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Introduction and motivation

◦ (2+1)-dimensional integrable systems have a large variety of solutions.
◦ KPII has a large family of real, nonsingular soliton solutions exhibiting

a rich phenomenology, including soliton resonance and web structure.
These solutions likely to be stable and physically relevant.

◦ A nontrivial connection exists between soliton solutions of KPII and
combinatorial algebraic geometry.

◦ Soliton resonance and web structure are a generic feature of (2+1)-D
integrable systems.

Here: Davey-Stewartson (DS) equation; more precisely, defocusing DSII.
◦ The underlying mathematical structure of the soliton solutions of DSII

is similar to that of KPII.
◦ At the same time, the physical behavior of the solutions is richer than

that of KPII, and includes V-shape solitons and soliton reconnection.
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Outline

1. The Kadomtsev-Petviashvili equation
- KPII, its Wronskian solutions and its line solitons
- Ordinary soliton solutions and fully resonant solutions
- Asymptotics line solitons and index pairs
- Elastic 2-soliton solutions
- Elastic N-soliton solutions

2. Soliton resonance in other (2+1)-dimensional integrable systems

3. The Davey-Stewartson equation
- DSII, its Wronskian solutions and its line solitons
- Restricted soliton solutions
- V-shape solitons
- Soliton reconnection
- Unrestricted solutions, general case
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The Kadomtsev-Petviashvili equation and its Wronskian solutions

◦ Kadomtsev-Petviashvili (KP) equation: σ = i: KPI; σ = 1: KPII

∂
∂x

(

−4∂ u
∂ t +6u∂ u

∂x +
∂ 3u
∂x3

)

+σ 2 ∂ 2u
∂y2 = 0 .

◦ Bilinear form: u(x,y, t) = 2 ∂ 2

∂x2 logτ(x,y, t) .

Then the tau-function τ(x,y, t) satisfies Hirota’s bilinear equation:
(−4DxDt +D4

x +3σ 2D2
y)τ · τ = 0 .

Hirota derivatives: Dm
x f ·g = (∂x −∂x′)

m f (x,y, t)g(x′,y, t)|x′=x etc.

◦ Wronskian solutions:

τ(x,y, t) = Wr( f1, . . . , fN) =
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∂ fn
∂y = σ

∂ 2 fn
∂x2 ,

∂ fn
∂ t =

∂ 3 fn
∂x3 .
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Ordinary line solitons and fully resonant solutions

◦ Line soliton: take N = 1 and f = eθ1 + eθ2 , with
θm = kmx+ k2

my+ k3
mt +θm,0 and k1,k2 ∈ R.

u = 1
2(k2 − k1)

2 sech2[ 1
2(θ2 −θ1)] ,

travelling wave solution, localized in the xy-plane along the line θ1 = θ2.
- soliton direction: c = −dx/dy = k1 + k2. (“velocity” in the xy-plane)
- soliton amplitude: a = k2 − k1.

◦ Ordinary N-soliton solutions: fn = eθ2n−1 + eθ2n , n = 1, . . . ,N .

(Pattern in the xy-plane: intersection of N lines, plus small phase shifts.)

◦ Different choice of eigenfunctions: fn = ∂ n−1 f/∂xn−1 , n = 1, . . . ,N.
(These τN ’s also generate solutions of the Toda lattice hierarchy.)

◦ Take f = eθ1 + · · ·+ eθM , with θm as before and k1 < · · · < kM .
Also a combination of exponential terms, like ordinary soliton solutions.
Here however each eigenfunction fn contains all exponentials.
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General properties of fully resonant solutions

◦ Theorem: τN produces an (N−,N+)-soliton solution:
N− := M−N line solitons as y →−∞, identified by [n,n+N], n = 1, . . . ,M−N.
N+ := N line solitons as y → ∞, identified by [n,n+M−N], n = 1, . . . ,N.
The amplitudes and directions of these solitons are completely determined by
these index pairs.

