − 2av sin�2av� − cos�2av�
1 + 4a2�b2 + v2� + 4ab cos�2av� − 4av sin�2av�

.

The function e�v ;−�gR ,−�0� is a regular function of v for all v�0. We show that there is no
solution with v�0 of the equation

1 + 4a2�b2 + v2� + 4ab cos�2av� − 4av sin�2av� = 0.

Consider the two curves,

f1�v� = 4av sin�2av� − 4a2v2

and

f2�v� = 1 + 4a2b2 + 4ab cos�2av� ,

and assume that a ,b ,v�0. Obviously, f1�v�� f3�v�, where f3�v�=4av−4a2v2 is a parabola facing
down with vertex V= �1 /2a ,1� that intercepts the horizontal axis in v=0 and v=1 /a. On the other
hand,

�1 + 2ab�2 � f2�v� � �1 − 2ab�2,

and f2�v� oscillates around the value 1+4a2b2, and f2�� /4a�=1+4a2b2. This suggests to split the
problem into three intervals �0,� /4a�, �� /4a ,1 /a�, and �1 /a ,��. In the interval �0,� /4a�, f2 is
decreasing, and therefore,

f2�v� � f2� �

4a
	 = 1 + 4a2b2.

On the other hand, in the same interval we have f3�v��1, and therefore f3� f2 in this interval.
In the interval �1 /a ,��, f3�v��0, while f2�v�� �1−2ab�2, and the value is zero if and only if v
=��1+2k� /2a, k�Z. However, we have f3�v�=0 if and only if v=0 or v=1 /a, and 1 /a
�� /2a. Therefore, f3� f2 in this interval. Eventually, consider the interval �� /4a ,1 /a�. In this
interval, f2 is decreasing and hence

f2�v� � f2�1

a
	 = 1 + 4a2b2 + 4ab cos 2.

Also f3 is decreasing, and hence
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f3�v� � f2� �

4a
	 = � −

�2

4
� 0.

Now, we can check that 1+4a2b2+4ab cos 2��−�2 /4, for all a and b, hence f3� f2 on this
interval, and this concludes the proof that e�v ;−�gR ,−�0� is a regular function of v for all v�0.

Third, we use Proposition II.1 in order to obtain a suitable analytic extension of the relative
zeta function. For we need the behavior for small and large v of the function e�v ;−�gR ,−�0�. We
have

e�v;− �gR,− �0� = O�v2�

for v→0+, and

e�v;− �gR,− �0� =
2 sin�2av�

�v
+

2 sin2�2av�
a�v2 −

2�1 − 2ab�sin2�av�
a�v2 + O�v−3�

for v→+�. So we decompose

e�v;− �gR,− �0� = e0�v;− �gR,− �0� + e��v;− �gR,− �0� ,

where

e��v;− �gR,− �0� =
2 sin�2av�

�v
+

2 sin2�2av�
a�v2 −

2�1 − 2ab�sin2�av�
a�v2 ,

e0�v;− �gR,− �0� = e�v;− �gR,− �0� − e��v;− �gR,− �0� ,

and

��s;− �gR,− �0� = �0�s;− �gR,− �0� + ���s;− �gR,− �0�

= 

0

�

v−2se0�v;− �gR,− �0�dv + 

0

�

v−2se��v;− �gR,− �0�dv .

Now e0�v ;−�gR ,−�0� goes to a constant for v→0 and vanishes as v−3 for v→�, and so the
function �0�s ;−�gR ,−�0� is a regular function of s in the interval −1�Re�s��

1
2 . The function

���s ;−�gR ,−�0� can be studied explicitly. We evaluate the integrals



0

�

v−2s−1 sin�2av�dv = − �2a�2s sin��s���− 2s�

for − 1
2 �Re�s��

1
2 �Ref. 17, Sec. 3.761.4�,



0

�

v−2s−2 sin2�av�dv = �2a�2s+1 sin��s���− 2s − 1� ,

for − 1
2 �Re�s��

1
2 �Ref. 17, Sec. 3.823�. Collecting, we have

���s;− �gR,− �0� =
4

�
�2a�2s sin��s���− 2s − 1��ab + s + 22s� .

