SOLUZIONI:

1. Tsunami

Il fatto che la velocità dell'onda dipenda solo da g e da h permette di scrivere: $v = k g^{\alpha} h^{\beta}$, dove k è una costante adimensionale, e dunque di ricavare gli esponenti dal seguente sistema:

$$\begin{cases} \alpha + \beta = 1 \\ 2\alpha = 1 \end{cases}$$

È dunque $v(h)=k\sqrt{g\,h}$, e di conseguenza la velocità media dell'onda è:

$$\overline{v} = v(457 \text{ m}) = (200 \text{ m/s}) \sqrt{\frac{457}{4000}} \approx 67.6 \text{ m/s}$$

Il tempo disponibile per l'evacuazione è $\Delta t = 150000/67.6 \approx 2219 \text{ s}.$

Risposta: $2218 \text{ s} \leq \Delta t \leq 2220 \text{ s}$.

2. Virata!

Scomponiamo la portanza F in due componenti: una verticale, $F_y = F \cos \theta$ che sostiene l'aereo, e una orizzontale, centripeta, $F_x = F \sin \theta$. Dal sistema

$$\begin{cases} F\cos\theta = mg\\ F\sin\theta = m\frac{v^2}{R} \end{cases}$$

dove m è la massa dell'aereo, otteniamo:

$$\theta = \tan^{-1}\left(\frac{v^2}{gR}\right) \approx 37.8^{\circ}.$$

Risposta: $37.7^{\circ} \le \theta \le 37.9^{\circ}$.

3. Onda d'urto

La "forza" che spinge lo tsunami sviluppa una potenza $P = F \cdot v$ dove $F = p \cdot A$ e I = P/A da cui:

$$I = \frac{P}{A} = \frac{pAv}{A} \to p = \frac{I}{v} = 30000 \text{ N/m}^2$$

Risposta: 29999 Pa $\leq p \leq 30001$ Pa.

4. Bilanciamento

Il lavoro fatto dal gas per svuotare le vasche di zavorra è dato da

$$W = p\Delta V$$

con

$$p = p_0 + \rho_m g h = 1.01325 \times 10^5 \text{ Pa } + (1.03 \times 10^3 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(200 \text{ m}) = 2.122185 \times 10^6 \text{ Pa}$$

e

$$\Delta V = \frac{(33800 - 23200) \times 10^3 \text{ kg}}{1.03 \times 10^3 \text{ kg/m}^3} = 10291.26214 \text{ m}^3$$

Questo lavoro equivale a una massa di uranio-235

$$m = \frac{W}{(0.20~{\rm GeV})\times(2.56\times10^{24}~{\rm atomi/kg})} \approx 0.266~{\rm g}$$

Risposta: $0.263 \text{ g} \le m \le 0.269 \text{ g}.$

5. Scoperchiamento

La differenza di pressione tra interno e esterno è:

$$\Delta P = P_{\rm int} - P_{\rm ext} = \frac{F}{A} = \frac{18.0 \times 10^4 \text{ N}}{100 \text{ m}^2} = 1.80 \times 10^3 \text{ Pa}$$

Applicando il teorema di Bernoulli possiamo scrivere:

$$\Delta P = \frac{1}{2} \, \rho_0 \, (v_{\rm ext}^2 - v_{\rm int}^2) = \frac{1}{2} \, \rho_0 \, v_{\rm ext}^2 \rightarrow v_{\rm ext} = \sqrt{\frac{2 \, \Delta P}{\rho_0}} \approx 52.83 \, \text{m/s} = 190.2 \, \text{km/h}$$

Risposta: $52.3 \text{ m/s} \le v_{\text{ext}} \le 53.4 \text{ m/s}$.

