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Let P be a principal S3-bundle over a sphere Sn , with n � 4. Let G P be the gauge group
of P . The homotopy type of G P when n = 4 was studied by A. Kono in [A. Kono, A note
on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991)
295–297]. In this paper we extend his result and we study the homotopy type of the gauge
group of these bundles for all n � 25.
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1. Introduction

Let P → B be a principal G-bundle over a finite complex B , where G is a compact Lie group. The gauge group G P

of P is the group of the G-equivariant maps of P covering the identity. When B and G are connected, M.C. Crabb and
W. Sutherland proved in [2] that the number of homotopy types of G P is finite. Moreover, explicit results have been given
by A. Kono, and A. Kono and H. Hamanaka, that studied the case of B = S4 and G = SU(n). These bundles Pn,k are classified
by the Chern class c2(Pn,k) = k, and it was proved in [6] that G P2,k ∼ G P2,k′ if and only if (12,k) = (12,k′) (here (m,n)

denotes the GCD of n and m), and there are six homotopy types. It was proved in [4] that G P3,k ∼ G P3,k′ if and only if

(24,k) = (24,k′). Recently, the same authors also studied the case of B = S6 and G = SU(3). These bundles are classified by
the Chern class c3(Pk) = k, and they proved in [5] that G Pk ∼ G Pk′ if and only if (120,k) = (120,k′). Continuing along this
line of investigation, we study the case of principal SU(2)-bundles over a sphere Sn . Our approach consists in generalizing
the method introduced in [6] for n = 4 to higher n. In particular, we give explicit formulas for the boundary operator in
the homotopy exact sequence associated with the evaluation fibration ev : m(Sn, B S3) → B S3. This reduces the problem in
calculations involving homotopy groups of the spheres, and can be solved in principle as far as information on these groups
is available. We study all the classical cases, namely those covered by the results contained in the book of H. Toda [11].
However, this method fails whenever all the homotopy groups involved are elementary 2-groups. In such a case, a direct
approach is necessary, in order to realize the appropriate homotopy equivalence (see Section 5).

Let P → Sn be a principal S3-bundle. Such bundles are classified by elements in πn−1(S3), and we will use this identi-
fication without further comment. By classical results [1,9], the classifying space B G P of the gauge group of P is homotopy
equivalent to the mapping space m(Sn, B S3; f ), where f : Sn → B S3 is the classifying map of P . We will also use the
notation G f for the gauge group of the bundle P classified by f . We have the fiber sequence
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Table 1

n πn−1(S3) πn+2(S3)

5 Z/2 Z/2

6 Z/2 Z/2

7 Z/12 Z/3

8 Z/2 Z/15

9 Z/2 Z/2

10 Z/3 (Z/2)2

11 Z/15 Z/2 ⊕ Z/12

12 Z/2 (Z/2)2 ⊕ Z/84

13 (Z/2)2 (Z/2)2

14 Z/2 ⊕ Z/12 Z/6

15 (Z/2)2 ⊕ Z/84 Z/30

16 (Z/2)2 Z/30

17 Z/6 Z/2 ⊕ Z/6

18 Z/30 (Z/2)2 ⊕ Z/12

19 Z/30 (Z/2)2 ⊕ Z/12

20 Z/2 ⊕ Z/6 Z/2 ⊕ Z/132

21 (Z/2)2 ⊕ Z/12 (Z/2)2

22 (Z/2)2 ⊕ Z/12 Z/2

23 Z/2 ⊕ Z/132 Z/210

24 (Z/2)2

25 Z/2

. . . G f S3
f̂

Ωn−1
f (S3) m(Sn−1, S3; f ) ev B S3,

and the class of f̂ is given by some Samelson product (see Proposition 1). Since the different components of the loop
space have the same type, the types of the gauge groups for different f are a subset of the set of the types of the fibres
of the maps h : S3 → Ωn−1

0 S3, i.e. are a subset of πn+2(S3). We collect this information in Table 1. By [7], we also know
π26(S3;2) = Z/4 and π27(S3;2) = (Z/2)3.

In order to determine the type of the gauge groups, we give an explicit formula for the boundary operator in the
homotopy exact sequence associated to the evaluation fibration in Section 2. This is equivalent to fixing the class of the
map f̂ , and therefore determining all the homotopy information of its fiber, namely of G f . This solves the problem in the
majority of cases, n �= 13,14,19,20,21, and 22, see Section 3. In order to deal with the cases n = 14,19,20 and 21, we need
more information about the possible types of the fiber of the maps h, this is in Section 4. Eventually, in Section 5, we deal
with the cases n = 13 and 21, that are harder.