Thus, we have the following representation for the relative zeta function when − 1
2 �Re�s�

� 1 / 2:

��s;− �gR,− �0� =
4

�
�2a�2s sin��s���− 2s − 1��ab + s + 22s� + 


0

�

v−2se0�v;− �gR,− �0�dv .
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This representation can be used in order to study the analytic continuation and, in particular,
evaluate the residue and the finite part at s=− 1

2 . We obtain

Res1
s=−1/2

��s;− �gR,− �0� =
2

�2gR
,

Res0
s=−1/2

��s;− �gR,− �0�

=
1 + log 2

�a
+

2b�� + log�2a��
�

+ �0�−
1

2
;− �gR,− �0	 =

1 + log 2

�a

+
4�� + log�2a��

�2gR
+ 


0

�

ve0�v;− �gR,− �0�dv .

Using Proposition 4.2 and the formula in Eq. �22�, we obtain the formula for the relative
partition function

log Z = −
�

2
Res0
s=−1/2

��s;− �gR,− �0� − ��1 − log�2���Res1
s=−1/2

��s;− �gR,− �0� − log ���;− �gR,− �0�

=
2��log�2�� − 1�

�2gR
+

�

2�1 + log 2

�a
+

4�� + log�2a��
�2gR

− 

0

�

ve0�v;− �gR,− �0�dv	
− log ���;− �gR,− �0� .

As a consequence, the vacuum energy of the system reads as

Ec = − lim
�→�

�

��

log Z =
1 + log 2

2�a
+

2

�2gR
�� + 1 + log

a

�
	 +

1

2



0

�

ve0�v;− �gR,− �0�dv ,

since for large �, the exponential in the integral dominates in the definition of log ��� ;−�gR ,
−�0�.

We are interested in the behavior of the force p=−�� /�a�Ec of the vacuum for small values of
a. We need the expansion for small a of the integral

�0�−
1

2
;− �gR,− �0	 = 


0

�

v−2se0�v;− �gR,− �0�dv =
1

a



0

� x

a
e0� x

a
;− �gR,− �0	dx .

Therefore, we study the function

f�x,a� =
x

a
e0� x

a
;− �gR,− �0	 =

N�x,a�
D�x,a�

,

where

N�x,a� = − 4x sin x�cos�5x� + 4ab cos�3x� + 4a2b2 cos x� − 2 sin x�2ab sin�5x�

+ �1 + 8a2b2�sin�3x� + 4ab�1 − ab + 2a2b2�sin x�

and

D�x,a� = �x�1 + 4a2b2 + 4x2 + 4ab cos�2x� − 4x sin�2x�� = �xg�x,a� .

This shows that the integral
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0

�

f�x,a�dx = �
i



0

� Ni�x,a�
D�x,a�

dx

decomposes as a finite sum of terms, and in each term the numerator factors as

Ni�x,a� = apihi�x� ,

where pi is 0, 1, 2, or 3, and the functions hi�x� are bounded. Thus, it remains to deal with the
denominator. As a function of a, g�x ,a� is a parabola “facing up” so g�x ,a��g�x ,a0�, where a0 is
the vertex: so the solution of �ag�x ,a�=8b2a+4b cos�2x�=0, i.e., a0=−cos�2x� /2b. Therefore,

D�x,a� � D�x,a0� = �x�1 +
cos2�2x�

2
+ 4x2 − 4x sin�2x�	 � 0,

where it is easy to see that the function D�x ,a0� is positive for all x. Thus, �D�x ,a��� �D�x ,a0��,
and



0

�

�f�x,a��dx � �
i



0

� api�hi�x��
�D�x,a0��

.

Now, it is also easy to see that



0

� api�hi�x��
�D�x,a0��

� �

for all i since api�hi�x�� / �D�x ,a0���1 /x2 for each i. This proves that the integral



0

� x

a
e0� x

a
;− �gR,− �0	dx

converges uniformly for a in compact sets, and therefore, we can evaluate the behavior for small
a taking the expansion of the integrand for small values of a. We obtain

�0�−
1

2
;− �gR,− �0	 =

1

a
�I0 + abI1 + a2b2I2� + O�a2� .

