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Introduction and motivation

o (2+1)-dimensional integrable systems have a large variety of solutions.

o KPII has a large family of real, nonsingular soliton solutions exhibiting
a rich phenomenology, including soliton resonance and web structure.

These solutions likely to be stable and physically relevant.

o A nontrivial connection exists between soliton solutions of KPIl and
combinatorial algebraic geometry.

o Soliton resonance and web structure are a generic feature of (2+1)-D
iIntegrable systems.

Here: Davey-Stewartson (DS) equation; more precisely, defocusing DSII.

o The underlying mathematical structure of the soliton solutions of DSII
Is similar to that of KPII.

o At the same time, the physical behavior of the solutions is richer than
that of KPII, and includes V-shape solitons and soliton reconnection.
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The Kadomtsev-Petviashvili equation and its Wronskian solutions

o Kadomtsev-Petviashvili (KP) equation: ¢ =i: KPIl; 6 = 1: KPII
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o Bilinear form: u(x,y,7) = Zﬁ logt(x,y,1).
X
Then the tau-function 7(x,y,r) satisfies Hirota’s bilinear equation:
(—4D,.D; +ng + 362D§) 7-7=0.

Hirota derivatives: D' f-g= (dx — dv)" f(x,y,t)g(x',y,t)|v—, etc.

o Wronskian solutions:
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Ordinary line solitons and fully resonant solutions

o Line soliton: take N =1 and f =% +¢%, with
0, = knx+kay+kt+ 6,0 and ki, ky € R.
u=1(ky—ki)*sech’[1(6, — 6;)],

travelling wave solution, localized in the xy-plane along the line 6, = 6,.
- soliton direction: ¢ = —dx/dy =k; + ky. (“velocity” in the xy-plane)
- soliton amplitude: a =k, —k;.

o Ordinary N-soliton solutions: f, = e% 1 +¢% n=1,... N.
(Pattern in the xy-plane: intersection of N lines, plus small phase shifts.)

o Different choice of eigenfunctions: f, =09"'f/ox"', n=1,...,N.
(These ty’s also generate solutions of the Toda lattice hierarchy.)

o Take f=¢e% +---+e% with 6,, as before and k; < -+ < k.

Also a combination of exponential terms, like ordinary soliton solutions.
Here however each eigenfunction f,, contains all exponentials.



General properties of fully resonant solutions

o Theorem: 1y produces an (N_, N, )-soliton solution:
N_ :=M—N line solitons as y — —«o, identified by [n,n+N|, n=1,...,M —N.
N, := N line solitons as y — o, identified by [n,n+M —NJ|, n=1,...,N.
The amplitudes and directions of these solitons are completely determined by
these index pairs.

o The solution describes a fully resonant interaction of line solitons:

- the whole interaction is a collection of fundamental resonances;
- at each resonant vertex Miles’ resonance condition is satisfied;
- the interaction creates a web-like structure with (N, —1)(N_—1) holes.

o When M = 2N, N-soliton solutions are produced.

However these are not the same as ordinary N-soliton solutions.

- the amplitudes and directions of the solitons are different,
- the interaction process is different (Y-junctions vs X-junctions; each vertex
of an ordinary solution becomes four vertices and a hole).

[GB & Y Kodama, 2003]



Fully resonant solutions: examples

Top:
N=1 M=5 =
(4,1)-soliton solution.
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General soliton solutions of KPII

o General soliton solutions:
M

fn<x:yat> = ) an,meem(x’y’t):

m=1
0, (x,y,1) = kpx +ky+ k)t + 6,0 = exponential “phases”.
N = number of eigenfunctions
M = number of exponential phases
A = (anm) = N x M coefficient matrix,
ki,...,ky = phase parameters.