In the following we will use the notation of [11] for the elements in the homotopy groups of the spheres, and we will
identify maps and classes when possible.

2. Boundary operator and the class of f̂

Consider the homotopy exact sequence associated to the fibration ev,

πk+n−1(S3) πk−1(G f ) evk∗ πk−1(S3)
∂k

πk+n−2(S3) (1)

then we can prove the following result, where we denote by α(p) the p component of an element α in some homotopy
group.

Proposition 1. Fix f ∈ m(Sn, B S3; f ), n > 4, and let ∂ f be the class that represents f in πn−1(S3). Then, for all k � 4, ζ ∈ πk−1(S3),

∂k( f )(ζ ) = ν ′ ◦ Σ3∂ f (2) ◦ Σn−1ζ(2),

where ν ′ is the element of order 4 of π6(S3).

Proof. It is convenient to work with homotopy groups of S4. This can be done recalling that each map f : Sn → B S3 (n � 4)
factors through the inclusion j of S4 into B S3, as f = j f ′ (see for example [3, Lemma 1]). The induced homomorphism j∗
in homotopy, has a right inverse Σ∂ , where ∂ is the boundary homomorphism ∂ : πn(B S3) → πn−1(S3), namely f ′ = Σ∂ f .
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Using the construction of [6], we find that the boundary operator ∂k sends the class of a map u : Sk → B S3 to the class
of the Whitehead product [u, f ] in πn+k−1(B S3). Using the commutative diagram

πk(S4)

j∗

[_, f ′]
πn+k−1(S4)

j∗

πk(B S3)
∂k

πn+k−1(B S3)

we obtain

[u, f ] = [
j∗(Σ∂u), j∗(Σ∂ f )

] = j∗
([ι4 ◦ Σ∂u, ι4 ◦ Σ∂ f ]) = j∗

([ι4, ι4] ◦ Σ(∂u ∧ ∂ f )
) = j∗

([ι4, ι4] ◦ Σ4∂ f ◦ Σn∂u
)
,

in πn+k−1(B S3) = j∗(πn+k−1(S4)).
Next observe that, for all ψ ∈ πn(S6),

j∗
([ι4, ι4] ◦ Σψ

) = j∗Σ(ξ ◦ ψ),

in πn+1(B S3) = j∗(πn+1(S4)), where ξ generates π6(S3). For, [ι4, ι4] = 2ν4 −Σξ , and ν4 is in the kernel of j∗ by definition,
using the isomorphism

π6
(

S3) ⊕ π7
(

S7) → π7
(

S4), (α,β) �→ Σα + ν4 ◦ β,

of the Hopf fibering [10]. Also, by the mod p Serre isomorphism (see for example [11, (13.1)]), with p odd, we have that
j∗([ι4, ι4] ◦ Σψ(p)) = 0. This gives the formula stated in the proposition. �

The formula of the boundary operator allows in theory to compute πk(G f ). In particular, Kono used π2 in order to solve
the problem when n = 4 in [6].

We have the following immediate consequences of Proposition 1, where

ad : m0
(

S3,Ωn−1
0 S3) → Ωn+2

0 S3,

denotes the adjoint map.

Corollary 1. For all n > 4, ad( f̂ ) is in the class of ν ′ ◦ Σ3∂ f (2) in πn+2(S3).

Corollary 2. For all n > 4, if ad( f̂ ) and ad( f̂ ′) are in the same class of πn+2(S3), then G f ∼ G f ′ .

Note that the converse is not true. In fact a homotopy self equivalence s of Ωn−1
0 S3 such that ad( f̂ ′) ∼ s∗ad( f̂ ) would

imply G f ∼ G f ′ , even if ad( f̂ ) � ad( f̂ ′). This happens for example when n = 4 (see [6]) or n = 13 (see Section 4).

Corollary 3. For all n > 4, k > 4,

Im evk∗( f ) = {
ζ ∈ πk−1

(
S3) ∣∣ ν ′ ◦ Σ3∂ f (2) ◦ Σn−1ζ = 0 ∈ πn+k−2

(
S3;2

)};
Im ev4∗( f ) = {

m ∈ Z
∣∣ mν ′ ◦ Σ3∂ f (2) = 0 ∈ πn+2

(
S3;2

)}
.

3. The cases 5 ��� n ��� 12, n = 16,17,18,23,24,25

Proposition 2. For each fixed n with n = 7,8,9,10,11,15,16,17,18,23,24,25, the homotopy type of the gauge group of all the
principal S3-bundles over Sn is the same, and it is the one of the trivial bundle, namely m(Sn, S3) ∼ Ωn

0 S3 × S3 .

Proof. We use Corollary 1 to show that, for each of these values of n, ad( f̂ ) is the trivial element of πn+2(S3). Therefore,
the thesis follows from Corollary 2. The notation is that of Proposition 1.