The integrals In can be performed numerically. In particular, we have

I0 = −
2

�



0

� sin u�sin�3u� + 2u cos�5u��
u�1 + 4u2 − 4u sin�2u��

du � − 0.12,

I1 = −
4

�



0

� sin u�4u�1 + 4u2�cos�3u� − 4u cos u − 4u2 sin�5u� + �1 + 16u2�sin u�
u�1 + 4u2 − 4u sin�2u��2 � − 0.51,

I2 = −
32

�



0

� u sin u�8u3 cos u − 6u cos�3u� − 12u2 sin u + sin�5u��
�1 + 4u2 − 4u sin�2u��3 du � − 1.04.

This gives the behavior of the force for small a,

p = −
�

�a
Ec =

1 + log 2 + 2�I0

2�a2 −
2

�2gRa
−

2I2

�4gR
2 + O�a� .

Using the numerical results given above, we see that for small values of a the force is positive
�p�0.15 /a2�.
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2. The case n=1

The operator −�gR in H1= �0,�� is the operator with resolvent given in Proposition 3.1 and
corresponds to the Fourier transform of the operator investigated in Sec. II E. By Lemmas 2.15
and 3.4, the operator −�gR has pure continuous spectrum coinciding with the non-negative real
axis if a�2gR /���. We will restrict our considerations to this case. Consider the pair �−�gR ,
−�0�. By Corollary 3.2 and Lemma 2.23 �see also Remark 3.3�, the difference of the resolvent is
of trace class with trace

r��;− �gR,− �0� = Tr�R��,− �gR� − R��,− �0�� = −
�

4i�3/2
1 + e2ai���2ia�� − 1�
1

gR
+

�

4i��
�1 − e2ia���

.

We obtain the expansions for large values of ���

r��;− �gR,− �0� =
igR�

4�3/2 + O� 1

�2	, Im �� � 0,

and for small values of ���

r��;− �gR,− �0� =
ia2gR�

�agR� − 2���
+

a3gR��agR� − 8�
3�agR� − 2�2 + O���� .

This shows that all the conditions �B1�–�B3� of Sec. IV A are satisfied with �0=−3 /2��0

=−1 /2, and therefore, condition �C� is also satisfied. Second, we evaluate the relative spectral
measure �see definition in Proposition 4.1�. We obtain

e�v;− �gR,− �0� =
4b sin�av�

�

�ab + 1�sin�av� − 2av cos�av�
b2 + 2v2 − b2 cos�2av� − 2bv sin�2av�

,

where we have set b=�gR /2. Proceeding as in the previous section, we show that the function
e�v ;−�gR ,−�0� is a regular function of v for all v�0. Third, we use Proposition 4.1 in order to
obtain a suitable analytic extension of the relative zeta function. We need the behavior for small
and large values of v of the function e�v ;−�gR ,−�0�. We have

e�v;− �gR,− �0� =
2a2b

��1 − ab�
+ O�v2�

for v→0+, and

e�v;− �gR,− �0� =
2ab sin�2av�

�v
+

2b�ab sin2�2av� − �1 + ab�sin2�av��
�v2 + O�v−3�

for v→+�. So we decompose

e�v;− �gR,− �0� = e0�v;− �gR,− �0� + e��v;− �gR,− �0� ,

where

e��v;− �gR,− �0� =
2ab sin�2av�

�v
+

2b�ab sin2�2av� − �1 + ab�sin2�av��
�v2 ,

e0�v;− �gR,− �0� = e�v;− �gR,− �0� − e��v;− �gR,− �0� ,

and
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��s;− �gR,− �0� = �0�s;− �gR,− �0� + ���s;− �gR,− �0�

= 

0

�

v−2se0�v;− �gR,− �0�dv + 

0

�

v−2se��v;− �gR,− �0�dv .