Lemma:

O

0
TN}M(x,y,t) — Z le,...,mN Aml,...,mN e "N .
1<mi<mp<---<my<M

Am,...my = N xN minor obtained from columns m,...,my of A,
On, ....my = Om, + -+ Oy, = phase combination,

Viny ooy = 11 (kmy — ki, ) = van der Monde determinant.
1<s<s/<N



Asymptotics line soliton of KPII

o Note:
- each phase combination combination is sum of N distinct phases,
- the only (x,y,7)-dependence of 7(x,y,r) comes from 6y,..., 6,
- if all minors of A are nonnegative, u(x,y,t) is nonsingular and positive.

o Theorem: [GB & Chakravarty, 2006]
- u(x,y,t) is exponentially localized those lines in the xy-plane where a
balance exists between two phase comb’s with N—1 common phases.
- Along each of these lines, the solution is (up to exp’lly small terms)
a line soliton produced by the two phases being exchanged.

o Each line soliton is identified by an index pair [i, j]. WLOG, take i < ;.
(6;&0; are the phases being exchanged in the dominant phase combinations)

o Def: we call asymptotic line solitons those that extends out to infinity
asy—oo0rasy— —oo,
In particular, we call incoming/outgoing solitons those as y — Feo.



Incoming and outgoing line solitons of KPII

o Theorem: [GB & Chakravarty, 2006]
any irreducible, nonnegative coefficient matrix A generates:
- N, = N outgoing line solitons identified by [i ", jI] with i < j '
and where i|,...,iy label the N pivot columns of A
- N_ = M—N incoming line solitons identified by [i,, j. | with i < j~
and where j,...,jy labelthe M—N non-pivot columns of A.

The index pairs are uniquely identified by rank conditions on the minors.

(We say A is irreducible if rank(A) = N and, when in RREF, every column is
nonzero & every row has at least 2 nonzero elements.)

o Corollary: N-soliton solutions are obtained when M = 2N.

o Def: we call elastic N-soliton solutions those for which the amplitudes
and directions of the incoming and outgoing solitons are the same.

o Themap (if,....ixs i1 s esingn) = (i ey insiy oeosiy ) identifies a
permutation of 1,...,M. [Chakravarty & Kodama, 2007]



Gallery of solutions solutions of KPII
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(None of these is a traveling wave solution. Ordinary soliton solutions with N > 2 aren’t either.)



Elastic 2-soliton solutions

There are three types of elastic 2-soliton solutions: [Kodama, 2004]
Ordinary Resonant Asymmetric
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Lemma: [GB, 2007]

Iff c; — c; > a1 +ap an ordinary 2-soliton solution exists.

Iff |a; — ap| < |cp — 1] < a1 +ap, a resonant 2-soliton solution exists.
Iff |co — c1| < |a1 —az|, an asymmetric 2-solution exists.
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Interaction phase shifts of elastic 2-soliton solutions

The interactions are different for each type: [GB, 2007]

- ordinary solutions: 6x,,q = 0x5, and can take any positive value,
- asymmetric solutions: ox,sym = 0xy, and can take any negative value,
- resonant soln’s: ox.s = O0x5+ 0x,; both terms can take any real value;

: 5xa:10g(%—1>.
a4

100

(c2—c1)? = (ar—a))*

Oxg = log

(C2 —61)2 — (612 —|—(11)2
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ordinary resonant asymmetric

A nontrivial contribution to the phase shift exists for resonant solutions.
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Elastic N-soliton solutions

Lemma: an elastic N-soliton solution is possible only when the pairs
iy, jn]Y_, are disjoint. [GB & Chakravarty, 2006]

Lemma: A generates an elastic solution iff its zero minors are dual:
Aml,...,mN =0 & An_”L],...,n_iN — 05
with {m,....my} U{m,...,my}={1,...,2N}. [Kodama, 2004]

Theorem: 3 an elastic solution for any disjoint set of pairs [i,, j.|"_;.

Refinement of Schubert cell decomposition of Gr}{}f}w. (cf. Postnikov, 2006)

Explicit construction: [Kodama, 2004; GB & Chakravarty, 2006]
Exploit linear algebra constraints derived from soliton asymptotics.

Corollary: (2N —1)!! types of elastic N-soliton solutions are possible.
(Total number of ways of arrange 2N integers in pairs.)
Most of them are partially resonant.

