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ZETA FUNCTIONS AND REGULARIZED
DETERMINANTS ON PROJECTIVE SPACES

M. SPREAFICO

ABSTRACT. A Hermite type formula is introduced and
used to study the zeta function over the real and complex
n-projective space. This approach allows to compute the
residua at the poles and the value at the origin as well as the
value of the derivative at the origin that gives the regularized
determinant of the associated Laplacian operator.

1. Introduction. Zeta functions on the sphere (and in general on
a closed Riemannian manifold) were first introduced by Minakshisun-
daram and Peijel as extensions of the classical Riemannian zeta func-
tion [12]. An analytic definition, by a Mellin transform of the trace
of the heat operator associated to the Laplacian in the standard met-
ric, shows how the residua at the poles are given by the coefficients in
the asymptotic expansion of the trace of the heat operator [1]. Such
an expansion can be obtained in a large number of cases using global
analysis [16, 5, 3, 4], and in particular the first coefficients in the case
of the Laplacian on a Riemannian manifold can be computed using
local invariants associated to the curvature tensor [10]. The constant
term that corresponds to the value of the zeta function at the origin is
important in physics [15] and in conformal theory [2], being associated
to the conformal anomaly. On the other hand, the derivative of the
zeta function at the origin gives the Atiyah regularized determinant of
the Laplacian [13]. Early approaches to calculate these quantities give
explicit results for the two-sphere [15, 9], while more recently an ex-
plicit formula for the residua has been obtained in [7] for the n-sphere,
using a result that allows to write a Dirichlet series as a sum of classical
Hurwitz zeta functions [6]. This method fails to compute the deriva-
tive, but an alternative one is provided by [8], where a factorization
theorem for zeta regularized products is introduced and explicit results
for the low-dimensional spheres are given.
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The aim of this paper is to show how these zeta functions can be
treated very easily by classical methods using a Hermite type formula
in exactly the same way as for the one-dimensional case of the Riemann
(Hurwitz) zeta function. This approach allows us to deal not only with
the zeta function on the spheres, but also with the zeta function on
the real and complex projective spaces. For all these cases, we localize
the poles and give explicit formulae for the residua. We show that
the origin s = 0 is a regular point and compute the value of the zeta
function together with the value of its first derivative at s = 0.

The main feature of this approach is that it can be used more gen-
erally to deal with the zeta function of any operator whose eigenvalues
are explicitly known with their multiplicity. There is work in progress
where further cases are under consideration.

2. A Hermite type formula. Consider the function

z(s, a, b, c) =
∞∑

n=1

Pd(cn)
(cn+ a)s(cn+ b)s

,

of the complex variable s for Re (s) > d+1
2 , where Pd is a polynomial

of degree d and a, b, c real constants with a, b > −1, c > 0. Introduce
the function of the complex variable z:

φ(z, s, a, b, c) =
Pd(z)

(cz + a)s(cz + b)s
,

then we have the following

Proposition 1. For Re (s) > d+1
2 ,

z(s, a, b, c) =
1
2
φ(1, s, a, b, c) +

∫ ∞

1

φ(z, s, a, b, c) dz + I(s),

where I(s) is an integral function of s.

Proof. The infinite sum is actually a finite sum of infinite sums of the
following type that can be treated by using the Plana theorem when
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Re (s) > d+1
2 ,

∞∑
n=1

ψl(n, s, a, b, c)

=
∞∑

n=1

cl(cn)l

(cn+ a)s(cn+ b)s

=
1
2
ψl(1, s, a, b, c) +

∫ ∞

1

ψl(z, s, a, b, c) dz

− 2cl
∫ ∞

0

(c2 + y2)l/2[(a+ c)2 + y2]−s/2[(b+ c)2 + y2]−s/2

× sin
[
l arctan

y

c
− s

(
arctan

y

a+ c
+ arctan

y

b+ c

)]
dy

e2πy − 1
.

Indeed, the last integral converges for all values of s. Furthermore, the
last integral converges uniformly by standard estimates on arctan, so
the given formula defines an analytic function of s.

From Proposition 1, it is clear that all the poles and relative residua
come from the first two terms. This expression can also be used to
compute the value of z and its derivative at s = 0.

3. Formulae for the residua and the value at the origin.
Spheres and real projective spaces can be treated together as follows;
complex and projective spaces will be considered afterwards.

