

Istituto Nazionale di Fisica Nucleare

LABORATORIO DI FISICA MODERNA PLS 2019-20 L'esperienza di Millikan La velocità della luce

L. Martina 27/1/2020

Dipartimento di Matematica e Fisica "Ennio De Giorgi"

Dipartimento di Matematica e Fisica «Ennio De Giorgi»

Università del Salento

Sezione INFN - Lecce

Cenni storici

Nel 1909 Robert Millikan fu il primo a misurare la carica dell'elettrone, eseguendo l'esperimento della "goccia d'olio".

L'articolo definitivo (1913) gli valse, 10 anni più tardi, il riconoscimento del premio Nobel.

Il valore attualmente noto della carica dell'elettrone è

e = 1.602 176 565(35)×10⁻¹⁹ C

The NIST Reference on Constants, Units, and Uncertainty

Fundamental Physical Constants

http://pdg.lbl.gov/2014/reviews/<u>rpp2014-rev-phys-constants</u>.pdf

PSSC: FISICA, vol. 2, Cap. 28-4

http://www.aip.org/history/gap/Millikan/Millikan.html

Oil spray

X rays produce

charges on the oil drops

Atomizer to

produce oil

droplets

Scopo dell'esperienza

- Misurare la carica elettrica di goccioline d'olio, elettrizzate per strofinio e accelerate da un campo elettrico uniforme
- Verificare l'esistenza di una carica elettrica fondamentale *e*, della quale tutte le altre cariche sono multiple intere.

Principio di quantizzazione della carica elettrica

L'apparato strumentale

- 1) Piano di base
- 2) Microscopio con oculare e micrometro
- 3) Condensatore piano
- 4) Dispositivo di illuminazione
- 5) Nebulizzatore d'olio
- 6) Pompetta di gomma
- 7) Base d'appoggio
- Olio (di densità nota ρ)
- Alimentatore (corrente continua)
- Video camera per l'acquisizione delle immagini in tempo reale
- Sistema di riproduzione delle immagini

Dati tecnici

- Distanza tra le armature del condensatore: d = 6.00±0.05 mm
- Densità dell'olio impiegato $\gg \rho = 0.877 \text{ g/cm}^3 \text{ (a 15°C)}$ $\gg \rho = 0.871 \text{ g/cm}^3 \text{ (a 25°C)}$
- Ingrandimento dell'oculare: 10
- Ingrandimento dell'obiettivo: 2
- Scala del micrometro: 4.50 mm
- Graduazione della scala: 0.45 mm
- Intervallo di tensione dell'alimentatore: 0-600 V

Procedura sperimentale - 1

- Agendo sulla pompetta si immettono delle goccioline d'olio tra le armature del condensatore piano, contenuto all'interno di una scatola chiusa, sulla quale sono presenti due appositi forellini.
- Alcune goccioline si caricano elettricamente per strofinio con l'aria (con carica -q).
- La forze che agiscono verticalmente sulla goccia sono:
 - 1. la forza peso (mg),
 - 2. la spinta di Archimede. (trascurabile !?!)
 - 3. L'attrito viscoso (**F**_{visc})
 - 4. la forza coulombiana (**q** E)

Procedura sperimentale -2

- Il campo elettrico è dato da $|\mathbf{E}| = V/d$
- La spinta di Archimede è trascurabile rispetto alla forza peso $(\rho_{aria} \approx 10^{-3} \text{ g/cm}^3 << \rho_{olio})$
- Viscosità dell'aria η_{aria} =1.82·10⁻⁵ Pa s (20 °C) (η_{aria} =1.92·10⁻⁵ Pa s (40 °C))
- Dobbiamo misurare :
 - D.d.p. V,
 - v_d velocità di deriva e quindi
 - un intervallo spaziale s
 - il tempo t necessario per percorrerlo

Procedura Sperimentale - 3

- I. Misura della d.d.p. V
 - 1. Portare la tensione a fondo scala e "scegliere" una gocciolina che "sale".
 - 2. Abbassare la tensione V fino a che la gocciolina non si fermi.
 - 3. Leggere la tensione di arresto.
- II. Misura della velocità di deriva
 - 1. Individuare la posizione di partenza della goccia,
 - 2. azzerare il potenziale, facendo partire il cronometro,
 - 3. Bloccare il cronometro al passaggio della goccia un traguardo prefissato a distanza *s* dalla partenza
 - 4. Leggere il tempo *t* misurato dal cronometro

Elaborazione dei Dati

- Preparare una tabella con i dati misurati
- Calcolare $v_d = s/t$

• Calcolare la carica
$$q = \frac{18\pi d}{V} \sqrt{\frac{\eta^3 v_d^3}{2\rho g}}$$

• Formula semplificata
$$q = \frac{2.018 \times 10^{-10}}{V} \sqrt{v_d^3}$$

V, t, s

- nella quale sono stati utilizzati i valori dei parametri fisici (a 20 °C) (si provi a modificare η e ρ)
- Altre quantità che può interessare calcolare: r, m

Errori sulle misure dirette (sensibilità dello strumento):

 $\Delta V = \pm 10 V$ $\Delta s = \pm 0,1 mm$ $\Delta t = \pm 0,1 sec$

Queste incertezze vanno adottate dopo una analisi critica delle fonti di errore. Ad esempio è irrealistico assumere l'incertezza strumentale del cronometro come incertezza delle misure di tempo, in quanto il cronometro è avviato/fermato manualmente e i tempi di reazione umana sono dell'ordine di 0,1 sec.