Many other combinatorial properties can be obtained.
[Kodama, 2004; GB & Chakravarty, 2007; Chakravarty & Kodama, 2007,2008]
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Resonance and web structure in other soliton systems

Resonance and web structure are generic for (2+1)-D integrable systems.

cKP and dKP also have resonant solutions with web structure
[S Isojima, R Willox & J Satsuma, 2002 & 2003; Y Kodama & K-i Maruno, 2006]

Moreover, fully resonant solutions also exist in discrete soliton systems:
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Left: resonant 2-soliton solution of the 2D Toda lattice;

center: resonant 2-soliton solution of the fully discrete 2D Toda lattice;
right: resonant 2-soliton solution of the ultra-discrete 2D Toda lattice
[K-i Maruno & GB, 2004]

15



The Davey-Stewartson equation and its bilinear forms

o Davey-Stewartson (DS) system: (subscripts x,y,r denote partial derivs)
(c = F1: DSI/Il; v ==1: focusing/defocusing)

dg 1 9% 19%

- J— —_—— 2 p—
i + 268x2 39y +20qQ+40ov|q|°q=0,
0°Q = 9°Q d° |
ox2 +68—y2 - _4"@("]‘ )

o Real bilinear form: (v =1, defocusing)

g=e*" G/F, Q= (logF )y
Then
(2iD;+06D; —D;)G-F =0,  (6D;+D;)F-F+8GG"—8F> =0,

o Complex bilinear form: perform the change of variables

X1 = \/EX‘F)’, X1 = G(_\/Ex+y)7 X+4p = Fit .
Then
~-D? )G-F=0, oD,D, F-F+2GG*—2F*=0.

X42 X41

(D
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Wronskian solutions of Hirota’s equations

o Can write solutions of Hirota’s equations as
[Freeman 1984; Ohta 1989]

F:CT](VS), G:C,L_]S}H—l)’ G:C*T]S;’—l)7

where s € 7Z and C € C are arbitrary constants,
n n+N—1

WA

7:](\In) :Wrxl(fl(n)afz(n)v"'7f]£7n)):det : . :

d fl)

8xi2

d ) _ D
0X+1

_ f(jiz)

Y Y

with £ = 7.

o But, to obtain solutions of DS we need F € R and G = G*.

This imposes a restriction on the admissible sets of functions fi,.... fy
as well as the constants s and C.
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Wronskian solutions of defocusing DSII

o Lemma: [GB & K-i Maruno, 2006]
To get solutions of DSII, take s = —(N —1)/2 & C = (2i))"VW=1/2 with

M 7)
fn: Z Anme ™,

m=1

2 |
where 6, =6,0+ Y pjx; and p, = e'?m, with a,, € R and ¢, € R.

Jj==2

o A= (ann,)=real N x M real coefficient matrix,
01,...,Qpy = real phase parameters.

[An equivalent way to getthe same F', G & G" istosets=0& C =1 and
multiply each exponential term in £, by e ‘N =1)@n/2 |

o In terms of the physical variables:
O (x,y,1) =2 |x sin @y, +y cos @, — 1 sin(2¢,,) | + 6o -

o WLOG we can assume ¢;,...,¢y ares.t. —n <o, <--- <@y < 7.

18



Tau-function of DSII via the Binet-Cauchy theorem

O

The result is a direct consequence of:
Lemma: [GB & K-i Maruno, 2006]

i) = i)YV A Ay ¢ €O VD 2y
1<my<---<my<M
where

O, ....my = Om, + -+ 6, = phase combination,

(Pml,...,mN — (Pml _|_ e _|_ (PmNs

Ami..my= 11 sin [%((Pm , <ij)} (replaces Van der Monde determinant)
1<j<j'<N !
Am,....my = N x N minor of A obtained from columns m,... my.

(Proof: use Binet-Cauchy theorem)
Can now verify the reality of F and the conjugacy of G and G.
Also, Ay, .. my >0 (since —m < ¢ <--- < @y < 1) = nonsingular solutions.

The tau-function has a similar expression to KP, but here the 6’s and
the soliton direction are not increasing functions of the ¢’s.
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Line solitons of defocusing DSII

o N=1and M = 2:

Q(x,y,t) = (sin @ — sin @»)* sech? [%(91 —6)],
|

g(x, 1) = 7 sech’[5(0) — 62)] {cosh(6; — ;) +cos(¢1 — @2) } .