Case n = 7. Since ∂ f ∈ π6(S3) = Z/12[ξ ], we have 12 bundles ∂ fm = mξ . Since

mν ′ ◦ Σ3ν ′ = mν ′ ◦ 2ν6 = 0, (2)

by [11, (5.4)], and π9(S3) that has no elements of even order, ad( f̂ ) = 0, for all fm .
Case n = 8,9, and 25. ∂ f ∈ π7(S3) = Z/2[ν ′ ◦ η6], ∂ f ∈ π8(S3) = Z/2[ν ′ ◦ η2

6], and ∂ f ∈ π24(S3) = Z/2[ν ′ ◦ η6 ◦ μ̄7],
respectively for these values of n, so we have only one non-trivial bundle. By (2), ν ′ ◦ Σ3∂ f = 0 in all cases, so ad( f̂ ) = 0
for all f .
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Cases n = 10, and 11. Since ∂ f ∈ π9(S3;2) = π10(S3;2) = 0, it is clear that ad( f̂ ) = 0 for all f .
Case n = 15. ∂ f ∈ π14(S3) = Z/2[ν ′ ◦ ε6] ⊕ Z/2[ε3 ◦ ν11] ⊕ Z/4[μ′] ⊕ Z/21[α14], so we have 336 bundles, ∂ fm,n,k,l =

mν ′ ◦ ε6 + nε3 ◦ ν11 + kμ′ + lα14. Using (2), ν ′ ◦ Σ3(ν ′ ◦ ε6) = 0. By [11, (7.14)], and since ν ′ ◦ ζ6 ∈ π17(S3;2) = Z/2,

ν ′ ◦ Σ3μ′ = ν ′ ◦ 2ζ6 = 2ν ′ ◦ ζ6 = 0,

and since ν ′ ◦ ν6 ∈ π9(S3;2) = 0, we have by [11, Proposition 3.1],

ν ′ ◦ Σ3(ε3 ◦ ν4) = ν ′ ◦ ε6 ◦ ν7 = ν ′ ◦ ν6 ◦ ε9 = 0.

Therefore, ad( f̂m,n,k,l) = 0.
Case n = 16, and 17. ∂ f belongs to π15(S3) = Z/2[ν ′ ◦ μ6] ⊕ Z/2[ν ′ ◦ η6 ◦ ε7], and ∂ f belongs to π16(S3) = Z/2[ν ′ ◦

η6 ◦ μ7] ⊕ Z/3[α16], respectively for these two values of n, so we have 4 and 6 bundles. If ζ is a generator in the even
component, we see that ν ′ ◦ Σ3ζ = 0 by (2).

Case n = 18. ∂ f ∈ π17(S3) = Z/2[ε3 ◦ ν2
11] ⊕ Z/15[α17], so we have 30 bundles, fm,n = mε3 ◦ ν2

11 + nα17. By [11, (7.12)],
and (2),

ν ′ ◦ Σ3(ε3 ◦ ν2
11

) = ν ′ ◦ Σ3(ν ′ ◦ ν̄6 ◦ ν14) = 0,

and hence ad( f̂m,n) = 0.
Case n = 23. ∂ f ∈ π22(S3) = Z/2[x = ν ′ ◦ μ6 ◦ σ15] ⊕ Z/4[μ̄′] ⊕ Z/33[α22], so we have 264 bundles, ∂ fm,n,k = mx +

nμ̄′ + kα22. By (2), ν ′ ◦ Σx = 0. Next, by [11, Lemma 12.4], and since ν ′ ◦ ζ̄6 ∈ π25(S3;2) = Z/2,

ν ′ ◦ Σ3μ̄′ = ν ′ ◦ 2ζ̄6 = 2ν ′ ◦ ζ̄6 = 0;
thus, ad( f̂m,n,k) = 0.

Case n = 24. ∂ f ∈ π23(S3) = Z/2[x = ν ′ ◦ μ̄6]⊕ Z/2[y = ν ′ ◦η6 ◦μ7 ◦σ16], so we have 4 bundles, ∂ fm,n = mx +ny. By (2)
both ν ′ ◦ Σ3x = ν ′ ◦ Σ3 y = 0, therefore ad( f̂m,n) = 0. �
Proposition 3. For n = 5,6 and 12, the two principal S3-bundles over Sn have gauge groups with different homotopy type.

