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We use relative zeta functions technique of W. Muller to investigate the regularized partition
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1. Introduction

To begin with, we recall that the partition function for a finite temperature
quantum field theory on a ultrastatic space-time with compact spatial section is
constructed as follows. LetM be a compact Riemannian manifold of dimensionn,
and consider the productN = S1

r ×M, whereS1
r is the circle of radiusr = β/2π , and

β = 1/T is the inverse of the temperature. LetL be some nonnegative self-adjoint
operator (typically the Laplacian) acting on some functionspace (we shall deal with
scalar fields) defined onM and H = −∂2

u + L. The canonical partition function at

temperatureT of this model may be formally written asZ = det−
1
2 (ℓ2H), whereℓ

is some renormalization constant. It is well known that a rigorous interpretation to
this functional determinant can be given using zeta function regularization. The zeta
function regularization technique was first introduced by Ray and Singer [22] to
define the regularized determinant for the Laplacian on forms, and used by Hawking
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[17] in order to regularize Gaussian path integrals on a curved space time, and
soon became a fundamental tool in mathematical physics and may provide a way
for regularizing the partition function of a quantum field theory at finite temperature
on compact domains. Recall that the zeta function of a nonnegative self-adjoint
operatorA is defined by (where Sp+A denotes the positive part of the spectrum of
A) ζ(s; A) =

∑

λ∈Sp+A λ−s , when Re(s) > s0 (for some suitables0), and by analytic
continuation elsewhere. SinceN is compact, zero is not a pole ofζ(s; H), and
using the zeta function, the regularized functional determinant of H is defined by

detH = e− d
ds

ζ(s;H)

∣

∣

s=0,

and the partition function is

logZ =
1

2
ζ ′(0; H) −

1

2
ζ(0; H) logℓ2.

Introducing the geometric zeta function, namely the zeta function of the restriction
L of H to M, the following equations hold (we assume here for simplicity that
kerL = ∅):

ζ(0; H) = −β Res1
s=− 1

2

ζ(s; L), (1)

ζ ′(0; H) = −β Res0
s=− 1

2

ζ(s; L) − 2β(1 − log 2) Res1
s=− 1

2

ζ(s; L) − 2 logη (β; L) , (2)

where the generalized Dedekind eta function for a positive self-adjoint operatorA
in some Hilbert spaceH(M), where M is compact, is defined by [20]

η(τ ; A) =
∏

λ∈SpA

(

1 − e−τ
√

λ
)

,

and Resks=s0
f (s) denotes the coefficient of the term(s − s0)

−k of the Laurent
expansion off (s) at s = s0 (see for example [5] p. 420). This is a classical and
well-known result (see for example [14, 11]), and we have used the formulation
of [20] (see also [6, 10] and [13] for an extension), and it leads to the natural
question of a suitable generalization for noncompact domains.

In this paper we will try to answer rigorously this question and we prove a
generalization of equations (1) and (2) that holds for a quantum scalar field on a
noncompact domain. In this case, we shall consider operators such that the spectrum
involved is no longer only discrete and a continuous contribution appears. With regard
to the treatment of the continuous spectrum, we will follow the approach of M̈uller
[19]. However, we should mention that the introduction of relative traces appeared
in the seminal paper [2], where the so-called second virial coefficient, proportional
to the relative trace Tr(e−β(HO+V ) − e−βHO ) (here H0 is free Hamiltonian), was
expressed in terms of the trace of scattering matrix, the Beth–Uhlenbeck formula.
More recently, functional determinants in quantum field theory have been investigated
with relative zeta functions (see for example [12]). The mathematical counterpart of
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these approaches in the physical literature makes use of Krein formula (see [4]).
Beside the natural interest of the generalization itself, we would like to note that
on a more general ground, scattering methods have been applied in the physical
literature (see for example the review [18]) in order to study quantum vacuum
effects between material bodies and our result provides a rigorous justification of
these formal approaches. Furthermore, a motivation is alsogiven by the recently
growing interest in delta interactions, namely a theory described by a scalar field
in a flat space-time perturbed by pointlike (uncharged) “impurities”, modelled by
delta-like potentials. Since these are solvable quantum models, it is quite natural to
analyze explicitly these examples, as illustrative application of our results. Actually,
the case of one delta interaction turns out to be particularly interesting, since it
can be completely solved, and thus plays the role of the leading example, as the
Laplacian on the circle is the leading example for the compact case.