QO = bright soliton component (intensity peak over zero background)
g = dark soliton component (intensity dip over unit background)

o Both are traveling wave solutions localized along the line 6, = 6,.
o Soliton direction: ¢ =tan [ (¢;+¢;)].

o Soliton amplitude:
max Q = (sin¢; —sin@;)?,
I —min|g|? = sin®[5 (@ — ¢;)].
o maxQ = 0 whenever ¢, — @; = £

= all horizontal solitons disappear from the bright component.
(In contrast, 1 — min|g|* # 0.)
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Restricted soliton solutions

o When —xz/2 < ¢y,..., 0y < /2, the corresponding solutions are s.t.:

- the soliton directions ¢; ; are increasing functions of ¢; + ¢;.
(Horizontal solitons are not included in this range.)

- we can divide asymptotic line solitons into incoming and outgoing.
(incoming/outgoing = extending out to infinity as y — Feo, as for KP.)

- we can apply to this class of solutions all the tools developed for KP.

o Thus, we have the same results as for KP. In particular:
Any irreducible, nonnegative coeff matrix generates a solution of DSII with:
- N outgoing solitons identified by [i",j "], il < ',
- M—N incoming solitons identified by [i,,,j. |, i, < J,,
with i1+, . ,i; the N pivot columns and j, ,...,j, the M—N non-pivot columns.

o When ¢y,..., @y are in the full range, however, the distinction between
iIncoming and outgoing solitons loses its significance, and new kinds of
behavior appear.
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Unrestricted solutions, N = 1 & M = 3: V-shape solitons

bright component, Q(x,y,7)

dark component, |g(x,y,7)|?
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Unrestricted solutions, N — 1 & M = 4: soliton reconnection

(9017---,([)4):(—‘7,—%,%7*

dark component, |g(x, y,7)|?

Left/center/right: t = —12,0,12.

[cf. Nishinari et al., 1993]
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Can have elastic multi-soliton solutions with N = 1. But phase shifts are not time-independent!




Unrestricted solutions, general case

O

Scalar case, N = 1: [GB & K-i Maruno, 2008]
4 M—1 asymptotic line solitons identified the index pairs [n,n+ 1],
+ 1 asymptotic line soliton identified by the pair [M, 1].

Def: a pair [j,i] with j > i labels a soliton produced by 6, and 6; + 2.
[It is therefore localized at o = %(Gﬁ— 0;)+ m instead of o = %(Gl- +0;)].

General case, N > 1: [GB & K-i Maruno, 2008]

- M — N asymptotic solitons identified by [i, , j, |, with i, < j~and where
Ji -5y 12bel the non-pivot columns of A.

- N asymptotic solitons identified by [;,i"|, with j > i" and where
ii,...,iy label the pivot columns of A.

(Use a generalization of the methods of asymptotic analysis developed for KP.)
But now any soliton can be upstairs/downstairs depending on ¢y, ..., ¢oy.

Any solution of DSII also identifies a permutation of 1,...,M:

(7 ey P Sy B (/7T e PSR P
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Gallery of solitons solutions of defocusing DSII

(Can define elastic solutions and classify them into non-/partially/fully resonant. And of course the

y-independent solutions yield the dark solitons of NLS.)
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Summary

o The solitonic sector of (2+1)-dimensional soliton equations is very rich.

o For KPIl, any nonnegative irreducible N xM matrix produces:
M—N asymptotic line solitons as y — —e (one for each non-pivot),
N asymptotic line solitons as y — o (one for each pivot).

o (2N —1)!! types of elastic N-soliton solutions of KPII are possible,
characterized by their physical properties.

o For DS, a restricted class exists in 1-to-1 correspondence with KP.

o Unrestricted solutions: more general phenomena; horizontal solitons,
V-shape, soliton reconnection. ..

o (Can classify even these more general solutions.

o There is a nontrivial connection between integrable systems and
combinatorial algebraic geometry.
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