As for the three dimensional case, e0�v ;−�gR ,−�0� is a constant at v=0 and goes to zero as
v−3 at infinity. Then �0�s ;−�gR ,−�0� is a regular function of s in the interval −1�Re�s��

1
2 .

The function ���s ;−�gR ,−�0� can be studied explicitly. The integrals involved are of the same
type of the ones evaluated in the previous section. For − 1

2 �Re�s��
1
2 , we obtain

���s;− �gR,− �0� =
�2a�2s+1b�2s + �22s+1 − 1�ab�

�
��− 2s − 1�sin��s� .

Thus, we have the following representation for the relative zeta function when − 1
2 �Re�s�

�
1
2 :

��s;− �gR,− �0� =
�2a�2s+1b�2s + �22s+1 − 1�ab�

�
��− 2s − 1�sin��s� + 


0

�

v−2se0�v;− �gR,− �0�dv .

This representation can be used in order to study the analytic continuation and, in particular,
evaluate the residue and the finite part at s=− 1

2 . We obtain

Res1
s=−1/2

��s;− �gR,− �0� = −
b

2�
= −

gR

4
,

Res0
s=−1/2

��s;− �gR,− �0� =
b�1 − � − log�2a� + ab log 2�

�
+ �0�−

1

2
;− �gR,− �0	

=
gR�2 − � − 2 log�2a� + agR� log 2�

4
+ 


0

�

ve0�v;− �gR,− �0�dv .

Using Proposition 4.2 and the formula in Eq. �22�, we obtain the formula for the relative
partition function

log Z = −
�

2
Res0
s=−1/2

��s;− �gR,− �0� − ��1 − log�2���Res1
s=−1/2

��s;− �gR,− �0� − log ���;− �gR,− �0�

=
�gR

8
�2� − agR� log 2 + 2 log

a

�
	 −

�

2



0

�

ve0�v;− �gR,− �0�dv − log ���;− �gR,− �0� .

As a consequence, the vacuum energy of the system reads as

Ec = − lim
�→�

�

��

log Z = −
gR

8
�2� − agR� log 2 + 2 log

a

�
	 +

1

2



0

�

ve0�v;− �gR,− �0�dv ,

since for large �, the exponential function dominates in the function log ��� ;−�gR ,−�0�.
We are interested in the behavior of the force p=−�� /�a�Ec of the vacuum for small a.

Therefore, we need an expansion for small values of a of the integral

�0�−
1

2
;− �gR,− �0	 = 


0

�

ve0�v;− �gR,− �0�dv .

Proceeding as in the previous section, we show that the integral converges uniformly on
compact subsets. Expanding for small values of a, we obtain
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�0�−
1

2
;− �gR,− �0	 = −

2 log 2

�
ab2 + O�a2� .

This gives the behavior of the force for small values of a,

p = −
�

�a
Ec =

gR

4a
+

gR
2� log 2

8
+ O�a� .

In this case, the force is positive for small values of a.
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APPENDIX

Lemma A.1: Let DN
n be the closed disk of radius N centered at the origin in Rn, n=1,2 ,3.

Then, for all ��C− �−� ,0� and for large N



DN

3

1

�x�2 − �
d3x = 4�N + 2�2i�� sgn�Im ��� + o�1� ,



DN

2

1

�x�2 − �
d2x = 2� log N − � log�− �� + o�1� ,



DN

1

1

�x�2 − �
dx =

i�
�� sgn�Im ���

−
2

N
+ o� 1

N
	 .

Proof: Using polar coordinates, we have



DN

3

1

�x�2 − �
d3x = 4�


0

N r2

r2 − �
dr = 4�N + 4��


0

N dr

r2 − �
= 4�N + 2�2i�� sgn�Im ��� + o�1� .

In a similar way, we get corresponding results for n=2 and 1.
Lemma A.2: For n=1,2 ,3, we have



Rn

dnx

��x�2 � i�2
=�

�2�2, n = 3

�2

2
, n = 2

�2

�2
, n = 1.�

Proof: We observe that

1

��x�2 � i�2
=

1

�x�4 + 1
=

1

2i
� 1

�x�2 + i
−

1

�x�2 − i
	 .

