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We discuss the spectral properties of a class of sequences of what we call ‘spectral’
type. We introduce an effective method to calculate the zeta invariants for this type
of sequence. Such invariants are given in terms of some new and old special functions,
and we consider a number of examples in which we study the properties of these
special functions.

1. Introduction

Since it was introduced in the early 1970s [2,25] as a tool to deal with determinants
of elliptic operators and analytic torsion, the zeta function has played a fundamental
role in the new discipline of geometric analysis, where analytic methods are used to
study geometrical objects. The zeta function technique in this context is a new tool
with which to obtain information. Such information is given in terms of particular
values of the zeta function, which consequently are called zeta invariants. The first
example is the Euler characteristic of a closed surface, given by the value of the
associated zeta function at the origin. In fact, it emerges that the more interesting
zeta invariants are precisely the values of the zeta function and that of its first
derivative at the origin, the latter being the so-called regularized determinant. An
enormous amount of work has been produced in this area since then, and very
important results have been achieved (just two examples are [11,18]). In particular,
the zeta function technique of regularizing the determinant of an elliptic operator
became of primary importance in mathematical physics [16]. In this direction, many
works [8,21,28,33,35] appeared in the literature, where the aim was to give complete
results for a number of cases where it was possible to find out a relationship with
some known special functions. These works are all related to the case of compact
connected Riemannian manifold, where the zeta function can always be defined in
a subset of the complex plane, by the sum

ζM (s) =
∞∑

n=1

λ−s
n

of the negative complex powers of the eigenvalues λn of the Laplace operator
induced by the Riemannian metric [26]. In particular, when a constant term is added
to the Laplace operator, the zeta invariants of the non-homogeneous resulting zeta
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864 M. Spreafico

function are related to those of the homogeneous zeta function by a generalization
(for the derivative) of the classical Lerch formula relating the derivatives of the
Riemann and Hurwitz zeta functions:

ζ ′
H(0, q) = ζ ′

R(0) + lnΓ (q).

From a more geometrical point of view, this is a relation between the regularized
determinants of the non-homogeneous and the homogeneous Laplacian operators
on the circle (see § 3.1). This is the point of view that we will take here, and in fact
one of our results is a series of generalizations of the above Lerch formula for some
interesting cases (see § 3). With this purpose in mind, the approach adopted here
consists in providing a general abstract setting for the problem: namely, in § 2 we
introduce the zeta function associated with a particular kind of sequence of com-
plex numbers that we call a sequence of spectral type, which covers all the cases of
interest. Besides the zeta function, we introduce, for such sequences, other spec-
tral functions, in terms of which we give a general Lerch formula (proposition 2.9).
Under this geometrical point of view, the main results of our analysis are an effec-
tive tool (generalizing a technique introduced in [32]) with which to calculate the
zeta invariants that apply for any compact connected manifolds (corollary 2.4), an
explanation of the appearance of the spectral functions in the generalized Lerch
formula, and a generalization of the latter on the 2-sphere (cf. the last remark
in [30, § 5]).

Taking another point of view, the Lerch formula is a good tool for providing infor-
mation (and, in particular, the constant term of the asymptotic expansion) for some
classes of special function. In the Lerch formula for the circle (see equation (3.1),
below), the derivatives of the homogeneous and non-homogeneous Riemann zeta
functions evaluated at s = 0 are related by means of the logarithm of the Gamma
function. When considering different types of zeta function, different types of spe-
cial functions will appear in the Lerch formula. From this point of view, the zeta
function technique is a very useful device with which to study the properties of
these special functions [5,19,29,31,33]. A class of zeta function that has been inves-
tigated for a long time is that of the multiple zeta functions [4]. As an application
of our methods, we analyse this class of zeta functions and the associated special
functions, obtaining in § 3.2 some new interesting interpretations and results. We
conclude by observing that this analysis is also very important in physics. In fact,
adding a constant to the Laplacian on a compact manifold means adding a constant
potential term m, usually a mass term, to the associated physical theory, and it is
of great importance in physics to know the behaviour for large and small m [9].

2. Sequences of spectral type

2.1. Definition and spectral functions

Let S be a sequence1 of complex numbers whose only accumulation point is the
point at infinity. For our purposes, we can assume without loss of generality that
0 /∈ S. We can order the elements of S using the natural numbers, and we write

1By a sequence of elements of a set X we mean a mapping from the natural numbers to X.
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S = {an}n∈N0 , with 0 < |a1| � |a2| � · · · . The number

α = lim sup
n→∞

lnn

ln |an| ,

is the exponent of convergence of the sequence S. If α is finite, the sequence is of
finite exponent. For a sequence S of finite exponent α, the series

∑∞
n=1 a−s

n con-
verges (locally) uniformly and absolutely for Re(s) > α, and if we assume Re(an) is
bounded below, the series

∑∞
n=1 e−ant also converges (locally) uniformly and abso-

lutely for t > 0. In geometry, the most natural situation where the above setting
applies is when S = σpP − ker P = {λn}∞

n=1 is the sequence of the positive eigenval-
ues of a linear operator P . The operator P can be an elliptic self-adjoint operator
on a compact manifold2, but more general settings are important. In particular,
for studying topology and geometry of manifolds, P is the Laplace operator ∆M

on a compact manifold M , and the associated zeta function ζ(s,∆M ) =
∑∞

n=1 λ−s
n

detects much information on the geometry and the topology of the space [26]. When
P is self-adjoint, positive definite and elliptic, there exists an asymptotic expansion
for the eigenvalues λn = Knε + o(nε), for large n, with some K, ε > 0, and the
function

∑∞
n=0 e−λnt is the trace of the heat operator and detP = e−ζ′(s,P ) is the

functional determinant of P [2]. A full asymptotic expansion [20, 24] for the trace
of the heat kernel

∞∑

n=0

e−λnt ∼ t−m/2
∞∑

j=0

ejt
j/2

can be obtained by using classical methods in pseudodifferential operator theory
(see, for example, [14]). As a consequence, the analytic continuation of the asso-
ciated zeta function is regular at s = 0 with ζ(0, ∆M ) = em − dim ker ∆M , and
has possible poles at s = 1

2 (m − j), j = 0, 1, 2, . . . , which are non-negative integers,
with residues

res1

(
ζ(s,∆M ), s =

m − j

2

)
=

ej

Γ ( 1
2 (m − j))

.

This can be obtained using the Mellin transform and the expansion for the trace
of the heat kernel. In particular, all the coefficients of odd index vanish if the
manifold has no boundary [6]. The growth estimate for the eigenvalues can be
deduced applying Ikehara’s Tauberian theorem [36] from the residues at the first
pole of the zeta function. Furthermore, in the case of the Laplace operator ∆M on
a manifold of dimension m, a better estimate for the growth of the eigenvalues is
available. That is to say, we have the Weyl formula [17,22,27] (where the coefficients
are known)

λn = K0n
2/m + O(n1/m),

or even

λn = K0n
2/m + K1n

1/m + o(n1/m),

if some suitable geometric conditions are satisfied. The above estimates also hold
if a constant (potential) term is added to the Laplacian. This suggests that we

2When M has a boundary, some suitable boundary conditions must be imposed [14, § 1.11].
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start the analysis from the properties of the sequence itself, with the final aim
of obtaining properties and relationships among the zeta invariants directly from
some information about the sequence. This is our point of view here. Our main
result is to show that the main zeta invariants are determined by knowledge of the
asymptotic expansion of a spectral function associated with S (proposition 2.6).
We can also introduce a sufficient condition on the sequence to ensure the existence
of such an expansion (lemma 2.5). To obtain these results we need to restrict the
class of allowed sequences. To do this we require two further conditions. First, we
need to introduce three spectral functions associated with S.