2. Relative determinants
We introduce in this section the mathematical tools necessary in order to state

our main results. This is essentially based on the work of Müller [19], however,
we will reformulate the approach of M̈uller in terms of the resolvent rather than of
the heat semigroup, because in specific applications we havean explicit expression
for the resolvent function instead than that for the heat kernel. Anyway, it is well
known that one may investigate equivalently the resolvent of an elliptic operator
instead of heat semigroup.

Let H be a separable Hilbert space, and letA and A0 be two self-adjoint
nonnegative linear operators inH. Suppose that SpA = SpcA ∪ SppA, where Spp
is the point spectrum, and Spc is the continuous spectrum, and we assume both 0
and ∞ are accumulation points of SpA. It is convenient to split the point spectrum
in the null part, Sp0pA = {λ0 = 0}, that has finite multiplicity, plus the positive part,
Sp+

p A = {λj }Jj=1, where each eigenvalue is counted according to multiplicity. Let
H = Hc ⊕Hp be the orthogonal decomposition into the subspaces that correspond to
the continuous and the point spectrum ofA, respectively, and letAc and Ap denote
the restrictions ofA to Hc andHp, respectively. LetR(λ, T ) = (λI − T )−1 denote
the resolvent of the operatorT , and ρ(T ) the resolvent set. Then, we introduce
the following two sets of conditions. First, we assume that the sequence Sp+p A is
a totally regular sequence of spectral type with finite exponent s0, as defined in
[25]. This implies that the following conditions hold:

(A.1) The operatorR(λ, Ap) is of trace class for allλ ∈ ρ(Ap);
(A.2) as λ → ∞ in ρ(Ap), there exists an asymptotic expansion of the form

Tr R(λ, Ap) − dim kerAp

1

λ
∼

∞
∑

j=0

Kj
∑

k=0

a′
j,k(−λ)

α′
j logk(−λ),

where −∞ < · · · < α′
1 < α′

0 ≤ s0 − 1, and α′
j → −∞, for large j , and

a′
j,k = 0 for k > 0;
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(A.3) as λ → 0, there exists an asymptotic expansion of the form

Tr R(λ, Ap) − dim kerAp

1

λ
∼

∞
∑

j=0

b′
j (−λ)

β′
j ,

where 0= β ′
0 < β ′

1 < . . . , and β ′
j → +∞, for large j .

Second, we assume the following conditions on the pair(Ac, A0):
(B.1) the operatorR(λ, Ac)−R(λ, A0) is of trace class for allλ ∈ ρ(Ac)∩ρ(A0);
(B.2) as λ → ∞ in ρ(Ac) ∩ ρ(A0), there exists an asymptotic expansion of the

form

Tr (R(λ, Ac) − R(λ, A0)) ∼
∞

∑

j=0

Kj
∑

k=0

aj,k(−λ)αj logk(−λ),

where −∞ < · · · < α1 < α0, αj → −∞, for large j , and aj,k = 0 for
k > 0;

(B.3) as λ → 0, there exists an asymptotic expansion of the form

Tr (R(λ, Ac) − R(λ, A0)) ∼
∞

∑

j=0

bj (−λ)βj ,

where −1 ≤ β0 < β1 < . . . , and βj → +∞, for large j .
We introduce the further consistency condition (that will be always tacitely

assumed)
(C) α0 < β0.
By results of [25], it follows that the zeta function of the operator Ap is well

defined by the uniformly convergent series

ζ(s; Ap) =
∞

∑

j=1

λ−s
j ,

when Re(s) > s0 ≥ α′
0 + 1, and by analytic continuation elsewhere. In particular,

the heat semigroup e−tAp is of trace class, and the following equations hold:

Tr e−Ap t − dim kerAp =
1

2πi

∫

3θ,−a

e−λt

(

Tr R(λ, Ap) − dim kerAp

1

λ

)

dλ, (3)

where the Hankel type contour is3θ,−a =
{

λ ∈ C | | arg(λ + a) = θ
2

}

, oriented
counter clockwise, with some fixeda > 0, 0< θ < π ,

ζ(s; Ap) =
1

Ŵ(s)

∫ ∞

0
t s−1 (

Tr e−tAp − dim kerAp

)

dt. (4)

We can prove similar results for the relative heat semigroupand the relative
zeta function, using [19]. We introduce the following lemma.