Proof. For all these values of n, we have only one non-trivial bundle f . Using Corollary 1, we show that ad( f̂ ) �= 0. This
is not enough, but using the exact sequence (1) and Corollary 3, we compute π2(G f ) = πn+2(S3)/ Im ∂4, Im ∂4 = Z/ Im ev4∗ ,
and we show that π2(G f ) �= πn+2(S3).

Case n = 5. Since ∂ f ∈ π4(S3) = Z/2[η3], ∂ f = η3. Since ν ′ ◦ Σ3η3 = ν ′ ◦ η6 is the generator of π7(S3) = Z/2[ν ′ ◦ η6],
then ad( f̂ ) is not trivial; hence, Im ev4∗( f ) = 2Z, and π2(G f ) = 0 �= π7(S3).

Case n = 6. ∂ f = η2
3 ∈ π5(S3) = Z/2[η2

3], and ν ′ ◦ Σ3η2
3 = ν ′ ◦ η6 ◦ η7 is the generator of π8(S3) = Z/2[ν ′ ◦ η2

6]. Then,
Im ev4∗( f ) = 2Z, and π2(G f ) = 0 �= π8(S3).

Case n = 12. ∂ f = ε3 ∈ π11(S3) = Z/2[ε3], and ν ′ ◦ Σ3ε3, is one of the generators of π14(S3;2) = Z/4[μ′] ⊕ Z/2[ε3 ◦
ν11] ⊕ Z/2[ν ′ ◦ ε6], Im ev4∗( f ) = 2Z, and π2(G f ) is π14(S3)/(Z/2) �= π14(S3). �
4. The cases n = 14,19,20,22

The proof is the same in the four cases, so we give it in details for n = 14, and we just sketch the other ones.

Proposition 4. On S14 there are 24 principal S3-bundles, classified by the elements ∂ fm,n,k of π13(S3) = Z/2[η3 ◦ μ4] ⊕ Z/4[ε′] ⊕
Z/3[α13]. The gauge groups of ∂ fm,n,k = mη3 ◦μ4 + nε′ + kα13 and ∂ f ′

m′,n′,k′ = m′η3 ◦μ4 + n′ε′ + k′α13 have the same type if and
only if m = m′ mod 2 (m,n,k,m′,n′,k′ ∈ Z).

Proof. First, we compute ad( f̂m,n,k), with ∂ fm,n,k = mη3 ◦ μ4 + nε′ + kα13, using Corollary 1. By [11, (7.10)], and (2),

ν ′ ◦ Σ3ε′ = ν ′ ◦ 2(ν6 ◦ σ9) = 0,

while by [11, Theorem 7.7],

ν ′ ◦ Σ3(η3 ◦ μ4) = ν ′ ◦ η6 ◦ μ7,

and this is the generator of the 2 component of π16(S3). By Corollary 2, we have at most two types for G f . Next, in order
to show that they are not the same type we compute π2(G f ). Using Corollary 3, Im ev4∗ = Z, for all the bundles f0,n,k , and
Im ev4∗ = 2Z, for all the bundles f1,n,k . Therefore, π2(G f0,n,k ) = π16(S3) = π2(Gc0 ), while π2(G f1,n,k ) = π16(S3)/Z/2 = Z/3,
and this completes the proof. �
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Remark 1. It is interesting to find out the possible homotopy types of the fibres of the different maps h : S3 → Ωn−1
0 S3. We

have the exact sequence

∂k+1
πk(Fh)

ik
πk(S3)

hk∗
πk+n−1(S3)

∂k

where hk∗(ζ ) = ad(h) ◦ Σn−1ζ . Taking k = 2, we get π2(Fh) = πn+2(S3)/ Im h3∗ , and h3∗ ∈ Hom(Z,πn+2(S3)). With n = 14,

ad(h) ∈ π16
(

S3) = Z/2[a = ν ′ ◦ η6 ◦ μ7] ⊕ Z/3[β],
and we compute π2(Fh) = π16(S3)/ Im h3∗ . Since h3∗ sends mι3 to mad(h), we obtain

ad(h) Im h3∗
0 0

a Z/2[a]
β Z/3[β]

2β = −β Z/3[β]
a + β Z/6

a + 2β = a − β Z/6.

Thus, there are at most 6 types. Actually, the two fibres F±β and Fa±β also have the same type, respectively. For we can
use the homotopy equivalence determined on Ω13(S3) by the loop inverse, and observe that this can be identified with the
inversion of the prime 3. So there are exactly 4 different types.

Proposition 5. On S19 there are 30 principal S3-bundles, classified by the elements ∂ fm,n of π18(S3) = Z/2[ε̄3] ⊕ Z/15[α18]. The
gauge groups of ∂ fm,n = mε̄3 + nα18 and ∂ f ′

m′,n′ = m′ε̄3 + n′α18 have the same type if and only if m = m′ mod 2 (m,n,m′,n′ ∈ Z).