Given a sequence S = {an}∞
n=1 with finite exponent α, the zeta function associ-

ated with S is the function of the complex variable s defined by the series

ζ(s, S) =
∞∑

n=1

a−s
n ,

when Re(s) > α, and by analytic continuation elsewhere; if Re(an) is bounded
below, the heat function associated with S is the function of the real positive vari-
able t defined by the series

f(t, S) =
∞∑

n=0

e−ant,

with a0 = 0. For a sequence S as above, there exists a least integer p such that the
series

∑∞
n=1 a−1−p

n is convergent. If α is not an integer, p is the greatest integer less
than α; if α is an integer, p may be either α or α − 1. In any cases α − 1 � p � α.
The Weierstrass canonical product,

F (z, S) =
∞∏

n=1

(
1 +

z

an

)
exp

( p∑

j=1

(−1)j

j

zj

aj
n

)
,

converges uniformly and absolutely in any bounded closed region of the plane, and
F (z, S) is an integral function of finite order3 ρ = α (this is the first Borel theorem),
which vanishes if and only if z = −an for some n. The integer p is called the genus
of the canonical product, and F the Fredholm determinant associated with S.

We can now introduce the definition of the type of sequence we will work with.

Definition 2.1. First, we use the notation Σθ,c to denote the closed sector of the
positive complex plane of angle θ translated by the real constant c, namely

Σθ,c = {λ ∈ C | |arg(λ − c)| � 1
2θ}.

We call a sequence S = {an}∞
n=1 of finite exponent α a sequence of spectral type if

the following two properties hold:

(i) the points an are all contained in a translated closed sector Σθ,c of angle θ < π
and shift c > 0 of the complex plane;

3Recall that the order of an integral function of finite order f is

ρ = lim sup
r→∞

ln ln M(r)
ln r

,

where M(r) is the maximum modulus of f(z) on the circle |z| = r.
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(ii) the logarithm of the Fredholm determinant lnF (z, S) associated with S has
an asymptotic expansion in terms of powers and logarithms for large z along
any radius in the complex plane disjoint from −Σθ,c at least up to the constant
term, namely

lnF (z, S) =
K∑

k=0

J∑

j=0

aj,kzαj lnk z + o(1),

where the αj are real and α0 > α1 > · · · > αJ � 0.

The choice of characterizing a sequence of spectral type by a property of one of the
associated spectral functions is suggested by the main application, i.e. the Laplacian
over compact manifolds, where this property is always satisfied as we will show in
corollary 2.4. First, we show that the existence of an asymptotic expansion for the
Fredholm determinant and for the heat function imply each other. For, consider the
asymptotic sequences of functions (see [20] for terminology) fδ,j(t) = t−δ logj t and
gα,k(z) = zα logk z, where {δ} and {α} are any two sets of complex numbers with
Re(δ), Re(α) → −∞, and j/k = 0, 1, . . . , Jδ/Kα ∈ N, for each δ and α, respectively
(see also [7, p. 372]). We can then prove the following lemma.

Lemma 2.2. Let S = {an}∞
n=1 be a sequence with finite exponent and suppose the

points an are all contained in a sector Σθ,c, θ < π, c > 0. Then, the heat function
associated with S has a full4 asymptotic expansion with respect to the asymptotic
sequence {fδ,j(t) = t−δ logj t} as t → 0+ if and only if the logarithm of the Fred-
holm determinant associated with S has a full asymptotic expansion with respect to
the asymptotic sequence {gα,k(z) = zα logk z} as z → ∞ along any radius disjoint
from −Σθ,c.

Remark 2.3 (notation). We will often use the complex variable −λ = z, defined
by cutting the complex plane along the real positive axis and setting arg(−λ) = 0
on the line (−∞, 0], as usual, to deal with contour integrals of Hankel type (see, for
example, [37] for more details).

Proof. First, suppose the heat function has a full expansion. By classical asymptotic
analysis [20, 24], in order to prove that F (z, S) has an expansion it is sufficient to
prove that one of its derivatives has such an expansion. Thus, we introduce the
function

R(λ, S) =
d
dλ

lnF (−λ, S) =
∞∑

n=1

[
1

λ − an
+

p−1∑

j=0

λj

aj+1
n

]
,

which we call the resolvent function associated with S, together with its derivatives

R(k)(λ, S) =
dk

dλk
R(λ, S).

In particular, note that

R(p)(λ, S) =
dp

dλp
R(λ, S) = −p!ζ(p + 1, S − λ) = −p!

∞∑

n=1

(an − λ)−p−1,

4The equivalence of expansions of finite order can also be shown by a similar proof.
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since the last series is uniformly convergent and, by applying the Mellin transform,

R(p)(λ, S) = −
∫ ∞

0
tpeλt(f(t, S) − 1) dt.

Thus, we have expressed R(p)(λ, S) as the Laplace transform of the heat function
and we use the Watson lemma [24] to get the expansion for R(p) from that of f .

For the other implication, suppose that lnF (z, S) has a full expansion. Let Λθ,c =
{λ ∈ C | |arg(λ − c)| = 1

2θ} be the boundary of the sector Σθ,c appearing in the
definition of the sequence (where c < |a1|). Then, we can write

f(t, S) − 1 =
1

2πi

∫

Λθ,c

e−λtR(λ, S) dλ.

In fact, both the series are uniformly and absolutely convergent, and

1
2πi

∫

Λθ,c

e−λtR(λ, S) dλ =
∞∑

n=1

e−ant,

since the integrals of all the non-negative integer powers of (−λ) vanish, as may be
seen immediately by modifying the contour to the usual Hankel contour and using
the Hankel formula for the Gamma function. Next, we integrate by parts to get

f(t, S) − 1 =
t

2πi

∫

Λθ,c

e−λt lnF (−λ, S) dλ,

and we can use the expansion of the logarithm of the Fredholm determinant in the
above integral when t is small, changing the variable in λ/t. In fact, by modifying
the contour in a suitable way, we will get integrals of Hankel type in each term.

Corollary 2.4. The sequence of the eigenvalues of the Laplace operator with a
regular potential on a compact connected manifold is a sequence of spectral type.

Next, we give a sufficient condition for a sequence to be of spectral type. This is
quite a well-known result, but we present a direct simple proof for completeness.