The polynomial Pd with c = 1, 2 for the sphere Sk and the projective
space RP k, respectively, k > 1, is:

Pk−1(x) = Qk(x) =
2x+ k − 1
(k − 1)!

k−2∏
i=1

(x+ i).

It is now convenient to distinguish odd and even cases. We introduce
the numbers bk,l, by

Definition 1. For k = 1, 2, 3, . . . , the numbers bk,l are defined by the
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equations

2h−2∏
i=1

(x+ i) =
h−1∑
l=0

b2h,l[x2 + (2h− 1)x]l,

(x+ h)
2h−1∏
i=1

(x+ i) =
h∑

l=0

b2h+1,l[x2 + 2hx]l.

In particular, b2h,h−1 = b2h+1,h = 1, b2h,0 = (2h − 2)!, b2h+1,0 =
h(2h− 1)!.

This allows us to write the zeta function as a sum of some standard
ones. Let

zk(s, c) =
∞∑

n=1

Qk(cn)
[cn(cn+ k − 1)]s

,

be the zeta function in dimension k, then

ζ(s, Sk) = zk(s, 1),
ζ(s,RP k) = zk(s, 2).

Now consider the two functions

zeven(s, a, b, c) =
∞∑

n=1

2(cn+ a) + b− a

[(cn+ a)(cn+ b)]s
,

zodd(s, a, b, c) =
∞∑

n=1

1
[(cn+ a)(cn+ b)]s

,

then

Lemma 1. For h = 1, 2, . . . ,

z2h(s, c) =
1

(2h− 1)!

h−1∑
l=0

b2h,lzeven(s− l, 0, 2h− 1, c),

z2h+1(s, c) =
2

(2h)!

h∑
l=0

b2h+1,lzodd(s− l, 0, 2h, c).
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To write simpler formulae, let us also introduce the function

f(s, l, a, b, c) =
∫ ∞

0

[(a+ c)2 + y2]
l−s
2 [(b+ c)2 + y2]−s/2

× sin
[
(l − s) arctan

y

a+ c
− s arctan

y

b+ c

]
dy

e2πy − 1
.

By expanding the trigonometric functions and recalling the standard
integral representation of the Bernoulli numbers Bn, we get1

f(−n, l, a, b, c)

=
1
4

E( n+l+1
2 )∑

i=1

E( n
2 )∑

j=0

(
n+ l
2i−1

) (
n
2j

)
(a+c)n+l+1−2i(b+c)n−2jB2(i+j)

i+ j

+
1
4

E( n+1
2 )∑

i=1

E( n+l
2 )∑

j=0

(
n

2i−1

) (
n+l
2j

)
(a+c)n+l−2j(b+c)n+1−2iB2(i+j)

i+ j
,

where E(q) denotes the integer part of the rational number q.

We can now state the main properties of the functions zeven/odd.

Lemma 2. The function zeven(s, a, b, c) has a simple pole at s = 1
with residuum 1/c, while for m = 0, 1, 2, . . . ,

zeven(−m, a, b, c) = 1
2
[2(c+ a) + b− a](c+ a)m(c+ b)m

− (c+ a)m+1(c+ b)m+1

(m+ 1)c
− 4f(−m, 1, a, b, c)

− 2(b− a)f(−m, 0, a, b, c).

Proof. Proceeding as in Proposition 1, we get

zeven(s, a, b, c) =
1
2
2(c+ a) + b− a

(c+ a)s(c+ b)s
+

1
c

1
(c+ a)s−1(c+ b)s−1

1
s− 1

− 4
∫ ∞

0

[(a+ c)2 + y2]1/2−s/2[(b+ c)2 + y2]−s/2
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× sin
[
(1−s) arctan y

a+c
− s arctan

y

b+c

]
dy

e2πy− 1

+ 2(b− a)
∫ ∞

0

[(a+ c)2 + y2]−s/2[(b+ c)2 + y2]−s/2

× sin
[
s

(
arctan

y

a+c
+ arctan

y

b+c

)]
dy

e2πy− 1
;

then the poles are given by the second term, while the values at the
non positive integers can be computed by using the formulae introduced
above.

Lemma 3. The function zodd(s, 0, b, c) has simple poles at s =
1/2−m, m = 0, 1, 2, . . . , with residua

Res1

(
zodd(s, 0, b, c), s =

1
2
−m

)
=

(−1)m

2m+1

(2m− 1)!!
m!