Proof. We only need to compute ν ′ ◦ Σ3ε̄3 = ν ′ ◦ ε̄6, and this the generator of the 2 component of π21(S3) by [11, Proposi-
tion 12.8]. �
Proposition 6. On S20 there are 12 principal S3-bundles, classified by the elements ∂ fm,n,k of π19(S3) = Z/2[x = η3 ◦ ε̄4]⊕Z/2[y =
μ3 ◦σ12] ⊕ Z/3[α19]. The gauge groups of fm,n,k = mx + ny + kα19 and f ′

m′,n′,k′ = m′x + n′ y + k′α19 have the same type if and only
if n = n′ mod 2 (m,n,k,m′,n′,k′ ∈ Z).

Proof. We have that

ν ′ ◦ Σ3(η3 ◦ ε̄4) = ν ′ ◦ η6 ◦ ε̄7 = ν ′ ◦ ν6 ◦ σ9 ◦ ν2
16 = 0,

by [11, Lemma 12.10], and since ν ′ ◦ ν6 ∈ π9(S3;2) = 0, while

ν ′ ◦ Σ3(μ3 ◦ σ12) = ν ′ ◦ μ6 ◦ σ15,

that is one of the generators of the 2 component of π22(S3). �
Proposition 7. On S22 there are 48 principal S3-bundles, classified by the elements ∂ fm,n,l,k of π21(S3) = Z/2[x] ⊕ Z/2[y] ⊕
Z/4[z] ⊕ Z/3[α21], where x = ν ′ ◦ ε̄6 , y = η3 ◦ μ̄4 , and z = μ′ ◦ σ14 . The gauge groups of ∂ fm,n,l,k = mx + ny + lz + kα21 and
∂ f ′

m′,n′,l′,k′ = m′x + n′ y + l′z + k′α21 have the same type if and only if n = n′ mod 2 (m,n, l,k,m′,n′, l′,k′ ∈ Z).

Proof. By (2), ν ′ ◦ Σ3(ν ′ ◦ ε̄6) = 0. By [11, (7.14)], since ν ′ ◦ ζ6 ◦ σ17 belongs to π24(S3;2) = Z/2, we have that

ν ′ ◦ Σ3(μ′ ◦ σ14) = ν ′ ◦ 2ζ6 ◦ σ17 = 2ν ′ ◦ ζ6 ◦ σ17 = 0,

while

ν ′ ◦ Σ3(η3 ◦ μ̄4) = ν ′ ◦ η6 ◦ μ̄7

is a generator of the 2 component of π24(S3). �
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5. The cases n = 13 and 21

Proposition 8. On S13 there are four principal S3-bundles. The non-trivial ones are classified by the following elements of π12(S3):
μ3 , η3 ◦ ε4 and μ3 + η3 ◦ ε4 . The gauge groups of these bundles have three different homotopy types as follows: Gμ3 ∼ Gμ3+η3◦ε4 ,
Gμ3 � G0 , Gη3◦ε4 � G0 , Gμ3 � Gη3◦ε4 , where G0 denotes the gauge group of the trivial bundle.

Proof. Following Corollary 1, we compute ad( f̂m,l), where ∂ fm,l = mμ3 + lη3 ◦ ε4 belongs to π12(S3) = Z/2[μ3, η3 ◦ ε4]. By
[11, Theorem 7.6],

ν ′ ◦ Σ3μ3 = ν ′ ◦ μ6

and

ν ′ ◦ Σ3(η3 ◦ ε4) = ν ′ ◦ η6 ◦ ε7

are the two generators of π15(S3;2) = Z/2[ν ′ ◦ μ6, ν
′ ◦ η6 ◦ ε7]. Since, by Corollary 3, Im ev4∗ = 2Z, for all fm,l �= f0,0 it

follows that π2(G f(m,l)�=(0,0)
) = Z/2 while π2(G f(0,0)

) = π15(S3) �= Z/2. This shows that the non-trivial bundles have gauge
group of different type from that of the trivial one.

At this point it is worth observing that a technique like the one followed in Remark 1 or in [6], would not help in this
case, since everything reduces modulo 2. Therefore, we try to compute higher homotopy groups, in order to distinguish the
types of the non-trivial bundles. Take the sequence (1) with k = 4 and n = 13,

ev5∗ Z/2
∂5

Z/6
φ

π3(G f ) ev4∗ Z
∂4

Z/2 ⊕ Z/2.