LEMMA 2.1. If the pair of nonnegative self-adjoint operators(T , T0) satisfies
conditions (B.1)–(B.3), then it satisfies the conditions(1.1)–(1.3) of [19].
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Proof: The proof that conditions (B.1) and (B.2) imply conditions(1.1) and
(1.2) of [19] follows from the equation

e−T t − e−T0t =
1

2πi

∫

3θ,−a

e−λt (R(λ, T ) − R(λ, T0)) dλ, (5)

and 2.2 of [25], respectively. Next, assume (B.3). Then, forany fixed βJ ,
∣

∣Tr (R(λ, T ) − R(λ, T0)) − bj (−λ)βJ−1
∣

∣ ≤ K| − λ|βJ .

We can use this bound for the remainder in order to obtain (1.3) of [19]. Using
the expansion given by condition (B.3) of the difference of the resolvents in Eq.
(5), the remainder is

rJ (t) =
1

2πi

∫

3θ,−a

e−λt
(

Tr (R(λ, T ) − R(λ, T0)) −
J

∑

j=0

bj (−λ)−βj

)

dλ,

and thus it satisfies the bound

|rJ (t)| ≤ K

∫

|3θ,−a |
|e−λ||(−λ)βJ ||dλ|t−βJ −1,

where the integral is a finite constant. 2

Therefore, assuming conditions (B.1)-(B.3) for the pair ofnonnegative self-adjoint
operators(Ac, A0), all the results of [19] hold, and in particular we can define the
relative zeta function for the pair(Ac, A0) by the following equation

ζ(s; Ac, A0) =
1

Ŵ(s)

∫ ∞

0
t s−1Tr

(

e−tAc − e−tA0
)

dt, (6)

when α0 + 1 < Re(s) < β0 + 1, and by analytic continuation elsewhere. Back to the
pair (A, A0), note that

Tr
(

e−tA − e−tA0
)

= Tr e−tAp + Tr
(

e−tAc − e−tA0
)

,

and the problem decomposes additively into the two terms arising from the pure
point and the continuous spectrum, namelyζ(s; A, A0) = ζ(s; Ap) + ζ(s; Ac, A0).
Thus, if we define the regularized relative determinant of the pair of operators
(A, A0) by

det(A, A0) = e− d
ds

ζ(s;A,A0)

∣

∣

s=0,

then we have the decomposition

det(A, A0) = det(Ap)det(Ac, A0),

and the two regularizations can be treated independently. This suggests to introduce
the following definition for the zeta regularized partitionfunction of a model described
by the operatorA, under the assumption that there exists a second operatorA0
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such that (using the above decomposition) the operatorAp satisfies assumptions
(A.1)–(A.2) and the pair of operators(Ac, A0) satisfies assumptions (B.1)–(B.3),

logZ =
1

2
ζ ′(0; Ap) −

1

2
ζ(0; Ap) logℓ2 +

1

2
ζ ′(0; Ac, A0) −

1

2
ζ(0; Ac, A0) logℓ2. (7)

This is the natural generalization of the classical zeta regularization technique to
the relative case. We conclude this section with a technicalresult.

LEMMA 2.2. Assume that the nonnegative self-adjoint operatorT decomposes
additively as sum of two nonnegative self-adjoint commuting operatorsT1 and T2,
where e−tT1 is compact trace class and satisfies an expansion for smallt as
∑∞

j=0

∑Kj

k=0 cj,kt
γj logk t , with −∞ < γ0 < γ1 < . . . , γj → +∞, for large j , and

cj,k = 0 for k > 0. Then, if there exists an operatorT0 such that conditions
(B.1)–(B.3) hold for the pair (T2, T0), then conditions(1.1)–(1.3) of [19] hold for
the pair (T , T1 + T0), and viceversa. In particular, the following equation holds

Tr
(

e−tT − e−t (T1+T0)
)

= Tre−tT1Tr
(

e−tT2 − e−tT0
)

.