1
c

(
b

2

)2m

.

For m = 0, 1, 2, . . . ,

zodd(−m, 0, b, c)

=
1
2
cm(c+ b)m +

(−1)m+1

m+ 1
2m

c

(
b

c

)2m−1 Γ(m+ 1)
(2m+ 1)!!

− (bc)m

m+ 1
Γ(2m+ 1)

Γ(−m)Γ(m+ 1)

×
m∑

i=0

Γ(i−m)Γ(i+m+ 1)
i!Γ(2m+ i+ 1)

(
c

b

)i

− 2f(−m, 0, 0, b, c).

Proof. For the odd case, difficulties arise when dealing with the first
integral. If we restrict ourselves to the interesting case of a = 0, we get

zodd(s, 0, b, c) =
1
2

1
cs(c+ b)s

+ c−s

∫ ∞

1

x−s(cx+ b)−s dx

+ 2
∫ ∞

0

[c2 + y2]−s/2[(b+ c)2 + y2]−s/2

× sin
[
s

(
arctan

y

c
+ arctan

y

b+ c

)]
dy

e2πy − 1
,
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and we have the following two possible ways of treating it

c−s

∫ ∞

1

x−s(cx+ b)−s dx = c−s(c+ b)−s 1
2s−1

F

(
s, 1; 2s;

b

c+b

)
=

when Re (s) > 1/2 and where F is the hypergeometric function, and

=
1√
π

1
c

(
b

2

)1−2s Γ(1− s)Γ(s+ 1/2)
2s− 1

− c−s

∫ 1

0

x−s(cx+ b)−s dx,

when 1/2 < Re (s) < 1, where the last integral is actually convergent if
Re (s) < 1, and can be expressed in terms of a hypergeometric function

c−s

∫ 1

0

x−s(cx+ b)−s dx =
(bc)−s

1− s
F

(
s, 1− s; 2− s;−c

b

)
.

In particular, we use the first representation to get the analytical
continuation in the negative half plane and to compute the residua
at the poles, and the second one to compute the value at s = −m,
m = 0, 1, 2, . . . , and the derivative at s = 0, see Section 4. (Both
expressions are good to compute the residua.)

From the previous lemma, we immediately get the following

Proposition 2. The function z2h has simple poles at s = n, for
n = 1, 2, 3, . . . , h, with residua

Res1(z2h(s, c), s = n) =
1
c

b2h,n−1

(2h− 1)!
.

The function z2h+1 has simple poles at s = 1/2 + h − m, m =
0, 1, 2, . . . , with residua

Res1

(
z2h+1(s, c), s =

1
2
+ h−m

)

=
1
c

2
(2h)!

min(h,m)∑
l=0

(−1)m−lb2h+1,l

2m−l+1

(2(m− l)− 1)!!
(m− l)!

(
2b
2

)2(m−l)

.
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These should be compared with Theorem 2 of [7], where we note that
a factor 1/2 is missing.

For what concerns the value of zk(0, c), this can be easily computed
(using any mathematical software) from the formulae in Lemmas 1, 2
and 3. Explicit results for n = 2, 3 and 4 are given in Section 4.

Next consider the complex projective spaces CP k, k > 1. The
polynomial Pd is

Pk−1(x) = Qk(x) =
k(2x+ k)
[(k − 1)!]2

k−1∏
i=1

(x+ i)2,

and

ζ(s,CP k) =
1
4s

∞∑
n=1

Qk(n)
ns(n+ k)s

.

If we introduce the numbers ak,l by

Definition 2. For k = 1, 2, 3, . . . , the numbers ak,l are defined by the
equations

k−1∏
i=1

(x+ i)2 =
k−1∑
l=0

ak,l(x2 + kx)l,

(in particular, ak,k−1 = 1, ak,0 = [(k − 1)!]2); then we can write

Lemma 4. For k = 1, 2, 3, . . . ,

ζ(s,CP k) =
1
4s

k

[(k − 1)!]2

k−1∑
l=0

ak,lzeven(s− l, 0, k, 1).