◦ The solution describes a fully resonant interaction of line solitons:
- the whole interaction is a collection of fundamental resonances;
- at each resonant vertex Miles’ resonance condition is satisfied;
- the interaction creates a web-like structure with (N+−1)(N−−1) holes.

◦ When M = 2N, N-soliton solutions are produced.
However these are not the same as ordinary N-soliton solutions.
- the amplitudes and directions of the solitons are different,
- the interaction process is different (Y-junctions vs X-junctions; each vertex

of an ordinary solution becomes four vertices and a hole).

[GB & Y Kodama, 2003]
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Fully resonant solutions: examples
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Top:
N = 1, M = 5 ⇒
(4,1)-soliton solution.
(k1, . . . ,k5) = (−1,− 1

4 , 1
2 , 3

2 , 5
2 )

Bottom:
N = 3, M = 5 ⇒
(3,2)-soliton solution.
(k1, . . . ,k5) = (−2,−1,− 1

4 , 1
2 , 3

2 )

Both solutions are shown
at two different values of time.
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General soliton solutions of KPII

◦ General soliton solutions:
fn(x,y, t) =

M
∑

m=1
an,m eθm(x,y,t) ,

θm(x,y, t) = kmx+ k2
my+ k3

mt +θm,0 = exponential “phases”.
N = number of eigenfunctions
M = number of exponential phases
A = (an,m) = N ×M coefficient matrix,
k1, . . . ,kM = phase parameters.

◦ Lemma:
τN,M(x,y, t) = ∑

1≤m1<m2<···<mN≤M
Vm1,...,mN Am1,...,mN eθm1 ,...,mN .

Am1,...,mN = N ×N minor obtained from columns m1, . . . ,mN of A,
θm1,...,mN = θm1 + · · ·+θmN = phase combination,
Vm1,...,mN = ∏

1≤s<s′≤N
(kms − kms′ ) = van der Monde determinant.
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Asymptotics line soliton of KPII

◦ Note:
- each phase combination combination is sum of N distinct phases,
- the only (x,y, t)-dependence of τ(x,y, t) comes from θ1, . . . ,θM,
- if all minors of A are nonnegative, u(x,y, t) is nonsingular and positive.

◦ Theorem: [GB & Chakravarty, 2006]
- u(x,y, t) is exponentially localized those lines in the xy-plane where a

balance exists between two phase comb’s with N−1 common phases.
- Along each of these lines, the solution is (up to exp’lly small terms)

a line soliton produced by the two phases being exchanged.

◦ Each line soliton is identified by an index pair [i, j]. WLOG, take i < j.
(θi&θ j are the phases being exchanged in the dominant phase combinations)

◦ Def: we call asymptotic line solitons those that extends out to infinity
as y → ∞ or as y →−∞.
In particular, we call incoming/outgoing solitons those as y →∓∞.

9



Incoming and outgoing line solitons of KPII

◦ Theorem: [GB & Chakravarty, 2006]
any irreducible, nonnegative coefficient matrix A generates:
- N+ = N outgoing line solitons identified by [i+n , j+n ] with i+n < j+n

and where i+1 , . . . , i+N label the N pivot columns of A
- N− = M−N incoming line solitons identified by [i−n , j−n ] with i−n < j−n

and where j−1 , . . . , j−N label the M−N non-pivot columns of A.
The index pairs are uniquely identified by rank conditions on the minors.
(We say A is irreducible if rank(A) = N and, when in RREF, every column is
nonzero & every row has at least 2 nonzero elements.)

◦ Corollary: N-soliton solutions are obtained when M = 2N.

◦ Def: we call elastic N-soliton solutions those for which the amplitudes
and directions of the incoming and outgoing solitons are the same.