Lemma 2.5. Let S = {an}∞
n=1 be a sequence of finite exponent α, and suppose the

following expansion for the general term of S holds for large n:

an =
J∑

j=0

Kjn
βj + o

(
1
n

)
,

with real Kj and βj, and 1/α = β0 > β1 > · · · > βJ � 0. Then, S is of spectral
type.

Proof. It is clear that the points of S are all contained in the real positive axis, up
to a finite number of cases. Then, by a similar argument to that in lemma 2.2, we
just have to prove that the associated heat function has an asymptotic expansion
for small t. We do not lose generality by assuming J = K0 = K1 = 1. Then

∞∑

n=1

e−(nβ0+nβ1 )t[e−o(n−1)t − 1]
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is uniformly convergent to 0 for t → 0+. Therefore, to prove that the heat function
has an asymptotic expansion for small t, it is sufficient to prove that the function

f0(t) =
∞∑

n=0

e−(nβ0+nβ1 )t,

has such an expansion. To do that, we apply the Plana theorem [37] to the sum
f0(t) =

∑∞
n=0 φ(n, t), where φ(z, t) = e−(zβ0+zβ1 )t is a function of the complex

variable z and of the real non-negative variable t. To give a precise definition to
the complex powers, we cut the complex plane along the negative axis, and set
zβ = eβ ln x+iβθ = xβeiβθ. If − 1

2π � β0θ � 1
2π, φ is analytic and bounded uniformly

for all t � 0. Let first assume β0 � 1, then (β0) = β0 and [β0] = 0, φ is analytic and
bounded in the strip 0 � Re(z) � M , for all M > 0, and the Plana theorem gives

M∑

n=0

φ(n, t) = 1
2 [φ(0, t) − φ(M, t)] +

∫ M

0
φ(x, t) dx

+ i
∫ ∞

0

φ(iy, t) − φ(−iy, t) + φ(M + iy, t) − φ(M − iy, t)
e2πy − 1

dy, (2.1)

where the last integral in (2.1) is uniformly convergent. The limit for M → +∞ gives

f0(t) =
1
2

+
∫ ∞

0
e−(xβ0+xβ1 )t dx

+ 2
∫ ∞

0

e−(yβ0 cos 1
2 πβ0+yβ1 cos 1

2 πβ1)t sin[(yβ0 sin 1
2πβ0 + yβ1 sin 1

2πβ1)t]
e2πy − 1

dy.

(2.2)

The expansion of the integral in the middle term of (2.2) can be calculated by
expanding one of the exponentials and making the substitution u = xβ0 :

∫ ∞

0
e−xβ0 te−xβ1 t dx =

∫ ∞

0
e−xβ

0 t
∞∑

k=0

(−1)k

k!
xβ1ktk dx

=
∞∑

k=0

(−1)k

k!
tk

∫ ∞

0
e−utuk(β1/β0)+(1/β0)−1 du

∼
∞∑

k=0

(−1)k

k!
Γ

(
β1

β0
k +

1
β0

)
tk−k(β1/β0)−(1/β0).

In the integral in the last term of (2.2) we can expand the factors, due to uniform
convergence, and after rearranging the terms in the product of the series we get the
thesis when β � 1. When β > 1, β = [β] + (β) and zβ = xβei(β)θ.

Note that the proof of the existence of the asymptotic expansion given for
lemma 2.5 also provides a method of determining the coefficients in the expan-
sion when the terms in the expansion of the sequence are all known. An application
of this method is given in [31]. Notice also that, by applying lemma 2.5 to the first
term in the growth of the eigenvalues, we obtain the first term in the expansion of
the heat function explicitly.
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2.2. Zeta invariants for homogeneous sequences

Next, we generalize a technique introduced in [32] and we give an effective method
of determining the main zeta invariants for a sequence of spectral type when we
have some knowledge of the asymptotic expansion of the associated Fredholm deter-
minant. To deal with the applications we have in mind, we need only a particular
kind of spectral-type sequence, namely the regular sequences, as defined below.

A sequence of spectral type S is called regular if the coefficients aj,k in the
expansion of the logarithm of the associated Fredholm determinant lnF (z, S) vanish
for all k �= 0, 1. A result similar to proposition 2.6 for a larger class of sequences of
spectral type can be proved by precisely the same means, but is more complicated.
In particular, note that, for regular sequences of spectral type, the point s = 0 is a
regular point for the associated zeta function ζ(s, S). In the more general situation,
a generalization of proposition 2.6 does not state that s = 0 is a regular point,
but rather gives some coefficients of the Laurant expansion of the zeta function
ζ(s, S) near s = 0. In fact, possible terms of the type lnk+1(−λ), with k > 0 in the
asymptotic expansion of lnF (λ, S), should imply a pole of order k at s = 0 for the
zeta function. In particular, such terms appear when studying the spectrum of the
Laplace operator on manifolds with singularities of conical type [7, 12,32].

Proposition 2.6. If S is a regular sequence of spectral type, then the associated
zeta function ζ(s, S) is regular at s = 0 and

res0(ζ(s, S), s = 0) = F1, res0(ζ ′(s, S), s = 0) = F0,

where F0 and F1 are the coefficients of the constant term and of the logarithmic
term, respectively, in the asymptotic expansion of the logarithm of the Fredholm
determinant associated with S, namely, for large z:

lnF (z, S) ∼ · · · + F1 ln z + F0 + · · · .

Moreover, ζ(s, S) is regular in the positive complex half-plane Re(s) > −ε, up to a
finite set of poles. The poles are at most J +1, are located at s = αJ , αJ−1, . . . , α0 =
α, and are of order at most 2. The residues can be calculated explicitly from the
coefficients aj,k in the asymptotic expansion of lnF (z, S).

Proof. Using the Mellin transform, we obtain the following analytic representation
of the zeta function:

ζ(s, S) =
1

Γ (s)

∫ ∞

0
ts−1[f(t, S) − 1] dt =

1
Γ (s)

∫ ∞

0
ts−1 1

2πi

∫

Λθ,c

e−λtR(λ, S) dλ dt,

where the contour and the resolvent function R(λ, S) were introduced in the proof
of lemma 2.2. The behaviour of R(λ, S) for large λ along some radius in the complex
plane disjoint from Σθ,c is at most o((−λ)p). In fact, taking the pth derivative or
R(λ, S) with respect to λ, we get a uniformly convergent series of functions of λ
(outside Σθ,c), vanishing for large λ. Next, observe that

R(λ, S) = − d
dλ

T (λ, S),



Zeta invariants for sequences of spectral type 871

where

T (λ, S) = − ln
∞∏

n=1

(
1 +

−λ

an

)
exp

( p∑

j=1

(−1)j

j

(−λ)j

(an)j

)
+ T0.