From this and Lemma 2, we immediately get

Proposition 3. The function ζ(s,CP k) has simple poles at s = n
for n = 1, 2, . . . , k, with residua

Res1(ζ(s,CP k), s = n) =
1
4n

k

[(k − 1)!]2
ak,n−1.
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4. Determinant and low dimensional cases. In this last
section we show how to use Proposition 1 to compute the regularized
determinant by considering the case of k = 3. Next we give explicit
results for dimensions 2, 3 and 4. Even if this is beyond the purposes
of these notes, we observe that such results show that a unique formula
for the determinant for a general k is likely to exist, and could be
determined using the approach outlined here.

We have k = 3, h = 1, a = 0 and b = 2. Writing z3(s, c) as in
Proposition 1, we decompose the second term as in Lemma 1, but the
third one by developing the numerator. We get

z3(s, c) =
∞∑

n=1

(cn+ 1)2

[cn(cn+ 2)]s

=
(c+ 1)2

2[c(c+ 2)]s
+

∫ ∞

1

[cx(cx+2)]−s dx+
∫ ∞

1

[cx(cx+2)]1−s dx

− 2
∫ ∞

0

(c2 + y2)−s/2[(c+ 2)2 + y2]−s/2

× sin[−s(θ + φ)]
dy

e2πy − 1
− 4

∫ ∞

0

(c2 + y2)1/2−s/2

× [(c+ 2)2 + y2]−s/2 sin[(1− s)θ − sφ]
dy

e2πy − 1

− 2
∫ ∞

0

(c2+y2)1−s/2[(c+2)2+y2]−s/2 sin[(2−s)θ−sφ] dy

e2πy− 1
,

where θ = arctan y/c, φ = arctan y/(c+ 1). The derivative at s = 0 of
the first term is immediate,

d

ds

(c+ 1)2

2[c(c+ 2)]s

∣∣∣∣
s=0

= −(c+ 1) log
√
c(c+ 1),

while that of the second one can be computed with little effort by using
the representation introduced in the proof of Lemma 3. We get

− 8
9c

− 4
3
− 2c

3
− 2c2

9
+

(
1
3c

+ 1 + c+
c2

3

)
log c

+
(

2
3c

+ 1 + c+
c2

3

)
log

(
1 +

2
c

)
.
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For the last three integrals we get

2
∫ ∞

0

(θ + φ)
dy

e2πy − 1

+2
∫ ∞

0

√
c2 + y2

{
log(c2 + y2) + log[(c+ 2)2 + y2]

}
sin θ

dy

e2πy − 1

+4
∫ ∞

0

√
c2 + y2(θ + φ) cos θ

dy

e2πy − 1

+
∫ ∞

0

(c2 + y2)
{
log(c2 + y2) + log[(c+ 2)2 + y2]

}
sin 2θ

dy

e2πy − 1

+2
∫ ∞

0

√
c2 + y2 (θ+φ) cos 2θ

dy

e2πy − 1
=

that can be expressed in terms of derivatives of the Hurwitz zeta
function,

= ζ ′H(−2, c) + ζ ′H(−2, c+ 2) + 2ζ ′H(−1, c)− 2ζ ′H(−1, c+ 2)

+ (3− 2c)(ζ ′H(0, c) + ζ ′H(0, c+ 2)) +
44
9

+
4
3
c− 10

3
c2 +

2
9
c3

+
(
3
2
− 3c+

3
2
c2 − 1

3
c3

)
log c

+
(
− 19

6
+

3
2
c2 + c− 1

3
c3

)
log(c+ 2).

Collecting and simplifying, we get the results shown below, together
with the other low dimensional cases.

ζ(0, S2) = −2
3

= −0.6̄,

ζ ′(0, S2) = 4ζ ′R(−1)− 1
2

= −1.162 . . . ;

ζ(0,RP 2) = −11
3

= −3.6̄ . . . ,

ζ ′(0,RP 2) = 4ζ ′R(−1)− 3 log 3 +
5
2

= −1.459 . . . ;

ζ(0, S3) = −1,
ζ ′(0, S3) = 2ζ ′R(−2) + 2ζ ′R(0) + log 2 = −1.206 . . . ;
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ζ(0,RP 3) = −1
2

= −0.5,

ζ ′(0,RP 3) = 2ζ ′R(−2)− 2ζ ′R(0)− 13
6

log 2 + 2 log 3− 8 = −5.527 . . . ;