◦ The map (i+1 , . . . , i+N , j−1 , . . . , j−M−N) 7→ ( j+1 , . . . , j+N , i−1 , . . . , i−M−N) identifies a
permutation of 1, . . . ,M. [Chakravarty & Kodama, 2007]
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Gallery of solutions solutions of KPII
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(None of these is a traveling wave solution. Ordinary soliton solutions with N > 2 aren’t either.)
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Elastic 2-soliton solutions

There are three types of elastic 2-soliton solutions: [Kodama, 2004]
Ordinary Resonant Asymmetric
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Solitons:
[1,2], [3,4] [1,3], [2,4] [1,4], [2,3]
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Lemma: [GB, 2007]
Iff c2 − c1 > a1 +a2 an ordinary 2-soliton solution exists.
Iff |a1 −a2| < |c2 − c1| < a1 +a2, a resonant 2-soliton solution exists.
Iff |c2 − c1| < |a1 −a2|, an asymmetric 2-solution exists.

12



Interaction phase shifts of elastic 2-soliton solutions

The interactions are different for each type: [GB, 2007]

- ordinary solutions: δxord = δxs, and can take any positive value,
- asymmetric solutions: δxasym = δxs, and can take any negative value,
- resonant soln’s: δxres = δxs +δxa; both terms can take any real value;

δxs = log
∣

∣

∣

∣

(c2 − c1)
2 − (a2 −a1)

2

(c2 − c1)2 − (a2 +a1)2

∣

∣

∣

∣

, δxa = log
(

a23
a24

−1
)

.
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ordinary resonant asymmetric

A nontrivial contribution to the phase shift exists for resonant solutions.
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Elastic N-soliton solutions

◦ Lemma: an elastic N-soliton solution is possible only when the pairs
[in, jn]Nn=1 are disjoint. [GB & Chakravarty, 2006]

◦ Lemma: A generates an elastic solution iff its zero minors are dual:
Am1,...,mN = 0 ⇔ Am̄1,...,m̄N = 0,

with {m1, . . . ,mN}∪{m̄1, . . . ,mN} = {1, . . . ,2N}. [Kodama, 2004]

◦ Theorem: ∃ an elastic solution for any disjoint set of pairs [in, jn]Nn=1.
Refinement of Schubert cell decomposition of Grtnn

N,M . (cf. Postnikov, 2006)
Explicit construction: [Kodama, 2004; GB & Chakravarty, 2006]
Exploit linear algebra constraints derived from soliton asymptotics.

◦ Corollary: (2N −1)!! types of elastic N-soliton solutions are possible.
(Total number of ways of arrange 2N integers in pairs.)
Most of them are partially resonant.

◦ Many other combinatorial properties can be obtained.
[Kodama, 2004; GB & Chakravarty, 2007; Chakravarty & Kodama, 2007,2008]
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Resonance and web structure in other soliton systems

Resonance and web structure are generic for (2+1)-D integrable systems.

cKP and dKP also have resonant solutions with web structure
[S Isojima, R Willox & J Satsuma, 2002 & 2003; Y Kodama & K-i Maruno, 2006]

Moreover, fully resonant solutions also exist in discrete soliton systems:
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Left: resonant 2-soliton solution of the 2D Toda lattice;
center: resonant 2-soliton solution of the fully discrete 2D Toda lattice;
right: resonant 2-soliton solution of the ultra-discrete 2D Toda lattice
[K-i Maruno & GB, 2004]
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The Davey-Stewartson equation and its bilinear forms

◦ Davey-Stewartson (DS) system: (subscripts x,y, t denote partial derivs)
(σ = ∓1: DSI/II; ν = ∓1: focusing/defocusing)

i∂ q
∂ t +

1
2

σ
∂ 2q
∂x2 − 1

2
∂ 2q
∂y2 +2σqQ+4σν|q|2q = 0 ,

∂ 2Q
∂x2 +σ

∂ 2Q
∂y2 = −4ν

∂ 2

∂x2 (|q|2) .

◦ Real bilinear form: (ν = 1, defocusing)
q = e4it G/F , Q = (logF)xx .

Then
(2iDt +σD2

x −D2
y)G ·F = 0 , (σD2

x +D2
y)F ·F +8GG∗−8F2 = 0 ,

◦ Complex bilinear form: perform the change of variables
x1 =

√
σ x+ y , x−1 = σ (−√

σ x+ y) , x±2 = ∓it .
Then

(Dx±2 −D2
x±1)G ·F = 0 , σDx1Dx−1F ·F +2GG∗−2F2 = 0 .