Proof: By standard properties of the heat semigroup

e−tT − e−t (T1+T0) = e−tT1
(

e−tT2 − e−tT0
)

.

Suppose that (B.1) holds for(T2, T0). Then, e−tT2 −e−tT0 is of trace class by Lemma
2.1, and the above equation implies that e−tT −e−t (T1+T0) is of trace class. Therefore,
the equation given in the statement of the lemma holds. This implies that, if (B.2)
and (B.3) hold for (T2, T0) and (A.2) holds forT1, then (1.2)–(1.3) of [19] hold
for (T , T1 + T0). The proof of the converse is similar. 2

3. Relative partition function

Let M be a smooth Riemannian manifold of dimensionn, and consider the
product N = S1

β
2π

× M, where S1
r is the circle of radiusr. Let ξ be a complex

line bundle overN , and L a self-adjoint nonnegative linear operator on the Hilbert
spaceH(M) of the L2 sections of the restriction ofξ onto M, with respect to some
fixed metric g on M. Let H be the self-adjoint nonnegative operatorH = −∂2

u +L,
on the Hilbert spaceH(N) of the L2 sections ofξ , with respect to the product
metric du2 ⊕ g on N , and with periodic boundary conditions on the circle. Assume
that there exists a second operatorL0 defined onH(M), such that the pair(L, L0)
satisfies the assumptions (B.1)–(B.3) of Section 2 (since wehave seen that the
problem decomposes additively in point and continuous part, we assume here without
loss of generality that the point spectrum is empty). Then, by Lemma 2.2, it follows
that there exists a second operatorH0 defined inH(N), such that the pair(H, H0)
satisfies those assumptions too. Under these requirements,we introduce the relative
zeta regularized partition function of the model describedby the pair of operators
(H, H0) using equation (7), and we can prove the following result.
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PROPOSITION 3.1. Let L be a nonnegative self-adjoint operator onM, and
H = −∂2

u + L, on S1
r × M as defined above. Assume that there exists an operator

L0 such that the pair(L, L0) satisfies conditions(B.1)–(B.3). Then,

ζ(0; H, H0) = − β Res1
s=− 1

2

ζ(s; L, L0),

ζ ′(0; H, H0) = − β Res0
s=− 1

2

ζ(s; L; L0) − 2β(1 − log 2) Res1
s=− 1

2

ζ(s; L, L0)

− 2 logη(β; L, L0),

where H0 = −∂2
u + L0 and the relative Dedeckind eta function is defined by

logη(τ ; L, L0) =
∫ ∞

0
log

(

1 − e−τv
)

e(v; L, L0)dv,

e(v; L, L0) =
v

πi
lim

ǫ→0+

(

r(v2e2iπ−iǫ; L, L0) − r(v2eiǫ; L, L0)
)

,

r(λ; L, L0) = Tr (R(λ, L) − R(λ, L0)).

Proof: Since (L, L0) satisfies (B.1)–(B.3), by Lemma 2.2(H, H0) satisfies
(1.1)–(1.3) of [19] and the zeta function is defined by

ζ(s; H, H0) =
1

Ŵ(s)

∫ ∞

0
t s−1Tr

(

e−tH − e−tH0
)

dt,

when α0 + 1 < Re(s) < β0 + 1. By Lemma 2.2

Tr
(

e−Ht − e−H0t
)

=
∑

n∈Z

e
− n2

r2 t
Tr

(

e−tL − e−tL0
)

,

and hence, using the well-known Jacobi summation formula weobtain

ζ(s; H, H0) =
1

Ŵ(s)

∫ ∞

0
t s−1

∑

n∈Z

e
− n2

r2 t
Tr

(

e−tL − e−tL0
)

dt

=
√

πr

Ŵ(s)

∫ ∞

0
t s−

1
2−1Tr

(

e−tL − e−tL0
)

dt

+
2
√

πr

Ŵ(s)

∫ ∞

0
t s−

1
2−1

∞
∑

n=1

e− π2r2n2
t Tr

(

e−tL − e−tL0
)

dt

=
√

πr

Ŵ(s)
Ŵ

(

s −
1

2

)

ζ

(

s −
1

2
; L, L0

)

+
2
√

πr

Ŵ(s)

∞
∑

n=1

∫ ∞

0
t s−

1
2−1e− π2r2n2

t Tr
(

e−tL − e−tL0
)

dt

= z1(s) + z2(s).