ζ(0, S4) = −61
90

= −0.67̄,

ζ ′(0, S4) =
2
3
ζ ′R(−3) +

13
3
ζ ′R(−1) + log 3− 15

16
= −0.5516 . . . ,

ζ(0,RP 4) =
7
45

= 0.15̄,

ζ ′(0,RP 4) =
2
3
ζ ′R(−3) +

13
3
ζ ′R(−1) +

13
6

log 2

+ log 3− 35
16

log 5 +
45
16

= −4.684 . . . ,

ζ(0,CP 2) = −89
30

= −2.96̄,

ζ ′(0,CP 2)=8ζ ′R(−3)+24ζ ′R(−1)+
149
15

log 2−4 log 3− 203
12

=−18.353 . . . .

The values for ζ ′(0, Sk) agree with the ones provided by [8, Section
4]; the value for ζ(0, S2) confirms the one originally given by [15],
against that of [9], see also Section 5 for further remarks; the values for
ζ(0, S3) agree with the one computed from the formula in the corollary
of Section 3 of [7], see also Section 3 of [6]. Numerical computations
were done by using Maple.

5. Remarks. To conclude, some remarks are in order. The first one
concerns the one-dimensional case, where we get the following relations

ζ(s, S1) = 2ζR(2s),
ζ(s,RP 1) = 2−2sζ(s, S1),
ζ(s,CP 1) = 2−2sζ(s, S2).

The first two relations are well known, while the third one can be
easily read out from the results in the sections above. We can then
complete the table in Section 4:

ζ(0, S1) = −1, ζ ′(0, S1) = 4ζ ′R(0) = −3.676 . . . ;
ζ(0,RP 1) = −1, ζ ′(0,RP 1) = 4ζ ′R(0) + 2 log 2 = −2.29 . . . ;

ζ(0,CP 1)=−2
3 = −0.6̄, ζ ′(0,CP 1)=4ζ ′R(0)+ 4

3 log 2− 1
2 =−3.252 . . . .
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Also notice that, while the value of the zeta function at s = 0 seems
to depend only on the topology, the value of its derivative, and hence
the regularized determinant, does not. For what concerns the first
statement, just recall that, for any closed Riemannian manifold M of
dimension m,

ζ(0,M) = am(M)− dimker∆M ,

where ∆M is the Laplacian operator in the standard metric and am(M)
is the coefficient of the constant term in the asymptotic expansion
of the heat operator e−t∆M , see, for example, [14]. In particular,
compare with the value computed above for ζ(0, S2), where a2(S2) =
1/(24π)

∫
S2 RS2(x) d vol (x) = 1/3.

Our final remark concerns the possibility of using the approach
introduced to treat the case of the Laplacian coupled with a constant
potential. This is an important tool to face the problem of a generic
potential, see [11] for the one-dimensional case. For the sake of
simplicity, we restrict ourselves to the case of the two-sphere. The
eigenvalues are then λn = n(n+ 1) + q2, and the zeta function is

ζ(s,∆S2 + q2) =
∞∑

n=1

2n+ 1
[n(n+ 1) + q2]s

.

By expanding the power of the binomial (for finite q), this becomes

ζ(s, S2)− sζ(s+ 1, S2)q2 +
∞∑

k=2

(−s
k

)
ζ(s+ k, S2)q2k.

We can compute

ζ(0,∆S2 + q2) = ζ(0, S2)− q2.

ζ ′(0,∆S2 + q2) = ζ ′(0, S2)− 2γq2 − logG(q),

where γ = −ψ(1) and G(q) is the integral function of order 2 and zeros
±i√n(n+ 1), of multiplicity 2n+ 1, defined by the canonical product
of genus 2:

G(q) =
∞∏

n=1

[
1 +

q2

n(n+ 1)

]2n+1

e−
2n+1

n(n+1) q2

.
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FIGURE 1. G(q). FIGURE 2. ζ′(0,∆S2 + q2).

The main difference with respect to the one-dimensional case is due
to the slower rate of increasing of the eigenvalues; this reflects in the
appearance of a further contribution coming from the singularity of
ζ(s, S2) at s = 1, through the term sζ(s + 1, S2). In Figures 1 and 2
the functions G(q) and ζ ′(0,∆S2 + q2) are plotted, where the infinite
product is approximated by the product on the first 1000 terms.

ENDNOTES

1. Observe that f(0, 0, a, b, c) = 0.
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