We compute Im ev5∗ for the various f . By Proposition 1 (with k = 5), we need to solve the equation

ν ′ ◦ Σ3∂ f (2) ◦ Σ12ζ(2) = 0

in π16(S3;2) = Z/2[ν ′ ◦ η6 ◦ μ7], where ζ ∈ π4(S3) = Z/2[η3]. When f = f1,0, by [11, Proposition 3.1],

ν ′ ◦ Σ3(μ3) ◦ η15 = ν ′ ◦ μ6 ◦ η15 = ν ′ ◦ η6 ◦ μ7,

that is precisely the generator. When f = f0,1, by [11, (7.5) and (7.10)],

ν ′ ◦ Σ3(η3 ◦ ε4) ◦ η15 = ν ′ ◦ η6 ◦ ε7 ◦ η15 = ν ′ ◦ η6 ◦ η7 ◦ ε8 = ν ′ ◦ 4(ν6 ◦ σ9) = 4ν ′ ◦ ν6 ◦ σ9 = 0.

Therefore, Im ev5∗ = 0 for f0,1, while Im ev5∗ = π4(S3;2) = Z/2 for f1,l . This gives π3(G f1,0) = π3(G f1,1 ) = Z⊕Z/3, while
π3(G f0,1 ) = Z ⊕ Z/6.

We still have ambiguity for G f1,0 and G f1,1 . We computed the homotopy groups πk of these two spaces using the
approach above and results of [11] and [7], for 4 � k � 9. We find that πk(G f1,0) = πk(G f1,1 ), for all these k. This suggests
that the two spaces have the same type. We prove that this is the case, constructing a homotopy self equivalence s of
Ω12 S3, such that f1,1 ∼ sf1,0. This will be done in 4 steps.

Step 1. We recall the construction of the elements μ3 and ε3. The element ε3 is the unique element of the secondary
composition {ε3} = {η3,Σν ′,Σν6}1 ⊆ π11(S3;2), that is well defined since η3 ◦ Σν ′ = ν ′ ◦ ν6 = 0 [11, Lemma 5.7 and
Proposition 5.11]. Thus, ε3 is the composition η̄L

3 ◦ Σν̃6, of an extension of η3 and the suspension of a coextension of ν6,
and where L = CΣν ′ . Next, consider the following diagram

S11

Σ2ν̃5

Σ2 K

Σν̄ ′

CΣ2 K S12

ΣΣ̃ν̃5

S4

η3

M = CΣν̄ ′

η̄M
3

S3

where K = C8ι5 . Since ν ′ ◦ 8ι6 = 8ν ′ = 0, we have an extension ν̄ ′ of ν ′ : S6 → S3. Since ν ′ ◦ ν6 = 0, we have a coextension
ν̃6 of ν6 : S9 → S6. We also have a coextension ν̃5 of ν5, and since η3 ◦ Σν ′ = ν̄ ′ ◦ Σν̃5 = 0 [11, p. 56], the secondary
composition {η3,Σν̄ ′,Σ2ν̃5}1 ⊆ π12(S3;2), is well defined. We have that μ3 belongs to {η3,Σν̄ ′,Σ2ν̃5}1 ⊆ π12(S3;2), and

therefore it is a composition μ3 = η̄M
3 ◦ Σγ̃1, where we denote by Σγ̃1 = ΣΣ̃ν̃5. Observe that L is a subcomplex of M , and

denote the inclusion by j : L → M .
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Step 2. Consider the two maps f̂1,l : S3 → Ω12 S3. Using the explicit description given in Corollary 1 for ad( f̂ ), and the
description of the classes involved given in the previous step, it is possible to see that the maps f̂1,l factors (up to homotopy)
through the space Ω12M . More precisely,

f̂1,0 : x �→ ν ′ ◦ (
ι3 ∧ η̄M

3

) ◦ (ι3 ∧ Σγ̃1)(x ∧ _),

f̂1,1 : x �→ ν ′ ◦ (
ι3 ∧ η̄M

3

) ◦ (
ι3 ∧ (Σγ̃1 + Σγ̃2)

)
(x ∧ _),

where Σγ̃2 = j∗Σν̃6 ◦ η11 in Ω12M . Therefore, if s is a homotopy self equivalence of M , left composition with η̄M
3 gives a

homotopy self equivalence of Ω12 S3, that we denote with the same symbol s, and sends η̄M
3 ◦ u to s∗(η̄M

3 ◦ u) = η̄M
3 ◦ s∗u.