Actually, since we have seen that the possible presence of any further term that
is a polynomial in −λ in T (λ, S) does not affect the analytic representation of the
zeta function, we can take the more general possible form for T (λ, S):

T (λ, S) = T (λ, S) + Pk(λ),

where Pk(λ) is a polynomial of degree k in −λ with Pk(0) = T0. The introduction
of this more general form for T is due to the fact that, in applications, we often find
that T can be expressed in terms of some known special functions. Since e−T (λ,S) is
an integral function of −λ of finite order α with zeros at an, which does not vanish
at the origin, by the Hadamard factorization theorem we have

e−T (λ,S) = eQp(−λ)F (−λ, S),

where Qp is a polynomial of degree p. Also, due to the known behaviour of R(λ, S),
we have, for large λ outside Σθ,c, T (λ, S) = o((−λ)p+1). In particular, T (λ, S) has
an asymptotic expansion, since S is of spectral type, and we let

T (λ, S) = − lnF (−λ, S) − Qp(λ)

=
∑

k=0,1

J∑

j=0

aj,k(−λ)αj lnk(−λ) + o(1) + Qp(λ)

= · · · + B + A ln(−λ) + · · · .

The introduction of the function T (λ, S) allows us to integrate by parts first in
the λ integrals and then in the t integrals, in the analytic representation of the zeta
function

ζ(s, S) =
s

Γ (s)

∫ ∞

0
ts−1 1

2πi

∫

Λθ,c

e−λt

−λ
T (λ, S) dλ dt.

The presence of a factor with a zero of second order at s = 0, allows us to use
the standard technique (see, for example, [14]) employed to calculate the residues
to also treat the derivative at s = 0. In fact, splitting the t integral at t = 1, the
integral

∫ ∞
1 represents a regular function of s near s = 0, and, hence, makes no

contribution to the derivative. We can write

ζ(s, S) =
s

Γ (s)

∫ 1

0
ts−1 1

2πi

∫

Λθ,c

e−λt

−λ
T (λ, S) dλ dt + O(s2).

Concerning the integral
∫ 1
0 , we can change the variable λ to λ/t, and use the

expansion of T (λ, S) for large λ, provided that we can modify the contour with-
out crossing the pole at λ = 0. A way to do that is to split the contour as
Λθ,c = Λθ,−c − Cc, where Cc is a circle of radius c and centre at the origin. Thus,

ζ(s, S) =
1

Γ (s)

[
· · · − A

s
+ γA − B + T (0, S) + · · ·

]
+ O(s2),

res0(ζ(s, S), s = 0) = −A, res0(ζ ′(s, S), s = 0) = −B + T (0, S),
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and it is clear that −A = F1 and −B + T (0, S) = F0. The same method can be
applied to prove the second part of the proposition, using the complete expansion
given above and recalling that

∫ 1

0
tx ln t dt = − 1

(x + 1)2
.

Proposition 2.6 suggests calling a regular sequence of spectral type simply regular
if the associated zeta function has only simple poles. The conditions for this follow.

Lemma 2.7. A regular sequence S of spectral type with genus p is simply regular if
one of the following (non-equivalent) conditions is satisfied:

(i) the unique logarithmic terms appearing in the expansion of lnF (−λ, S) are of
the form (−λ)k ln(−λ), with integer k � p;

(ii) there are no logarithmic terms in the expansion of the heat function f(t, S).

2.3. Non-homogeneous sequences

In this section we analyse the problem of the contribution to the zeta invariants
of the addition of a constant term to the general term of the sequence S. Namely,
we consider a shift of the sequence S to the sequence Sa = {an + a}∞

n=1, with real
a � 0, and S0 = S, and, consequently, the non-homogeneous zeta function

ζ(s, Sa) =
∞∑

n=1

(an + a)−s.

We assume the sequences are all regular and simply regular. It emerges that a
general form of the Lerch formula still holds (see also [35]), and this can be proved
as follows. First, expand the power of the binomial in the definition of the zeta
function

ζ(s, Sa) =
∞∑

j=0

(
−s

j

)
ζ(s + j, S0)aj .

Now, if we write the first p terms explicitly, we obtain

ζ(s, Sa) =
p∑

j=0

(
−s

j

)
ζ(s + j, S0)aj +

∞∑

j=p+1

(
−s

j

)
ζ(s + j, S0)aj .

We can calculate the s-derivative of the first term at s = 0 using the expansion
(

−s

j

)
ζ(s + j, S0) =

(−1)j

j
{R1(j) + [R0(j) + (γ + ψ(j))R1(j)]s} + O(s2),

where Rk(j) = resk(ζ(s, S0), s = j), for j > 0. For the second term, note that

d
ds

(
−s

j

)∣∣∣∣
s=0

=
(−1)j

j
,
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and, hence, taking the s-derivative at s = 0, we get
∞∑

j=p+1

(−1)j

j
ζ(j, S0)aj = − ln

∞∏

n=1

(
1 +

a

an

)
exp

{ p∑

j=1

(−1)j

j

aj

aj
n

}
.

We have then proved the following facts.

Lemma 2.8. For |a| < |a1|,

lnF (a, S0) =
∞∑

j=p+1

(−1)j+1

j
ζ(j, S0)aj .

Proposition 2.9 (Lerch formula). For all a,

ζ(0, Sa) = ζ(0, S0) +
p∑

j=1

(−1)j

j
R1(j)aj ,

ζ ′(0, Sa) = ζ ′(0, S0) +
p∑

j=1

(−1)j

j
[R0(j) + (γ + ψ(j))R1(j)]aj − lnF (a, S0).

This gives a relation between the functional determinant and the Fredholm deter-
minant [29,35]. Notice that, when considering the zeta function associated with the
Laplace operator ∆M , the residues at the poles are expressible in terms of the
coefficients of the heat kernel expansion, namely

R1(j) =
em−2j

Γ (j)
.

We will apply the formula in proposition 2.9 to some interesting situations in
the next section. As a first example, we show here how it can be used to prove the
following factorization lemma of Choi and Quine [13].

Corollary 2.10. Let S = {an}∞
n=1 be a simply regular sequence of spectral type

with finite exponent α and genus p. Let L = {a2
n}∞

n=1, and a be any real number.
Then

ζ(0, La2) = 1
2 [ζ(0, Sia) + ζ(0, S−ia)],

ζ ′(0, La2) = ζ ′(0, Sia) + ζ ′(0, S−ia)

−
[p/2]∑

j=1

(−1)j

j

j∑

k=1

1
2k − 1

res1(ζ(s, S0), s = 2j)a2j .

Proof. It is clear that La has exponent 1
2α and genus [12p]. Since ζ(s, L0) = ζ(2s, S0),

resk(ζ(s, L0), s = j) = 2−k resk(ζ(s, S0), s = 2j),

and the thesis follows now from proposition 2.9, using the relation

ψ(2k) = 1
2ψ(k) − 1

2γ +
k∑

j=1

1
2j − 1

.
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3. Applications and examples

In this section, we apply the devices provided in § 2 to different examples. In each
case, we put in evidence the relative Lerch formula, equations (3.1)–(3.6). In par-
ticular, in § 3.1 we review the classical case of the circle, while in § 3.3 we deal with
the 2-sphere.