Then the results follow as a consequence of Lemma A.1.
Lemma A.3. Let BN

n be the closed half disk of radius N centered at the origin in Rn, n
=1,2 ,3. Then, for all ��C− �−� ,0�, a�Rn, and large N



BN

3

sin2�ax�
�x�2 − �

d3x = �N +
i�2

2
�� sgn�Im ��� −

�2

4a
e2ia�� sgn�Im ��� + o�1� ,
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BN

2

sin2�ax�
�x�2 − �

d2x =
�

2
log N −

�

4
log�− �� +

�

2
K0�2ai��� + o�1� ,



BN

1

sin2�ax�
�x�2 − �

dx =
i�

4�� sgn�Im ���
�1 − e2ia�� sgn�Im ���� −

1

2N
+ o� 1

N
	 ,

where K0�z� is a Bessel function.
Proof: �See also Ref. 17 Secs. 3.723.3 and 3.723.10�. First of all we observe that



BN

n

sin2�ax�
�x�2 − �

dnx =
1

2



DN
n

sin2�ax�
�x�2 − �

dnx =
1

4



DN
n

1

�x�2 − �
dnx −

1

4



DN
n

cos�2ax�
�x�2 − �

dnx .

Now we see that for n=1,2 ,3, the first integral in the latter line has been already computed in
Lemma 5.1, while for the second one, by taking polar coordinates and putting a on the positive
z-axis, we get �n=3�



DN

3

cos�2ax�
�x�2 − �

d2x = 2�

r=0

N 

u=−1

1 r2 cos�2aru�
r2 − �

dudr =
2�

a



r=0

N r sin�2ar�
r2 − �

dr

=
�2

a
e2ia�� sgn�Im ��� + o�1� ,

while for n=2,1, we obtain, respectively,



DN

2

cos�2ax�
�x�2 − �

d2x = − 2�K0�2ai��� + o�1� ,



−N

N cos�2ax�
x2 − �

dx =
�ie2ia�� sgn�Im ���

�� sgn�Im ���
+ o�1/N� ,

with K0�z� being a Bessel function. The thesis follows from these results and Lemma A.1.
By an easy computation, we get the following.
Lemma A.4: For n=1,2 ,3, a�Rn, and Im�����0, we have



Rn

dnx

��x�2 − ��2 =�
i�2

��
, n = 3

−
�

�
, n = 2

−
i�

2�3/2 , n = 1.
�

Lemma A.5: For n=1,2 ,3, a�Rn, and Im�����0, we have



Rn

sin2�ax�
��x�2 − ��2dnx =�

i�2

2��
�1 − e2ia��� , n = 3

−
�

2�
−

�ia
��

K1�− 2ia��� , n = 2

−
i�

4�3/2 �1 − e2ia��� +
�a

2�
e2ia��, n = 1,

�
where K1�z� is a Bessel function.

063502-36 Albeverio et al. J. Math. Phys. 51, 063502 �2010�

Downloaded 11 Nov 2012 to 143.107.252.54. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



Proof: As in Lemma A.3, we write



Rn

sin2�ax�
��x�2 − ��2dnx =

1

2



Rn

1

��x�2 − ��2dnx −
1

2



Rn

cos�2ax�
��x�2 − ��2dnx .

Then, choosing polar coordinates and putting a along the positive z-axis, for n=3, we get



R3

cos�2ax�
��x�2 − ��2d3x = 2�


r=0

� 

u=−1

1 r2 cos�2aru�
�r2 − ��2 dudr =

2�

a



r=0

� r sin�2ar�
�r2 − ��2 dr =

i�2

��
e2ia��.

In a similar way, we obtain



R2

cos�2ax�
��x�2 − ��2d2x =

2�ia
��

K1�− 2ia��� ,



R

cos�2ax�
�x2 − ��2 dx = − ��a

�
+

i�

2�3/2	e2ia��.

The thesis follows from these results and Lemma A.4.
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