Step 3. We construct a homotopy self equivalence of M . We do it using results of [8]. To fix notation, recall the construction
of the space M in the following diagram

Σ2 K

Σν̄ ′

CΣ2 K

S4
i M = S4 ∪Σν̄ ′ CΣ2 K κ Σ3 K

Σ2ν̄ ′ S5

Consider the following portions of the exact sequences associated to CΣν̄ ′

π5(M)

κ∗

(Σ2ν̄ ′)∗ [Σ3 K , M]0

κ∗

κ∗ [M, M]0

κ∗

i∗ π4(M)

κ∗

(Σν̄ ′)∗

π5(Σ
3 K )

(Σ2ν̄ ′)∗ [Σ3 K ,Σ3 K ]0
κ∗ [M,Σ3 K ]0

i∗
π4(Σ

3 K )
(Σν̄ ′)∗

Explicit calculations and the fact that the attaching map is a suspension give

Z/2

κ∗

(Σ2ν̄ ′)∗ [Σ3 K , M]0

κ∗

κ∗ [M, M]0

κ∗

i∗
Z

κ∗

0

0 [Σ3 K ,Σ3 K ]0
= [M,Σ3 K ]0 0

By [8], we have homomorphisms π and λ that make the following square commutes

[Σ3 K , M]0

π

λ [M, M]0

κ∗

[Σ3 K ,Σ3 K ]0
= [M,Σ3 K ]0

and where π(x) = 1 + k∗(x), and λ(x) = 1x = ∇(1 ∨ x)θ is the map defined by the Hilton coaction. We know from [8, (1.8)],
that λπ−1(1) is a subgroup of the group of self equivalences of M . We construct a map x : Σ3 K → M , such that π(x) = 1.

Since η4 ◦ ν5 ◦ 8ι8 = 0, we have extensions η4 ◦ ν5 : C8ι8 = Σ3 K → S5 of η4 ◦ ν5. Let x = i∗(η4 ◦ ν5). Since k∗(x) = 0,
π(x) = 1, and therefore s = λ(x) is a homotopy self equivalence of M .

Step 4. We show that s∗(μ3) = μ3 + ε3 ◦η4. From Step 2, s∗(μ3) = η̄M
3 ◦ s∗(Σγ̃1), where γ̃1 = Σ̃ν̃5. By the definition of s in

Step 3, s∗(Σγ̃1) = ∇(1 ∨ x)θΣγ̃1. It is easy to see, from the definition of coextension, that θΣγ̃1 = Σγ̃1 + Σ3ν̃5. Therefore

s∗(Σγ̃1) = ∇(1 ∨ x)
(
Σγ̃1 ∨ Σ3ν̃5

)
ν = ∇(

Σγ̃1 ∨ x ◦ Σ3ν̃5
)
ν = Σγ̃1 + x ◦ Σ3ν̃5,

in π12(M). This means that

s∗(μ3) = η̄M
3 ◦ (

Σγ̃1 + x ◦ Σ3ν̃5
) = μ3 + η̄M

3 ◦ x ◦ Σ3ν̃5.

We show that η̄M
3 ◦ x ◦ Σ3ν̃5 = η3 ◦ ε4. Recalling the definition of x,

η̄M
3 ◦ x ◦ Σ3ν̃5 = η̄M

3 ◦ i∗(η4 ◦ ν5) ◦ Σ3ν̃5 = η3 ◦ η4 ◦ ν5 ◦ Σ3ν̃5.
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We show that η4 ◦ ν5 ◦ Σ3ν̃5 = ε4. By definition and [11, Proposition 1.3],

Σε3 = Σ{η3,Σν ′, ν7}1 ⊆ −{
η4,Σ

2ν ′, ν8
}

2.

Now, {η4,Σ
2ν ′, ν8}2 is a coset of π9(S4) ◦ ν9 + η4 ◦ Σ2π10(S3) in π12(S4). Direct calculation shows that π9(S4) ◦ ν9 +

η4 ◦ Σ2π10(S3) is 2-trivial, and therefore the 2 component of this secondary composition is a single element. So

Σε3 = −{
η4,Σ

2ν ′, ν8
}

2 = −{η4,2ν5, ν8}2,

by [11, Proposition 1.3]. Next, by [11, Proposition 1.2(iii) and (iv)]

{η4,2ν5, ν8}2 ⊇ {η4 ◦ ν5,2ι8, ν8}2 ⊇ {η4 ◦ ν5,2ι8, ν8}3,

and by definition {η4 ◦ ν5,2ι8, ν8}3 is the set of the compositions η4 ◦ ν5 ◦ Σ3ν̃5. Since this set contains a single element, it
follows that η4 ◦ ν5 ◦ Σ3ν̃5 = ε4. �
Remark 2. It is easy to see that the problem of proving that the gauge groups G f1,0 and G f1,1 have all isomorphic homotopy
groups reduces to show that for all m � 4, ν ′ ◦ η6 ◦ ε7 ◦ Σζ(2) = 0 ∈ πm+12(S3), for all ζ ∈ πm(S3). We were not able to
prove this fact.