3.1. The zeta function on the circle

The aim of this section is to show how the method outlined in § 2 works on the sim-
plest case: this is the one-dimensional case with S = {an = n} and L = {an = n2},
the former corresponding to the positive part of the operator i(d/dx) and the latter
relating to the Laplace operator on the circle. In the first case, α = p = 1, the zeta
function has a unique simple pole at s = 1 with residue 1, and regular part γ,

f(t, S) − 1 =
∞∑

n=1

e−nt =
1

et − 1
=

1
t

+
∞∑

j=1

1
j!

Bjt
j−1,

where the Bj are the Bernoulli numbers (see [15, 9.71, B2 = 1
6 ]),

R(λ, S) = γ + ψ(−λ + 1),

and a possible choice for T (λ, S) = − lnF (−λ, S) is γ(−λ) + lnΓ (−λ + 1), so

T (λ, S) = − lnF (−λ, S)

= − ln
∞∏

n=1

(
1 +

−λ

n

)
e−(−λ)/n

= (−λ) ln(−λ) + (γ − 1)(−λ) + 1
2 ln(−λ) + 1

2 ln 2π

+
∞∑

j=1

B2j

2j(2j − 1)
(−λ)1−2j ,

and T (0, S) = 0. Applying proposition 2.6, we obtain

ζ(0, S) = − 1
2 , ζ ′(0, S) = − 1

2 ln 2π.

In the second case, α = 1
2 , p = 0, the zeta function has a unique simple pole at

s = 1
2 with residue 1

2 , and regular part γ,

f(t, L) − 1 =
∞∑

n=1

e−n2t =
1
2

√
π

t

+∞∑

n=−∞
e−π2n2/t − 1

2
=

1
2

√
π

t
− 1

2 + O(e−1/t)

by the Poisson summation formula (the Fourier expansion for the theta function),

R(λ, L) =
1

2(−λ)
− π

2
coth π

√
−λ√

−λ
,

T (λ, L) = − lnF (−λ, L) = − ln
∞∏

n=1

(
1 +

−λ

n2

)
= − ln

sinhπ
√

−λ

π
√

−λ

= −π
√

−λ + 1
2 ln(−λ) + ln 2π + O(e−2π

√
−λ),
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and T (0, L) = 0. Applying proposition 2.6,

ζS1(0, 0) = 2ζ(0, L) = −1, ζ ′
S1(0, 0) = 2ζ ′(0, L0) = −2 ln 2π,

where we introduce the notation ζSn(s, q) for the zeta function associated with the
non-homogeneous Laplace operator on Sn (thus, ζS1(s, a2) = 2ζ(s, La2)). Applying
proposition 2.9, we can also deal with the non-homogeneous associated problems,
namely the zeta functions

ζ(s, Sa) =
∞∑

n=1

(n + a)−s, ζ(s, La2) =
∞∑

n=1

(n2 + a2)−s,

to obtain

ζ(0, Sa) = − 1
2 − a, ζ(0, La2) = − 1

2 ,

ζ ′(0, Sa) = ζ ′(0, S0) − γa − lnF (a, S) = ζ ′(0, S0) + lnΓ (a + 1),

where

ζ ′(0, Sa) = ζ ′(0, S0) + lnΓ (a + 1) (3.1)

is the classical Lerch formula, and

ζ ′(0, La2) = ζ ′(0, L0) − lnF (a2, S) = − ln 2π − ln
sinhπa

πa
,

where

ζ ′
S1(0, a2) = ζ ′

S1(0, 0) − 2 ln
sinhπa

πa
(3.2)

is a first generalization of such a Lerch formula. In particular, note also that

ζ ′(0, La2) = ζ ′(0, Sia) + ζ ′(0, S−ia),

as expected from corollary 2.10.

3.2. Multiple zeta and Gamma functions

Multiple Gamma functions, and in particular the double Gamma or G function,
were introduced long time ago by Barnes [4] as natural generalizations of the Euler
Gamma function, and multiple zeta functions appeared in the same context as gen-
eralizations of the Riemann zeta function. Consequently, different approaches and
various generalizations appeared with different aims and applications: in [33], mul-
tiple Gamma functions are introduced in order to study the functional determinant
on the spheres, while a generalization of the Barnes G function [3] is considered
in [29]. We study the two classes of zeta function associated with these two classes
of special function, and we show how they are related in a very natural algebraic
way. We introduce a slightly different definition for the multiple Gamma function,
which will turn out to be a more natural generalization of the Euler function.

Let n = (n0, . . . , nm) be a positive integer vector in N
m+1
0 , where m = 0, 1, . . . is

fixed, and a is a non-negative real constant. We prefer to avoid the zero vectors in the
definition, since this allows more compact formulae in the results. We then consider
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the sequence S1,a, where the general term n + a, with n ∈ N0, appears nm times
and S2,a = {n0 + · · · + nm + a}n∈N

m+1
0

. The associated multiple zeta functions are

zm(s, a) = ζ(s, S1,a) =
∞∑

n=1

nm(n + a)−s,

ζm(s, a) = ζ(s, S2,a) =
∑

n∈N
m+1
0

(n0 + n1 + · · · + nm + a)−s,

for Re(s) > m + 1, while the associated special functions are5

Gm(z + 1) = exp
{

(−1)m

m + 1
(2γ + ψ(m + 1))zm+1

−
m∑

j=1

(−1)j

j
ζR(j − m)zj +

m∑

j=1

(−1)j

(
m

j

)
ζ ′
R(j − m)zj

}

×
∞∏

n=1

(
1 +

z

n

)nm

exp
{

nm
m+1∑

j=1

(−1)j

j

zj

nj

}
,

1
Γm(z + 1)

= exp
{

(−1)m

m!

m∑

j=0

[
(2γ + ψ(j + 1))sm+1,j+1

+
m∑

k=0,k �=j

(−1)k+jsm+1,k+1ζR(j + 1 − k)
]

zj+1

j + 1

}

×
∏

n∈N
m+1
0

(
1 +

z

n0 + · · · + nm

)
exp

{ m+1∑

j=1

(−1)j

j

zj

(n0 + · · · + nm)j

}
,

where the constants sj,k are the Stirling numbers; their appearance will be clarified
in the following. Some remarks on these definitions are in order. The definition of the
function Gm is that given by Shuster [29], and is in fact the natural generalization
of the definition given by Barnes [3] for the G function. Actually, it is the most
natural generalization of the G function for at least the following reasons: it reduces
to the Barnes G function for m = 1; it is normalized by Gm(1) = 1; it satisfies a
functional equation similar to the one characterizing the G function. The definition
of the function Γm is essentially that given by Barnes and considered by Vardi [33].
However, here we prefer to stress the relation with the multi-linear zeta function ζm,
and therefore we choose normalization in order to give a nicer Lerch formula. Our
definition also allows us to introduce further multiple special functions related to
the quadratic version of the multiple zeta functions zm and ζm, as in corollary 2.10.
We will give the main properties of all these new special functions at the end of
this section.