6. Nelle caverne

Il tempo trascorso tra l'arrivo del suono riflesso dal soffitto e quello riflesso dal pavimento della grotta è il tempo che il suono impiega per percorrere la distanza 2h:

$$\Delta t = 0.052 \text{ s} - 0.031 \text{ s} = 0.021 \text{ s} \rightarrow h = \frac{v\Delta t}{2}$$

La velocità del suono nella caverna, assumendo che l'aria si comporti come un gas ideale, è data dalla teoria cinetica dei gas, e dal valore v_0 noto a $T_0 = 273,15$ K:

$$\frac{v}{v_0} = \sqrt{\frac{T}{T_0}} \to v = v_0 \sqrt{\frac{T}{T_0}}$$

da cui:

$$h = \frac{v_0 \Delta t}{2} \sqrt{\frac{T}{T_0}} \approx 3.59 \text{ m}$$

Risposta: $3.55 \text{ m} \le h \le 3.63 \text{ m}$.

7. Rifornimento

Lungo la direzione verticale la II legge della dinamica applicata rispettivamente alle massa m_1 e m_2 si scrive:

$$\begin{cases} T_1 - m_1 g = m_1 a_1 \\ m_2 g - T_2 = m_2 a_2 \end{cases}$$

La somma delle forze agenti sulla carrucola fissa deve valere 0, dato che la sua massa è nulla, da cui: $T_2=2T_1$. Inoltre lo spazio percorso dalla massa m_1 è il doppio di quello percorso dalla massa m_2 , e quindi i moduli delle due accelerazioni sono legati tra di loro dalla seguente relazione: $a_1=2a_2$. Il sistema di riscrive:

$$\begin{cases} T_1 - m_1 g = 2m_1 a_2 \\ m_2 g - 2T_1 = m_2 a_2 \end{cases}$$

Risolvendo si ricava:

$$m_1 = \frac{m_2}{2} \cdot \frac{g - a_2}{g + 2a_2} = 21.54 \text{ kg}$$

Valori inferiori daranno luogo ad un'accelerazione a_2 troppo grande.

Risposta: $21.32 \text{ kg} \le m_1 \le 21.76 \text{ kg}$.



8. Che mira!

L'angolo con il quale il raggio rifratto (partito dal pesce) colpisce l'occhio del ragazzo, che corrisponde all'angolo di incidenza nell'ideale percorso inverso aria-acqua, è

$$\theta_i = \tan^{-1}\left(\frac{2.6}{1.8}\right) \approx 55.30^{\circ}$$

Possiamo ricavare il corrispondente angolo di rifrazione:

$$\theta_r = \sin^{-1}\left(\frac{1}{1.33}\sin(55.30^\circ)\right) \approx 38.18^\circ$$

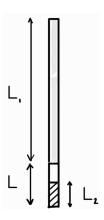
Da cui la distanza effettiva calcolata nel modo seguente:

$$x_{\rm eff} = (0.6 \text{ m}) \tan(55.30^{\circ}) + (1.2 \text{ m}) \tan(38.18^{\circ}) \approx 1.81 \text{ m}$$

Risposta: 1.79 m $\leq x_{\text{eff}} \leq 1.83$ m.

9. Compensazione

Siano L_1 e L_2 le lunghezze del ferro e della colonna di mercurio, A la loro sezione.



Le masse m_1 e m_2 si esprimono:

$$m_1 = \rho_{\text{Fe}} A L_1$$
 $m_2 = \rho_{\text{Hg}} A L_2$

mentre la posizione del centro di massa rispetto al riferimento scelto è data da:

$$mx_{cm} = m_1 \frac{L_1}{2} + m_2 \left(L_1 + L - \frac{L_2}{2} \right)$$

Per effetto di una variazione di temperatura ΔT il centro di massa di sposterà di:

$$m\Delta x_{cm} = m_1 \frac{\Delta L_1}{2} + m_2 \left(\Delta L_1 - \frac{\Delta L_2}{2}\right)$$

dove

$$\Delta L_1 = \lambda_{\text{Fe}} L_1 \Delta T$$
 $\Delta L_2 = 3\lambda_{\text{Hg}} L_2 \Delta T$.

Il fattore 3 sulla dilatazione del mercurio deriva dal fatto che la base della colonna è da considerarsi di sezione costante e quindi la sua altezza varia come il volume. Imponendo che sia $\Delta x_{cm}=0$ otteniamo un' equazione di secondo grado in L_2 :

$$\frac{1}{2}\rho_{\rm Fe}\lambda_{\rm Fe}L_1^2 + \rho_{\rm Hg}\lambda_{\rm Fe}L_1L_2 - \frac{3}{2}\rho_{\rm Hg}\lambda_{\rm Hg}L_2^2 = 0$$

con i dati numerici del problema e i valori della tabella troviamo $L_2 \approx 13.74~\mathrm{cm}.$

Risposta: $13.60 \text{ cm} \le L_2 \le 13.88 \text{ cm}$.