(8)
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The first term, z1(s), can be expanded nears = 0, and this gives the result
stated. In fact, by Proposition 1.1 of [19],ζ(s; H, H0) is regular ats = 0, and this
implies that the pole ofζ(s; L, L0) at s = −1

2 is simple. To deal with the second
term, since(L, L0) satisfies (B.1)–(B.3), we can write

Tr
(

e−tL − e−tL0
)

=
1

2πi

∫

3θ,−a

e−λtTr (R(λ, L) − R(λ, L0))dλ.

Now, it is convenient to change the spectral variable tok = λ
1
2 , with the principal

value of the square root, i.e. with 0< argk < π . Then,

Tr
(

e−tL − e−tL0
)

=
1

πi

∫

γ

e−k2tTr (R(k2, L) − R(k2, L0))kdk,

where γ is the line k = −ic, for somec > 0. Writing k = veiθ , and r(λ; L, L0) =
Tr (R(λ, L) − R(λ, L0)), a standard computation leads to

Tr
(

e−tL − e−tL0
)

=
∫ ∞

0
e−v2te(v; L, L0)dv, (9)

ζ(s; L, L0) =
∫ ∞

0
v−2se(v; L, L0)dv, (10)

where we have introduced the trace of the relative spectral measure

e(v; L, L0) = lim
ǫ→0+

v

πi
(r((v2e2iπ−iǫ; L, L0) − r(v2eiǫ; L, L0)), (11)

associated to the pair of operators(L, L0).
As a result, the second term,z2(s), of Eq. (8) becomes

z2(s) =
2
√

πr

Ŵ(s)

∞
∑

n=1

∫ ∞

0
t s−

1
2−1e− π2n2r2

t

∫ ∞

0
e−v2te(v; L, L0)dvdt,

and we can do thet integral using for example [16] 3.471.9. We obtain

z2(s) =
4
√

πr

Ŵ(s)

∞
∑

n=1

∫ ∞

0

(πnr

v

)s− 1
2
K

s− 1
2
(2πnrv)dv. (12)

Since the Bessel function is analytic in its parameter, regular at −1
2, and

K− 1
2
(z) =

√

π
2z

e−z, Eq. (12) gives the formula for the analytic extension of thezeta

function ζ(s; H, H0) near s = 0. We obtain

z2(0) = 0 , z′
2(0) = −2

∫ ∞

0
log

(

1 − e−2πrv
)

e(v; L, L0)dv, (13)

and the integral converges by assumptions (B.2) and (B.3), and Eq. (11) for the
trace of the spectral measure. This completes the proof. 2
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Note that Eq. (7) is the natural generalization of the zeta function technique
from the absolute (compact) to the relative (noncompact) case, and that Proposition
3.1 extends the main result of the absolute case (see Eqs. (1)and (2)) to the
relative one. Namely, the partition function of the model described above satisfies
the equation stated in Corollary 3.2, that follows from Eq. (7) and Proposition 3.1.

COROLLARY 3.2.

logZ = β (log 2ℓ − 1) Res1
s=− 1

2

ζ(s; L, L0) −
β

2
Res0
s=− 1

2

ζ(s; L, L0) − logη (β; L, L0) .

Next, we show that a further feature of the compact case, namely the behaviour
for small temperature, extends to the noncompact case.

COROLLARY 3.3. For large β

logZ = −Evacuumβ + O
(

β−ǫ
)

,

with someǫ > 0, and whereEvacuum is the vacuum energy

Evacuum= − (log 2ℓ − 1) Res1
s=− 1

2

ζ(s; L, L0) +
1

2
Res0
s=− 1

2

ζ(s; L, L0).