16



Wronskian solutions of Hirota’s equations

◦ Can write solutions of Hirota’s equations as
[Freeman 1984; Ohta 1989]

F = C τ(s)
N , G = C τ(s+1)

N , Ḡ = C∗ τ(s−1)
N ,

where s ∈ Z and C ∈ C are arbitrary constants,

τ(n)
N = Wrx1( f (n)

1 , f (n)
2 , · · · , f (n)

N ) = det











f (n)
1 · · · f (n+N−1)

1
... . . . ...

f (n)
N · · · f (n+N−1)

N











,

and f1, . . . , fN solve
∂ f ( j)

∂x±1
= f ( j±1) ,

∂ f ( j)

∂x±2
= f ( j±2) ,

with f (0) = f .

◦ But, to obtain solutions of DS we need F ∈ R and Ḡ = G∗.

This imposes a restriction on the admissible sets of functions f1, . . . , fN
as well as the constants s and C.
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Wronskian solutions of defocusing DSII

◦ Lemma: [GB & K-i Maruno, 2006]
To get solutions of DSII, take s = −(N −1)/2 & C = (2i)−N(N−1)/2 with

fn =
M
∑

m=1
an,meθm ,

where θm = θm,0 +
2
∑

j=−2
p j

mx j and pm = eiϕm , with an,m ∈ R and ϕm ∈ R.

◦ A = (an,m) = real N ×M real coefficient matrix,
ϕ1, . . . ,ϕM = real phase parameters.
[An equivalent way to get the same F , G & G∗ is to set s = 0 & C = 1 and
multiply each exponential term in fn by e−i(N−1)ϕm/2.]

◦ In terms of the physical variables:
θm(x,y, t) = 2

[

x sinϕm + y cosϕm − t sin(2ϕm)
]

+θ0,m .

◦ WLOG we can assume ϕ1, . . . ,ϕM are s.t. −π ≤ ϕ1 < · · · < ϕM < π.
18



Tau-function of DSII via the Binet-Cauchy theorem

◦ The result is a direct consequence of:
Lemma: [GB & K-i Maruno, 2006]

τ(n)
N = (2i)N(N−1)/2 ∑

1≤m1<···<mN≤M
∆m1,...,mN Am1,...,mN × eθm1 ,...,mN +i[n+(N−1)/2]ϕm1,...,mN ,

where
θm1,...,mN = θm1 + · · ·+θmN = phase combination,
ϕm1,...,mN = ϕm1 + · · ·+ϕmN ,
∆m1,...,mN = ∏

1≤ j< j′≤N
sin

[ 1
2 (ϕm j′ −ϕm j)

]

(replaces Van der Monde determinant)

Am1,...,mN = N ×N minor of A obtained from columns m1, . . . ,mN .
(Proof: use Binet-Cauchy theorem)

◦ Can now verify the reality of F and the conjugacy of G and Ḡ.

◦ Also, ∆m1,...,mN > 0 (since −π ≤ ϕ1 < · · · < ϕM < π) ⇒ nonsingular solutions.

◦ The tau-function has a similar expression to KP, but here the θ ’s and
the soliton direction are not increasing functions of the ϕ ’s.
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Line solitons of defocusing DSII

◦ N = 1 and M = 2:
Q(x,y, t) = (sinϕ1 − sinϕ2)

2 sech2 [ 1
2(θ1 −θ2)

]

,

|q(x,y, t)|2 =
1
2 sech2[ 1

2(θ1 −θ2)
]{

cosh(θ1 −θ2)+ cos(ϕ1 −ϕ2)
}

.

Q = bright soliton component (intensity peak over zero background)
q = dark soliton component (intensity dip over unit background)

◦ Both are traveling wave solutions localized along the line θ1 = θ2.

◦ Soliton direction: c = tan
[ 1

2(ϕi +ϕ j)
]

.

◦ Soliton amplitude:
max Q = (sinϕi − sinϕ j)

2 ,

1−min |q|2 = sin2[ 1
2(ϕi −ϕ j)] .