We first introduce a natural algebraic relationship between the two sets of mul-
tiple zeta functions, which shows their common nature. Recall that the rising fac-
torial [30]

R(x, k) = x(x + 1)(x + 2) · · · (x + k − 1)
5Note that G0(z + 1) = 1/Γ (z + 1).
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is a polynomial in x of degree k > 0:

R(x, k) =
k−1∏

j=0

(x + j) =
k∑

j=0

(−1)k+jsk,jx
j ,

whose coefficients sk,j are the Stirling numbers (sk,0 = 0, for all k > 0). Now

ζm(s, a) =
∞∑

n=1

(
n + m

m

)
(n + a)−s

and
(

x + m

m

)
=

1
m!

m∏

j=0

(x + j) =
1
m!

1
x

R(x, m + 1)

=
1
m!

m∑

j=0

(−1)m+jsm+1,j+1x
j =

1
m!

Bm(x),

with the last equality defining the polynomial Bm(x) of degree m. In particular,

B0(x) = 1, B1(x) = x + 1, B2(x) = x2 + 3x + 2,

and all the Bm(x) have positive integer coefficients. It is also easy to see that
the set {B0(x), . . . , Bm(x)} forms a basis for the algebra of the polynomial of
maximum degree m, Pm(x), since the matrix Am passing to the standard basis
{1, x, x2, . . . , xm} is upper triangular, with all ‘1’s on the diagonal. Thus, detAm =
1 and, hence, actually, Am ∈ Slm(Z). This gives the following relation for our zeta
functions. Introducing the variables6 zs,a = z0(s, a), z′

s,a = z′
0(s, a), ζs,a = ζ0(s, a)

and ζ ′
s,a = ζ ′

0(s, a), and the formal powers zm
s,a = zm(s, a), and similarly for the

other variables, we can write

m!ζm
s,a = Bm(zs,a), m!(ζ ′)m

s,a = Bm(z′
s,a),

and these formulae can be inverted in Slm(Z). For example,

ζm
s,0 = ζm(s, 0) =

1
m!

Bm(zs,0)

=
1
m!

m∑

j=0

(−1)m+jsm+1,j+1z
j
s,0

=
1
m!

m∑

j=0

(−1)m+jsm+1,j+1zj(s, 0).

We now study the zeta functions zm using proposition 2.6. For S1,a, α = p =
m + 1, zm(s, 0) = ζR(s − m) has a unique simple pole at s = m + 1 with R0 = γ
and R1 = 1. The associated Fredholm determinant is given by

F (z, S1,0) =
∞∏

n=1

(
1 +

z

n

)nm

exp
{

nm
m+1∑

j=1

(−1)j

j

zj

nj

}
,

6In particular, z0(s, a) = ζH(s, a + 1).
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and we can take

T (λ, S1,0) = − lnGm(−λ + 1)

= · · · − (−1)m

m + 1
Bm+1 ln(−λ) − ζ ′

R(−m) + · · · ,

where the expansion for large λ is given by [29]. Propositions 2.6 and 2.9 give

zm(0, a) =
(−1)m+1

m + 1
[am+1 − Bm+1],

z′
m(0, a) = ζ ′

R(−m) +
(−1)m+1

m + 1
[2γ + ψ(m + 1)]am+1

+
m∑

j=1

(−1)j

j
ζR(j − m)aj − lnF (a, S1,0),

where

z′
m(0, a) =

m∑

j=0

(−1)j

(
m

j

)
ζ ′
R(j − m)aj − lnGm(a + 1). (3.3)

is the Lerch formula.
Next, consider the sequence S2,a. Again we have α = p = m + 1, but now the

homogeneous zeta function has simple poles at s = 1, 2, . . . , m+1. The residues are

res0(ζm(s, 0), s = k) =
(−1)m+k+1

m!
γsm+1,k +

m∑

j=0,
j �=k−1

(−1)m+j

m!
sm+1,j+1ζR(k − j),

res1(ζm(s, 0), s = k) =
(−1)m+k+1

m!
sm+1,k,

for k = 1, . . . , m + 1. The Fredholm determinant is given by

F (z, S2,0) =
∏

n∈N
m+1
0

(
1 +

z

n0 + · · · + nm

)
exp

{ m+1∑

j=1

(−1)j

j

zj

(n0 + · · · + nm)j

}
.

We can calculate ζm(0, a) and ζ ′
m(0, a) using the known values of the zm functions

and the relation introduced above; explicitly,

ζm(0, 0) =
(−1)m

m!

m∑

j=0

(−1)jsm+1,j+1ζR(−j),

ζ ′
m(0, 0) =

(−1)m

m!

m∑

j=0

(−1)jsm+1,j+1ζ
′
R(−j).

Then, using proposition 2.9,

ζm(0, a) = ζm(0, 0) − (−1)m

m!

m+1∑

j=1

1
j
sm+1,ja

j ,
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ζ ′
m(0, a)

= ζ ′
m(0, 0) − lnF (a, S2,0)

− (−1)m

m!

m+1∑

j=1

1
j

[
(2γ + ψ(j))sm+1,j −

m∑

k=0,
k �=j−1

(−1)k+jsm+1,k+1ζR(j − k)
]
aj ,

where
ζ ′
m(0, a) = ζ ′

m(0, 0) + lnΓm(a + 1) (3.4)

is the Lerch formula.
We close the discussion on these linear multiple zeta functions by giving the

functional equation for the homogeneous zm. This can be deduced from the classical
reflection formula for the Riemann zeta function (where sm = 2m + 1):

π(s−sm)/2Γ ( 1
2 (sm − s) − 1

2m)zm(sm − s, 0) = π−s/2Γ ( 1
2s − 1

2m)zm(s, 0).

The next step is to consider the related quadratic sequences:

L1,a2 = {nm(n2 + a2)}∞
n=1 and L2,a2 = {(n0 + · · · + nm)2 + a2}n∈N

m+1
0

.

For the first sequence, α = 1
2 (m + 1), p = pm = [α] (the integer part) and the

associated zeta function is

Zm(s, a2) = ζ(s, L1,a2) =
∞∑

n=1

nm(n2 + a2)−s.

The homogeneous zeta function is Zm(s, 0) = zm(2s, 0) = ζR(2s − m), with a
simple pole at s = 1

2 (m + 1) with residues R0 = γ and R1 = 1
2 , and

Zm(0, 0) = ζR(−m), Z ′
m(0, 0) = 2ζ ′

R(−m),

F (a2, L1,0) =
∞∏

n=1

(
1 +

a2

n2

)nm

exp
{

nm

pm∑

j=1

(−1)j

j

a2j

n2j

}
.