Proof: By definition
Evacuum= − lim

β→+∞
∂β logZ.

The result follows from the equation given in Corollary 3.2,once we show that
logη (β; L, L0) = O(β−ǫ), for large β. Recall the definition of the Dedekind eta
function

logη(τ ; L, L0) =
∫ ∞

0
log

(

1 − e−τv
)

e(v; L, L0)dv.

We split the integral atv = 1. Since the above integral converges uniformly for
large v, the

∫ ∞
1 is O(e−τ ) for large τ . For the other integral, we use the expansion

of the trace of the relative resolventr(λ; L, L0) for small λ assumed by condition
(B.3), to obtain from the definition of the relative spectralmeasure, Eq. (11), that
e(v; L, L0) = O(v1+2βj ), where βj is the first noninteger exponent in (B.3). 2

REMARK 3.4. Eq. (10) defines the relative zeta function whenα0 + 1 < Re(s) <
β0 + 1. In general, the meromorphic continuation of this quantityhas a simple pole
at s = −1/2 and the formal definition of the vacuum energy

Evacuum=
∫ ∞

0
ve(v; L, L0)dv,

is meaningless. Our formula in Corollary3.3 provides a rigorous regularization
scheme for this formal definition.
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4. Zeta regularized partition function for delta interacti ons

We analyze in this section two natural applications of the method presented in
Section 2. The geometry of our model is given by a scalar field in the three-
dimensional flat space interacting with one or two external fields described by
delta-like potentials, thus the geometric operator describing our model is formally
L = −1 − µ0δ(0) − µ1δ(a), where 1 is the Laplace operator inR3, µj are real
constants (the strength of the interactions), anda is a fixed point in R3. Models
of this type have been studied by different authors (see [8, 9]). In particular, in
the case of a one-point interaction, a rigorous definition has been also obtained
by Green’s function approach, and formulae for the heat kernel have been given
[23, 21, 24]. However, a unified approach valid for finitely many points interaction,
was presented by Albeverio et al. in [1], using Fourier transform, a method first
used in [3]. We will use this approach.

4.1. One-point interaction in three dimensions

The concrete geometric operator describing our model isL = −1α, where−1α

is defined in Theorem I.1.1.2 of [1] by the resolvent with the following kernel

ker(x, x ′, (λI + 1α)−1) = −Gk(x − x ′) −
1

α −
ik

4π

G2
k(x), (14)

with λ = k2 ∈ ρ(−1α,a), Imk > 0, α is a real parameter related to the strengthµ0
(we haveµ1 = 0 in the present case) [1] II.1.1.30, and the free Green function is

Gk(x) =
eik|x|

4π |x|
.

Note that the caseα = ∞ corresponds to the negative free Laplace operator
−1 = −1∞. By [1] Theorem I.1.1.4 the spectrum of−1α is purely abso-
lutely continuous Sp(−1α) = [0, ∞), if α ≥ 0, while has one negative eigenvalue,
λ = −(4πα)2, if α < 0.

The complete operator describing our model isH = −∂2
u − 1α, and, because

of the above result on the spectrum of−1α, we assumeα ≥ 0. Proceeding as in
Section 3, we introduce the unperturbed operatorH0 = −∂2

u − 1, and we consider
the pair of operators(H, H0). The partition function of our model is given by Eq.
(7), without the part arising from the point spectrum, and weneed to study the
analytic continuation of the relative zeta functionζ(s; H, H0). We first check that
the requirements (B.1)–(B.3) of Section 2 are satisfied by the pair of operators
(L, L0) = (−1α, −1), and this is true as a particular instance of a general class of
pairs of operators considered in Section 4.1 of [19] (and references therein for this
particular type of potential) or in Section 1.6 of [4]. However, note that we will be
able to verify directly conditions (B.1)–(B.3). Next, using Eq. (14), the difference
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of the kernels of the resolvents of the geometric operators is

ker(x, x ′, R(λ, −1α)) − ker(x, x ′, R(λ, −1)) = −
e2ik|x|

4π |x|2(4πα − ik)
,

and is class trace, since it follows

Tr(R(λ, −1α) − R(λ, −1)) =
1

2ik(4πα − ik)
.