We conclude with the case n = 21. We are not able to solve this case, but we can state a conjecture. On S21 we have 48
principal S3-bundles, classified by the elements ∂ fm,n,k,l of π20(S3) = Z/2[μ̄3] ⊕ Z/2[η3 ◦ μ4 ◦ σ13] ⊕ Z/4[ε̄′] ⊕ Z/3[α20].

First, we compute ad( f̂m,n,k,l) using Corollary 1. Since ν ′ ◦ν6 ∈ π9(S3;2) = 0, using [11, Lemma 12.3 and (5.5)], we obtain

ν ′ ◦ Σ3(ε̄′) = ν ′ ◦ Σ2(Σν ′ ◦ κ7) = ν ′ ◦ 2ν6 ◦ κ9 = 0,

while

ν ′ ◦ Σ3(μ̄3) = ν ′ ◦ μ̄6,

and

ν ′ ◦ Σ3(η3 ◦ μ4 ◦ σ13) = ν ′ ◦ η6 ◦ μ7 ◦ σ16,

and these are generators of the 2 component of π23(S3). Using Corollary 3, we calculate Im ev4∗ = 2Z, for all the bun-
dles f1,n,k,l , fm,1,k,l , f1,1,k,l and Im ev4∗ = Z, for all the bundles f0,0,k,l . Therefore, π2(G f0,0,k,l ) = π23(S3) = π2(Gc0 ), while

π2(G f1,n,k,l ) = π2(G fm,1,k,l ) = π2(G f1,1,k,l ) = π23(S3)/Z/2.
Second, in order to distinguish the type of G fm,n,k,l with (m,n) �= (0,0), we compute π3. From sequence (1) with k = 4

and n = 21, we obtain

ev5∗ Z/2
∂5

Z/2
φ

π3(G f ) ev4∗ Z
∂4

Z/2 ⊕ Z/2.

We compute Im ev5∗ for the various f . By Proposition 1 (with k = 5), we need to solve the equation

ν ′ ◦ Σ3∂β f (2) ◦ Σ20ζ(2) = 0,

in π24(S3;2) = Z/2[ν ′ ◦ η6 ◦ μ̄7], where ζ(2) ∈ π4(S3;2) = Z/2[η3]. Since ν ′ ◦ ν6 belongs to π9(S3;2) = 0, using [11,
Lemma 12.3], and (5.5), we obtain that

ν ′ ◦ Σ3ε̄′ = ν ′ ◦ Σ2(Σν ′ ◦ κ7) = ν ′ ◦ 2ν6 ◦ κ9 = 0,

so ν ′ ◦ Σ3ε̄′ ◦ η23 = 0. By [11, Proposition 3.1],

ν ′ ◦ μ̄6 ◦ η23 = ν ′ ◦ η6 ◦ μ̄7,

that is the generator. By [11, Proposition 3.1, (7.7), and (7.14)],

ν ′ ◦ η6 ◦ μ7 ◦ σ16 ◦ η23 = ν ′ ◦ η6 ◦ μ7 ◦ η16 ◦ σ17 = ν ′ ◦ η6 ◦ η7 ◦ μ8 ◦ σ17

= ν ′ ◦ Σ3(2μ′) ◦ σ17 = ν ′ ◦ 2Σ(2ζ5) ◦ σ17 = 4ν ′ ◦ ζ6 ◦ σ17 = 0.

Therefore, Im ev5∗ = 0 for f1,0,k,l and f1,1,k,l , while Im ev5∗ = Z/2 for f0,1,k,l . This gives π3(G f(1,1,k,l) ) = π3(G f(1,0,k,l) ) = Z,
and π3(G f(0,1,k,l) ) = Z ⊕ Z/2.

We have the same problem that we had in the case of n = 13. Therefore, an explicit analysis, similar to the one performed
in the proof of Proposition 8, is necessary. Unfortunately, we are not able to find all the necessary information about the
generators of the groups involved, but we formulate the following conjecture.

Conjecture 1. On S21 there are 48 principal S3-bundles, classified by the elements ∂ fm,n,l,k = mμ̄3 + nη3 ◦ μ4 ◦ σ13 + lε̄′ + kα20 of
π20(S3) = Z/2[μ̄3, η3 ◦ μ4 ◦ σ13] ⊕ Z/4[ε̄′] ⊕ Z/3[α20]. The gauge groups are of three homotopy types: the one of f0,0,l,k, the one
of f1,n,l,k, and the one of f0,1,l,k (m,n, l,k ∈ Z).
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