Errori sulle misure indirette

Dalla teoria sulla propagazione degli errori ricaviamo le seguenti formule:

$$\Delta v = \left(\frac{\Delta s}{s} + \frac{\Delta t}{t}\right) v \qquad \qquad \Delta q = \left(\delta_C + \frac{\Delta V}{V} + \frac{3}{2}\frac{\Delta v}{v}\right) q$$

dove $\delta_{\rm C}$ è l'ncertezza relativa sui vari parametri che compaiono nella formula della carica, addebitabili soprattutto alle variazioni di temperatura. Tipicamente si potrebbe assumere $\delta_{\rm C}$ = 1%.

Esempio

ddp (V)	De(V)	t (s)	de(t)	s (mm)	de(s)	v (m/s)	de(v)	q (C)	de(q)	De(q)
303	3,03	36,91	0,003	3	0,07	8,13E-05	0,07	4,88E-19	0,11	5,57E-20
128	1,28	49,04	0,002	2,5	0,08	5,10E-05	0,08	5,74E-19	0,13	7,64E-20
458	4,58	10,9	0,009	2	0,10	1,83E-04	0,11	1,10E-18	0,17	1,90E-19
217	2,17	31,8	0,003	2,5	0,08	7,86E-05	0,08	6,48E-19	0,13	8,73E-20
321	3,21	29,14	0,003	2,5	0,08	8,58E-05	0,08	5,00E-19	0,14	6,75E-20
202	2,02	17,2	0,006	1,5	0,13	8,72E-05	0,14	8,14E-19	0,22	1,78E-19
311	3,11	12,47	0,008	2	0,10	1,60E-04	0,11	1,32E-18	0,17	2,27E-19
238	2,38	21,23	0,005	1,5	0,13	7,07E-05	0,14	5,04E-19	0,22	1,09E-19
182	1,82	19,41	0,005	2,5	0,08	1,29E-04	0,09	1,62E-18	0,14	2,23E-19
254	2,54	35,99	0,003	2	0,10	5,56E-05	0,10	3,29E-19	0,16	5,40E-20
169	1,69	31,65	0,003	2	0,10	6,32E-05	0,10	6,00E-19	0,16	9,88E-20
333	3,33	21,12	0,005	2	0,10	9,47E-05	0,10	5,58E-19	0,17	9,33E-20
245	2,45	31,7	0,003	2	0,10	6,31E-05	0,10	4,13E-19	0,16	6,80E-20
153	1,53	49,08	0,002	2	0,10	4,07E-05	0,10	3,43E-19	0,16	5,59E-20
278	2,78	15,28	0,007	2	0,10	1,31E-04	0,11	1,09E-18	0,17	1,85E-19
194	1,94	38,57	0,003	5	0,04	1,30E-04	0,04	1,54E-18	0,07	1,13E-19
293	2,93	23,29	0,004	2	0,10	8,59E-05	0,10	5,48E-19	0,17	9,12E-20
228	2,28	48,68	0,002	3,5	0,06	7,19E-05	0,06	5,40E-19	0,10	5,33E-20
362	3,62	28,53	0,004	2,2	0,09	7,71E-05	0,09	3,77E-19	0,15	5,72E-20
188	1,88	56	0,002	3	0,07	5,36E-05	0,07	4,21E-19	0,11	4,74E-20
290	2,9	31,4	0,003	2,3	0,09	7,32E-05	0,09	4,36E-19	0,15	6,33E-20