A further simple computation gives the trace of the relativespectral measure

e(v; −1α, −1) =
4α

(4πα)2 + v2
, (15)

and the following formulae for the main geometric spectral functions:

Tr
(

e−t (−1α) − e−t (−1)
)

=
e(4πα)2t

2

(

1 − 8(4πα
√

t)
)

, (16)

ζ(s; −1α, −1) =
1

2

(4πα)−2s

cosπs
, (17)

η(τ ; −1α, −1) = logŴ(2ατ) +
1

2
log 2ατ − 2ατ(log 2ατ − 1) −

1

2
log 2π.

(18)

The formula in Eq. (16) follows from the definition, since using Eq. (9) and (15),

Tr
(

e−(−1α)t − e−(−1)t
)

= 4α

∫ ∞

0

e−v2t

(4πα)2 + v2
dv,

and next we can apply [16] 3.363.2 (the probability integralfunction is defined
accordingly to [16] 8.250—recall thatα is nonnegative). Note that the integral
representation for the trace of the difference of the heat operators given in Eq. (16)
satisfies the conditions (1.1)–(1.3) of [19] for the pair of operators (−1α, −1).
The formula in Eq. (17) follows using Eqs. (10), and (15). Thesame result also
follows using the formula in Eq. (9), and the previous resultfor the trace of the
difference of the heat semigroups, under the condition thatRe(s) > 0, and using
[16] 6.286.1. The formula in Eq. (18) follows by definition and [16] 4.319.1.

Expanding the formula in Eq. (17) nears = 0, we obtain

Res1
s=− 1

2

ζ(s; −1α, −1) = 2α, Res0
s=− 1

2

ζ(s; −1α, −1) = −4α log 4πα.

Using these results in Corollary 3.2, we obtain the explicitformula for the
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partition function

logZ = 2(log 4παℓ − 1) αβ − logη (β; −1α, −1)

= 2(log 4παℓ − 1) αβ − logŴ (2αβ) −
1

2
log 2αβ + 2αβ(log 2αβ − 1)

+
1

2
log 2π.

Note that, using the classical expansion for the Gamma function, this result is
consistent with Corollary 3.3. The regularized vacuum energy follows immediately
from the above expression.

4.2. Two-point interactions in three dimensions

The concrete geometric operator describing our model isL = −1α,a, where
−1α,a is defined in Theorem II.1.1.1 of [1], by the resolvent with the following
integral kernel

ker(x, x ′, (λI + 1α,a)
−1) = −Gk(x − x ′) −

1
∑

j,l=0

Ŵ−1
α,a(k)j,lGk(x − aj )Gk(x

′ − al),

with λ = k2 ∈ ρ(−1α,a), Im k > 0, and where theαj are real parameters (see [1]
II.(1.1.25)), and

Ŵα,a(k) =





α0 − ik
4π

−Gk(a)

−Gk(a) α1 − ik
4π



 .

Note that the caseαj = ∞ corresponds to the negative free Laplace operator
−1 = −1∞,a, and α1 = ∞ to the case considered in Section 4.1. By [1] Theorem
I.1.1.4 the spectrum of−1α,a is purely absolutely continuous Sp(−1α,a) = [0, ∞),
plus at most two negative eigenvalues. The eigenvalues are present if detŴα,a(k) = 0
for Im k > 0. An explicit analysis (see also the end of Section II.1.1 of[1])
shows that the condition necessary in order to have a purely continuous spectrum
is 4π2α0α1a

2 ≥ 1. We will proceed assuming this condition.
The unperturbed geometric operator is−1, and the fact that the pair(−1α,a, −1)

satisfies conditions (B.1)–(B.3) follows as in Section 4.1.The difference of the
resolvents has trace

Tr(R(k2, −1α,a) − R(k2, −1)) =
a2

ika

2π(α0 + α1)a − ika + e2ika

(4πα0a − ika) (4πα1a − ika) − e2ika
.