◦ maxQ = 0 whenever ϕi −ϕ j = ±π
⇒ all horizontal solitons disappear from the bright component.
(In contrast, 1−min |q|2 6= 0.)
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Restricted soliton solutions

◦ When −π/2 ≤ ϕ1, . . . ,ϕM < π/2, the corresponding solutions are s.t.:

- the soliton directions c j, j′ are increasing functions of ϕ j +ϕ j′ .
(Horizontal solitons are not included in this range.)

- we can divide asymptotic line solitons into incoming and outgoing.
(incoming/outgoing = extending out to infinity as y →∓∞, as for KP.)

- we can apply to this class of solutions all the tools developed for KP.

◦ Thus, we have the same results as for KP. In particular:
Any irreducible, nonnegative coeff matrix generates a solution of DSII with:
- N outgoing solitons identified by [i+n , j+n ], i+n < j+n ,
- M−N incoming solitons identified by [i−n , j−n ], i−n < j−n ,
with i+1 , . . . , i+N the N pivot columns and j−1 , . . . , j−N the M−N non-pivot columns.

◦ When ϕ1, . . . ,ϕM are in the full range, however, the distinction between
incoming and outgoing solitons loses its significance, and new kinds of
behavior appear.
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Unrestricted solutions, N = 1 & M = 3: V-shape solitons

Left&center: (ϕ1,ϕ2,ϕ3) = ( π
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4 ). Right: (ϕ1,ϕ2,ϕ3) = (− π
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Unrestricted solutions, N = 1 & M = 4: soliton reconnection
(ϕ1, . . . ,ϕ4) = (− 3π

4 ,− π
4 , π

4 , 3π
4 ). Left/center/right: t = −12,0,12. [cf. Nishinari et al., 1993]
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Can have elastic multi-soliton solutions with N = 1. But phase shifts are not time-independent! 23



Unrestricted solutions, general case

◦ Scalar case, N = 1: [GB & K-i Maruno, 2008]
∃ M−1 asymptotic line solitons identified the index pairs [n,n+1],
+ 1 asymptotic line soliton identified by the pair [M,1].

◦ Def: a pair [ j, i] with j > i labels a soliton produced by θ j and θi +2π.
[It is therefore localized at α = 1

2 (θi +θ j)+π instead of α = 1
2 (θi +θ j)].

◦ General case, N > 1: [GB & K-i Maruno, 2008]
- M−N asymptotic solitons identified by [i−n , j−n ], with i−n < j−n and where

j−1 , . . . , j−M−N label the non-pivot columns of A.
- N asymptotic solitons identified by [ j+n , i+n ], with j+n > i+n and where

i+1 , . . . , i+N label the pivot columns of A.
(Use a generalization of the methods of asymptotic analysis developed for KP.)
But now any soliton can be upstairs/downstairs depending on ϕ1, . . . ,ϕM .

◦ Any solution of DSII also identifies a permutation of 1, . . . ,M:
(i+1 , . . . , i+N , j−1 , . . . , j−M−N) 7→ ( j+1 , . . . , j+N , i−1 , . . . , i−M−N).
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Gallery of solitons solutions of defocusing DSII
(Can define elastic solutions and classify them into non-/partially/fully resonant. And of course the
y-independent solutions yield the dark solitons of NLS.)
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Summary

◦ The solitonic sector of (2+1)-dimensional soliton equations is very rich.

◦ For KPII, any nonnegative irreducible N×M matrix produces:
M−N asymptotic line solitons as y →−∞ (one for each non-pivot),
N asymptotic line solitons as y → ∞ (one for each pivot).

◦ (2N −1)!! types of elastic N-soliton solutions of KPII are possible,
characterized by their physical properties.

◦ For DS, a restricted class exists in 1-to-1 correspondence with KP.

◦ Unrestricted solutions: more general phenomena; horizontal solitons,
V-shape, soliton reconnection. . .

◦ Can classify even these more general solutions.

◦ There is a nontrivial connection between integrable systems and
combinatorial algebraic geometry.
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