Elaborazione Dati

q x 10^19) q >	De(q) >	q-De(q)	q - De(q)	<q></q>	sigma	qi-q1	n1	(qi-q1)/n1	De1
4,88	3,29	0,54	2,75	3,83						
5,74	3,43	0,56	2,87	3,99						
10,95	3,77	0,57	3,20	4,35	3,77	0,41				
6,48	4,13	0,68	3,45	4,81						
5,00	4,21	0,47	3,73	4,68			1,05	1,00	1,05	0,72
8,14	4,36	0,63	3,73	5,00						
13,18	4,88	0,56	4,32	5,44	4,82	0,31				
5,04	5,00	0,68	4,32	5,67						
16,21	5,04	1,09	3,94	6,13						
3,29	5,40	0,53	4,86	5,93			2,01	2,00	1,01	0,36
6,00	5,48	0,91	4,57	6,39						
5 <i>,</i> 58	5,58	0,93	4,65	6,52	5,78	0,40				
4,13	5,74	0,76	4,97	6,50						
3,43	6,00	0,99	5,01	6,99			6,22	4,00	1,55	0,10
10,87	6,48	0,87	5,61	7,36						
15,35	8,14	1,78	6,36	9,92						
5,48	10,87	1,85	9,02	12,72	9,99	1,60				
5,40	10,95	1,90	9,05	12,85			11,15	6,00	1,86	0,53
3,77	13,18	2,27	10,91	15,45						
4,21	15,35	1,13	14,22	16,49	14,91	1,56	St	ima inte	ro	
4,36	16,21	2,23	13,98	18,44				Sti	ma carica fond	l. /errore
									е	De
	q in ordine	1	Intervalli di v	alori	Valori m	iedi	Differenz	e		
	crescente	2	per le q		nelle cla	ssi co	on la classe	e 1	1,41	0,23
		Inc	dividuazione	delle classi					Valori medi	Errore
									delle stime s	ulla media

Prime misure della velocità della luce

1670, Ole Roemer

H H K Fig. 70.

214000 km/sec

Il Metodo di Foucault - Michelson

relazione dei punti coniugati

 $\frac{1}{a+f} + \frac{1}{b} = \frac{1}{f}$ $c = \frac{\Delta s}{\Delta t} \quad \Delta s = 2(b+f)$ $\alpha = \omega \Delta t$ $\beta = 2\alpha$ $|oo'| = 2\alpha a$ $c = \frac{4\omega(b+f)a}{|OO'|}$

Date	Author Error	Method		Result (km/s)	
1676	Olaus Roemer	Juniter's satellites		214 000	
1726	James Bradley	Stellar Aberration		301.000	
1849	Armand Fizeau	Toothed Wheel		315,000	
1862	Leon Foucault	Rotating Mirror		298,000	+-
500					
1879	Albert Michelson	Rotating Mirror		299,910	+-50
1907	Rosa, Dorsay	Electromagnetic cons	stants	299,788	+-30
1926	Albert Michelson	Rotating Mirror		299,796	+-4
1947	Essen, Gorden-Smith	Cavity Resonator	299,792	+-3	
1958	K. D. Froome	Radio Interferometer	299,792.5	+-0.1	
1973	Evanson et al	Lasers		299,792.4574	+-
0.001					
1983		Adopted Value	299,792.4	58	

speed of light in vacuum

Value 299 792 458 m s⁻¹

Standard uncertainty (exact)

Relative standard uncertainty (exact)

Concise form 299 792 458 m s⁻¹

Il metro è la lunghezza percorsa dalla luce nel vuoto in un intervallo di tempo di 1/299792458 di secondo.

Apparato per la misura della velocità della luce

Fig. 1: Experiment set-up: A Microprism mirror, B Fresnel lens, C Optical bench, D Basic unit

s = 260 cm , Δt = 10.0 ns v= 2.6 x 10⁸ m/sec

s = 208 cm, Δt = 8.0. ns v= 2.6 x 10⁸ m/sec

Type

Un esempio di misure

t (ns)	s (cm))	v (m/s) x	10^8
Ç	9,8	280	2,86	
ç	9,4	250	2,66	
ç	9,4	212	2,26	
8	3,6	172	2,00	
3	3,2	146	1,78	
8	3,6	168	1,95	
	11	266	2,42	
10),5	224	2,13	
Ç	9,7	210	2,16	
11	1,1	274	2,47	

2,86 0,33

c ±σ

Altre misure

ΔS (Spazio totale: in cm)	I[s] (Incertezza spazio: in cm)	ΔS-I[s] (Spazio totale minimo: in cm)	ΔS+I[s] (Spazio totale massimo: in cm)	Δt (Tempo impiegato: in ns)	I[t] (Incertezza tempo: in ns)	Δt-I[t] (Tempo impiegato minimo: in ns)	Δt+I[t] (Tempo impiegato massimo: in ns)	V=ΔS*10^4/Δt (Velocità: in km/s)
280	1	279	281	9,5	0,2	9,3	9,7	294736,8
258	1	257	259	8,5	0,2	8,3	8,7	303529,4
238	1	237	239	8,6	0,2	8,4	8,8	276744,2
218	1	217	219	7,4	0,2	7,2	7,6	294594,6
198	1	197	199	6,6	0,2	6,4	6,8	300000
264	1	263	265	9,4	0,2	9,2	9,6	280851,1
288	1	287	289	10,6	0,2	10,4	10,8	271698,1
218	1	217	219	8,2	0,2	8	8,4	265853,7
228	1	227	229	6,5	0,2	6,3	6,7	350769,2
198	1	197	199	6,5	0,2	6,3	6,7	304615,4

Grafico Tempo-Spazio