10. Sismografo

Valgono le seguenti relazioni:

$$D = v_p t_p = v_s t_s = v_s (t_p + \Delta t)$$

per cui la distanza D dell'epicentro vale

$$D = \frac{\Delta t \, v_s \, v_p}{v_p - v_s} = 179.5 \text{ km}.$$

Risposta: 177.7 km $\leq D \leq$ 181.3 km.

11. Sintonizzati

Sia $S(\theta)$ la superficie affacciata. La capacità del condensatore vale:

$$C(\theta) = \varepsilon_0 \frac{S(\theta)}{d} = \varepsilon_0 \frac{R^2(\pi - \theta)}{2d}$$

e si ricava per θ :

$$\theta = \pi - \frac{2dC(\theta)}{\varepsilon_0 R^2} \approx 93.72^\circ$$

Risposta: $92.78^{\circ} \le \theta \le 94.65^{\circ}$.

12. Stay tuned!

L'antenna mostra all'onda una «superficie efficace» S rettangolare, con base uguale al diametro del cilindro e altezza uguale a quella del cilindro. L'irradiamento minimo necessario per il funzionamento dei walkie-talkie è

$$I_{\min} = \frac{P_{\min}}{S} = \frac{1,0 \times 10^{-11} \text{ W}}{(0,010 \text{ m})(0,10 \text{ m})} = 1,0 \times 10^{-8} \text{ W/m}^2$$

Da cui la massima distanza di funzionamento:

$$d_{\rm max} = \sqrt{\frac{P}{4\pi I_{\rm min}}} = \sqrt{\frac{0.50\,{\rm W}}{4\pi\times 1,0\times 10^{-8}\,{\rm W/m^2}}} \approx 1995~{\rm m}$$

Risposta: 1994 m $\leq d_{\text{max}} \leq$ 1996 m

13. **Ipnosi**

L'accelerazione effettiva che agisce sul pendolo ha modulo:

$$g_{\text{eff}} = \sqrt{(2g)^2 + g^2} = \sqrt{5}g$$

da cui il periodo del pendolo:

$$T=2\pi\sqrt{rac{\ell}{g_{ ext{eff}}}}pprox 0.600\, ext{s}$$

Risposta: $0.594 \text{ s} \le T \le 0.606 \text{ s}$

14. Gravità artificiale

La testa della persona si trova a distanza R=500 m - 1.7 m = 498.3 m dall'asse di rotazione. L'accelerazione centrifuga che riveste il ruolo di gravità artificiale si ottiene da:

$$g_{\rm app} = \omega^2 R \to f = \frac{1}{2\pi} \sqrt{\frac{g_{\rm app}}{R}}$$

il cui valore in giri al minuto è 60 volte maggiore e vale f = 1.340 giri/min.

Risposta: $1.339 \le giri/minuto \le 1.341$

15. Cambio di orbita

La velocità iniziale è data da $v_i=\sqrt{\frac{GM}{R}}$. La traiettoria finale sarà un'ellisse alla quale appartiene il punto in cui è avvenuta l'accelerazione. Poiché la velocità è tangente alla traiettoria, l'ellisse e la circonferenza iniziale saranno tangenti in quel punto che costituisce quindi il perielio a distanza $R \to il$ semiasse maggiore dell'orbita ellittica è $a = \frac{3R}{2}$. Dal bilancio energetico possiamo scrivere:

$$-\frac{GM}{3R} = -\frac{GM}{R} + \frac{v_f^2}{2}$$

che implica:
$$v_f^2=\frac{4GM}{3R} \rightarrow \frac{v_f}{v_i}=\sqrt{\frac{4}{3}}\approx 1,155$$

Risposta:
$$1.154 \le \frac{v_f}{v_i} \le 1.156$$