We can use either proposition 2.9 or corollary 2.10 to compute Z ′
m(0, a2). Now

Gm(1 + z)Gm(1 − z) = exp
{ pm−1∑

j=1

[
2
(

m

2j

)
ζ ′
R(2j − m) − 1

j
ζR(2j − m)

]
z2j

}

× exp
{

− 2
p(m)
m + 1

(2γ + ψ(m + 1))zm+1
}

×
∞∏

n=1

(
1 − z2

n2

)nm

exp
{

nm

pm∑

j=1

1
j

z2j

n2j

}
,

where p(n) = 0 (respectively, 1) if n is even (respectively, odd) suggests the intro-
duction of the function (and its dual Shm of purely imaginary argument as usual)

Sm(πz) = πz exp
{

− 2
p(m)
m + 1

(2γ + ψ(m + 1))zm+1
}
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× exp
{

−
pm−1∑

j=1

1
j
ζR(2j − m)z2j

}

×
∞∏

n=1

(
1 − z2

n2

)nm

exp
{

nm

pm∑

j=1

1
j

z2j

n2j

}
,

such that

Gm(1 + z)Gm(1 − z) = exp
{

2
pm−1∑

j=1

(
m

2j

)
ζ ′
R(2j − m)z2j

}
Sm(πz)

πz
,

where

Z ′
m(0, a2) = Z ′

m(0, 0) − ln
Shm(πa)

πa
− 2

(−1)pmp(m)
m + 1

pm∑

k=1

am+1

2k − 1
(3.5)

is the Lerch formula.
The functions Sm and Shm can be thought as multiple sine and hyperbolic sine

functions, and in fact they share some important properties with the classical sine
and hyperbolic sine functions, as we will show at the end of this section (see
also [19]). Before that we consider the last sequence, namely L2,a2 . In this case,
α = 1

2 (m + 1), p = pm = [α], and the associated zeta function is

Zm(s, a2) = ζ(s, L2,a2) =
∑

n∈N
m+1
0

[(n0 + · · · + nm)2 + a2]−s;

the function Zm(s, 0) = ζm(2s, 0) has simple poles at s = 1
2 , 1, 3

2 , . . . , 1
2 (m+1) with

res0(Zm(s, 0), s = k) = res0(ζm(s, 0), s = 2k),

res1(Zm(s, 0), s = k) = 1
2 res1(ζm(s, 0), s = 2k),

and

F (a2, L2,0) =
∏

n∈N
m+1
0

(
1 +

a2

(n0 + · · · + nm)2

)
exp

{ pm∑

j=1

(−1)j

j

a2j

(n0 + · · · + nm)2j

}
.

As before, we can introduce the functions Sm and Shm by

Sm(πz) = πz exp
{

(−1)m

m!

pm∑

j=1

1
j

[(
2γ + ψ(2j) −

j∑

k=1

1
2k − 1

)
sm+1,2j

+
m∑

k=0,k �=2j−1

sm+1,k+1ζR(2j − k)
]
z2j

}

×
∏

n∈N
m+1
0

(
1 − z2

(n0 + · · · + nm)2

)
exp

{ pm∑

j=1

1
j

z2j

(n0 + · · · + nm)2j

}
,
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so that

1
Γm(1 + z)Γm(1 − z)

= exp
{

(−1)m

m!

pm∑

j=1

1
j

j∑

k=1

1
2k − 1

sm+1,2jz
2j

}
Sm(πz)

πz
,

and

Z ′
m(0, a2) = Z ′

m(0, 0) − ln
Shm(πa)

πa
, (3.6)

where the Lerch formula (3.6) above should be compared with that obtained in (3.1)
for the circle (see § 3.1).

We conclude this section by giving some properties of the multiple special func-
tions. We start with the multiple Gamma function Γm. From the definition, we can
see that Γ0(z) = Γ (z) and Γm(1) = 1 for all m. Next, since

(
m + n + 1

m + 1

)
−

(
m + n

m

)
=

(
m + n

m + 1

)
,

we find that

ζm+1(s, a + 1) = ζm+1(s, a) − ζm(s, a) − (a + 1)−s.

This can be used to prove the following functional equation for the Γm.

Proposition 3.1 (functional equation).

Γm+1(z + 1) = e−ζ′
m(0,0) zΓm+1(z)

Γm(z)
. (3.7)

Thanks to these properties, we find that the definition of the multiple Gamma
function Γm actually coincides with that given by Vardi [33] up to a constant
factor (depending on m); that is to say, it is the unique function satisfying the
above properties7 and some regularity assumption as shown by Vignèras [34] (see
also [1] for the case m = 0). With our normalization, both the Lerch formula and
the duplication formula (3.8), below, take a nicer form.

Proposition 3.2 (duplication formula).

Γm(2z) = 2−ζm(0,2z−1)eζ′
m(0,0)Γm(z)Γm(z + 1

2 ). (3.8)

Proof. Proof of proposition 3.2 By definition,

ζm(s, x) + ζm(s, x − 1
2 ) = 2s

∑

n∈N
m+1
0

(2n0 + · · · + 2nm + 2x)−s

+ 2s
∑

n∈N
m+1
0

(2n0 + · · · + 2nm + 2x − 1)−s

= 2sζm(s, 2x). (3.9)

7Here we also have the extra factor z due to the fact that we have excluded the zero modes in
our sum.
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Then

ζ ′
m(0, x) + ζ ′

m(0, x − 1
2 ) = ζm(0, 2x) ln 2 + ζ ′

m(0, 2x),

and we can use the Lerch formula (3.4) with 2x + 1 = 2z to obtain the thesis.

The Taylor expansion of lnΓm(z + 1) for small z can immediately be obtained
from lemma 2.8 and the definition, while the asymptotic expansion can be obtained
from [29] for the Gm function and using the fact that

− lnΓm(z+1) =
(−1)m

m!

m∑

j=0

(−1)jsm+1,j+1

[
lnGj(z+1)−

j∑

k=1

(−1)k

(
j

k

)
ζ ′
R(k−j)zk

]
.

Proposition 3.3. For large z,

lnΓm(z + 1) =
(−1)m+1

m!

×
[

−
m∑

j=0

sm+1,j+1

j + 1
zj+1 ln z +

m∑

j=0

sm+1,j+1

j + 1
(γ + ψ(j + 2))zj+1

+
m∑

j=0

(−1)jsm+1,j+1ζ
′
R(−j) +

m∑

j=0

1
j + 1

sm+1,j+1Bj+1 ln z

]

+ O(z−1).

As a final remark, we look at a particular value of the multiple gamma function.
Applying proposition 3.2 with z = 1

2 and using the values calculated for the zeta
functions, we obtain

Γm( 1
2 ) = 2ζm(0,0)e−ζ′

m(0,0)

= 2(−1)m/m!
∑m

j=0 sm+1,j+1ζR(−j) exp
{

− (−1)m

m!

m∑

j=0

sm+1,j+1ζ
′
R(−j)

}
.

(3.10)

This is a remarkable formula, since it express the value of the Γm at 1
2 as a function

of the dimension m; it seems the most natural generalization of the classical version

Γ ( 1
2 ) = 2ζR(0)e−ζ′

R(0) =
√

π,

and then gives another answer to the question considered in [33].
Finally, we give some properties of the multiple sine functions. It is clear that the

two sets of functions (S and Sh versus S and Sh) are related by the same algebraic
relation introduced above for the zeta functions; thus, it is sufficient to study one set
of functions. It is easier to consider the functions Sm(x), which are more explicitly
related to the Barnes functions. Using the known expansions for the Gm functions,
we make the following proposition.
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Proposition 3.4. For large real x,

lnShm(πx) = 2
(−1)pmp(m)

m + 1
xm+1 lnx

+
(−1)pm

m + 1
[2p(m)(γ + ψ(m + 2)) + πp(m + 1)]xm+1

+ lnπx − 2Bm+1

m + 1
lnx + 2ζ ′

R(−m) + O(x−1).