This allows to write a formula for the trace of the relative spectral measure.
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Using the definition in Eq. (11), we obtain

e(v; −1α,a, −1)

=
a

π

(

2π(α0 + α1)a − iav + e2iav

a2 (4πα0 − iv) (4πα1 − iv) − e2iav
+

2π(α0 + α1)a + iav + e−2iav

a2 (4πα0a + iv) (4πα1a + iv) − e−2iav

)

.

Note that in the limit caseα1 → ∞ the relative spectral measuree(v; −1α,a, −1)
reduces smoothly to the onee(v; −1α0, −1), considered in Section 4.1.

The formula for the trace of the relative spectral measure allows to compute all the
quantities appearing in Proposition 3.1, and therefore to obtain an explicit result for
the partition function using Corollary 3.2. For, note that the functione(v; −1α,a, −1)
is a smooth function, as it is the quotient of powers and trigonometric functions.
To compute the values of the residue and of the finite part of the zeta function
ζ(s; −1α,a, −1) at s = −1

2, we use the expansions ofe(v; −1α,a, −1) for small
and largev. For small v,

e(v; −1α,a, −1) =
a

π

4π(α0 + α1)a + 2

16π2α0α1a2 − 1
+ O(v),

while for large v,

e(v; −1α,a, −1) =
−2 cos(2av) + 4π(α0 + α1)a

πav2
+ O(v−3).

Using the integral representation for the zeta function given in Eq. (10), we can
split the integral atx = 1,

ζ(s; −1α,a, −1) = ζ0(s; a) + ζ∞(s; a)

=
∫ 1

0
v−2se(v; −1α,a, −1)dv +

∫ ∞

1
v−2se(v; −1α,a, −1)dv.

Making use of the above expansion of the functione(v; −1α,a, −1) for small
v, we see thatζ0(s; a) is regular nears = −1

2, and its value is

ζ0
(

−
1

2
; a

)

=
∫ 1

0
ve(v; −1α,a, −1)dv.

Next, ζ∞(s; a) is not regular nears = −1
2. However, using the asymptotic

expansion given above

ζ∞(s; a) = zA(s; a) + zB(s; a)

=
∫ ∞

1
v−2s

(

e(v; −1α,a, −1) +
2 cos(2av) − 4π(α0 + α1)a

πav2

)

dv

−
∫ ∞

1
v−2s 2 cos(2av) − 4π(α0 + α1)a

πav2
dv.
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Using the expansion of the functione(v; −1α,a, −1) for large v, we see that
that zA(s; a) is regular ats = −1

2 and its value is

zA

(

−
1

2
; a

)

=
∫ ∞

1
v

(

e(v; −1α,a, −1) +
2 cos(2av) − 4π(α0 + α1)a

πav2

)

dv.

The last termzB(s; a) is not regular ats = −1
2. However, we can deal with

this term exactly:

zB(s; a) = −
∫ ∞

1
v−2s 2 cos(2av) − 4π(α0 + α1)a

πav2
dv

= −
2

πa

∫ ∞

1
v−2s cos(2av)

v2
dv + 4(α0 + α1)

1

2s + 1
,

and therefore

Res1
s=− 1

2

zB(s; a) = 2(α0 + α1), Res0
s=− 1

2

zB(s; a) =
2ci(2a)

πa
.

As a consequence, the partition function of our model in the range 4π2α0α1a
2 ≥ 1

is

logZ = −
β

2

∫ ∞

1
v

(

e(v; −1α,a, −1) +
2 cos(2av) − 4π(α0 + α1)a

πav2

)

dv

+ 2(α0 + α1) (log 2ℓ − 1) β −
ci(2a)

πa
β −

β

2

∫ 1

0
ve(v; −1α,a, −1)dv

−
∫ ∞

0
log

(

1 − e−vβ
)

e(v; −1α,a, −1)dv.

Note that the zeta-function regularization used implies the presence of the
renormalization scaleℓ in the final expression for the canonical partition function. In
the present case, the dependence drops out as soon as one is interested in evaluation
of physical quantities, as for example the Casimir force, defined as the derivative
of the regularized vacuum energy with respect to external parametera.
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