As for the function Γm, the Taylor expansion for lnShm can be obtained from
lemma 2.5. We prefer to conclude by considering explicitly the case m = 1. In such
a case we introduce the dual cosine double function that will turn out to be useful
in the next section. With m = 1,

S(z) = S1(z) = z exp
{

− (γ + 1)
z2

π2

} ∞∏

n=1

(
1 − z2

π2n2

)n

exp
{

z2

π2n

}
,

C(z) = C1(z) = exp
{

− (γ + 1)
z2

π2

} ∞∏

n=1

(
1 − 4z2

π2(2n − 1)2

)n

exp
{

z2

π2n

}
,

and the following relations hold:

S( 1
2π ± z) = πΓ

(
3
2

± z

π

)
[G( 1

2 )]2C(z),

G(1 + z)G(1 − z) =
S(πz)

πz
, G( 1

2 − z)G( 1
2 + z) = [G( 1

2 )]2C(πz).

3.3. The zeta function on the 2-spheres

In this section we consider the sequence S = {(2n + 1)[n(n + 1)]−s}∞
n=1, the spec-

trum of the standard Laplace operator on the 2-sphere of unit radius. Now α = p =
1, and the associated zeta function is

ζS2(s, 0) = ζ(s, S) =
∞∑

n=1

(2n + 1)[n(n + 1)]−s,

for Re(s) > 1. The non-homogeneous zeta function ζS2(s, a2) = ζ(s, Sa2) is given
by

ζS2(s, a2) =
∞∑

n=1

(2n + 1)[n(n + 1) + a2]−s =
∞∑

n=1

(2n + 1)[(n + 1
2 )2 + q]−s,

where q = a2 − 1
4 . This suggests we instead consider the function [35]

ζb(s) =
∞∑

n=1

(2n + b)(n + 1
2b)−2s = 2

∞∑

n=1

(n + 1
2b)−2s+1,
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with b = 1 as the (non-homogeneous) zeta function associated with the problem.
In fact, ζ1(s) factors through the Riemann zeta function

ζ1(s) = 22s
∞∑

n=1

(2n + 1)−2s+1 = (22s − 2)ζR(2s − 1) − 22s,

and in this way we get the zeta invariants for ζ1(s) = ζS2(s, 1
4 ) and, using propo-

sition 2.9, those for ζS2(s, 0). In particular, this means that ζS2(s, 0) has only one
simple pole at s = 1 (see also [30]) with

res1(ζS2(s, 0), s = 1) = 1, res0(ζS2(s, 0), s = 1) = 2γ.

Despite this, the function ζ1(s) seems completely unrelated to the geometry, as
can be seen by considering that ζ1(0) = − 11

12 , while the value at s = 0 of the zeta
function associated with the Laplace operator over a closed surface is

ζM (0) = 1
6χ(M) − dim ker ∆M ,

which gives − 2
3 for M = S2, where χ(M) is the Euler characteristic of M . For

this reason, we investigate the zeta function ζS2(s, 0), naturally associated with the
geometry of the problem, directly. First, consider the heat function

fS2(t) = f(t, S) =
∞∑

n=1

(2n + 1)e−n(n+1)t + 1.

We give here a simple method of obtaining the full asymptotic expansion of
fS2(t) for small t using special functions. This result was originally obtained by
Mulholland [23] by direct calculation, and is indeed a very useful result since it
allows us to compute asymptotic expansions for the heat kernel not just for all
spheres, but for all symmetric spaces of rank one [10]. Consider the function

fb(t) = e
1
4 b2t

∞∑

n=1

(2n + b)e−(n+ 1
2 b)2t

= −2
t
e

1
4 b2t d

db

∞∑

n=1

e−(n+ 1
2 b)2t,

where b is a real parameter. Then, fS2(t) = f1(t) + 1, and we get the asymptotic
of fS2(t), giving that for fb(t). After some computation, we can write

fb(t) =
e

1
4 b2t

2πi

∫

Λc,θ

e−λt[ψ(1 + 1
2b + i

√
−λ) + ψ(1 + 1

2b − i
√

−λ) − 2ψ(1 + 1
2b)] dλ.

On changing the variable to λ/t and expanding the factors by using the knowm
expansion for the digamma function, we get

fS2(t) = f1(t) + 1 =
1
t

+
∞∑

j=0

ajt
j =

1
t

+
1
3

+
t

15
+ · · · ,

aj =
1

22j+2

[
1

(j + 1)!
+

j∑

k=0

(−1)k(22k+2 − 2)
(k + 1)!(j − k)!

B2k+2

]
.
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Next, we give formulae for the other spectral functions on the sphere in terms of
special functions. First, considering the expression ψ(c)−ψ(a+b)+ψ(d)−ψ(a−b),
we obtain

R(λ, S) = ψ( 3
2 + z) + ψ( 3

2 − z) − ψ(2) − ψ(1), z =
√

λ + 1
4 .

The important point is that this expression can be integrated in terms of the Barnes
G function. After some manipulation, we get

T (λ, S) = − lnF (−λ, S)

= − ln
∞∏

n=1

(
1 +

−λ

n(n + 1)

)2n+1

e(2n+1)λ/n(n+1)

= −2 lnG( 1
2 + z)G( 1

2 − z) − lnΓ ( 1
2 + z)Γ ( 1

2 − z) + (2γ + 1)(−λ) + ln(−λ)

and this can be written using the multiple cosine function introduced in § 3.2 as

...

= −2 lnC(πz) + ln
cos πz

π
+ (2γ + 1)(−λ) + ln(−λ) − 4 lnG( 1

2 )

= · · · + (B1 + 1
2 ) ln(−λ) + 1

2 − 4ζ ′
R(−1) + · · · .

This gives
ζS2(0) = − 2

3 , ζ ′
S2(0) = 4ζ ′

R(−1) − 1
2 .

The non-homogeneous case ζS2(s, a2) follows from proposition 2.9. We get (cf.
[35])

ζS2(0, a2) = − 2
3 − a2,

ζ ′
S2(0, a2) = ζ ′

S2(0, 0) − 2γa2 − lnF (a2, S)

= 4ζ ′
R(−1) − 1

2 + a2 + ln a2

− 2 lnG
(

1
2 +

√
1
4 − a2

)
G

(
1
2 −

√
1
4 − a2

)

− lnΓ
(

1
2 +

√
1
4 − a2

)
Γ

(
1
2 −

√
1
4 − a2

)
,

where

ζ ′
S2(0, a2) = ζ ′

S2(0, 0) − 4 lnG( 1
2 ) + a2 + ln a2

− 2 lnC
(
π
√

1
4 − a2

)
+ ln

cos π
√

1
4 − a2

π
(3.11)

is a further generalization of the Lerch formula and gives another solution in terms of
special functions, to the problem of the Laplacian coupled with a constant potential,
as considered in the final remark of [30, § 5].
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