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Introduction

@ The Veselov-Novikov equation [Veselov & Novikov 84]
(UV)Z ( ) + Uzzr +uzzz, V= —3u, (1)

where z = x + iy and it is a two-dimensional integrable
extension of the KdV equation.
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Introduction

@ The Veselov-Novikov equation [Veselov & Novikov 84]
(UV)Z ( ) + Uzzr +uzzz, V= —3u, (1)

where z = x + iy and it is a two-dimensional integrable
extension of the KdV equation.

@ Dispersionless Veselov-Novikov (dVN) equation

= (uV). + (uV)z, V:=—3u.. ()
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Introduction

@ The Veselov-Novikov equation [Veselov & Novikov 84]
(UV)Z ( ) + Uzzr +uzzz, V= —3u, (1)

where z = x + iy and it is a two-dimensional integrable
extension of the KdV equation.

@ Dispersionless Veselov-Novikov (dVN) equation
= WV), + (uV)s, Vi=—3u,. (2)

= Quasiclassical 0-dressing method [Konopelchenko,
Martinez Alonso, Bogdanov, & Moro 02—06]
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The dVN hierarchy

From 2-dBKP hierarchy to dVN hierarchy

The dispersionless Hirota equations of two-component BKP
system [Takasaki 06; Tu & Chen 06]

igi;;i% = exp(=D(N)S(n)), (3)
o = ea-DN3(w), @
m = exp(=D(\)S(n)), (5)
m = exp(~=D(N)S(n)), (6)

where the quasiclassical vertex operators are

&S] [eS)
2/\727171 . 2)\727171
DY) =Y Tt DO =Y T 0h

= 2n +1 = 2n +1 "
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The dVN hierarchy

and the quasiclassical wave functions are

S(A) =Y tan 1 X" — D(N)F,

n=0

S =Y fn XM — D(V)F.
n=0

Morever, p()\), ¢(\), p(A) and G(\) are defined by
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The dVN hierarchy

and the quasiclassical wave functions are

S(A) =Y tan 1 X" — D(N)F,

n=0

S =Y fn XM — D(V)F.
n=0

Morever, p()\), ¢(\), p(A) and G(\) are defined by

p(A) =9, S(A), a(N) = afl S(A), (7)
B = 9,500, d@(A) = 0, 5(N). (8)
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The dVN hierarchy

and the quasiclassical wave functions are

S(A) =Y tan 1 X" — D(N)F,

n=0

S =Y fn XM — D(V)F.
n=0

Morever, p()\), ¢(\), p(A) and G(\) are defined by

p(A) =9, S(A), a(N) = afl S(A), (7)
B = 9,500, d@(A) = 0, 5(N). (8)

Extra equation: (5) = (6) with A < u , then
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The dVN hierarchy

and the quasiclassical wave functions are

S(A) =Y tan 1 X" — D(N)F,

n=0

S =Y fn XM — D(V)F.
n=0

Morever, p()\), ¢(\), p(A) and G(\) are defined by

p(A) =9, S(A), a(N) = afl S(A), (7)
B = 9,500, d@(A) = 0, 5(N). (8)

Extra equation: (5) = (6) with A < u , then

p(N)a(A) = p(1)g(p)-
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The dVN hierarchy

Letting A\, © — oo one obtains

—2F, 5 = 72]:1;1’251 = (9)

i

where u = u(ty,t2,...;11,%2,...) is a scalar function and, for
arbitrary A, one has

p(A)a(A) = p(A)G(A) = . (10)
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The dVN hierarchy

dVN hierarchy: Denoting

F N PF
Hopor =2—20 [y =2—27
2nt Oton+10t1 2ntd Oton4+10t1
- O*F z O*°F
H — 2 T~ e~ 9 H = 2 —~ )
2+l Otony10t1 2nt Oton4+10t1

then, from Eq.(9) the evolution of u with respect to 5,1 and
2,41 Ccan be read respectively as

ou

= —(Hops1)r = —(Hops1)is, 11
e (Hon+1)g, (H2n+1)ty (11)
ou . x
= = —(Hont1)y = —(Hont1)g,- (12)
Oton+1
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The dVN hierarchy

Define 75,11 -flow:
o 87’2n+1 = 8t2n+1 + af

2n+1
@ 15,1 as the complex conjugate of t,,, 11, in particular,
t1 :=zand {; := z, where z = x + iy.

@ the functions ﬁ2n+1 = E2n+1, and ﬁ2n+1 = ﬁ2n+1.
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The dVN hierarchy

Define 75,11 -flow:
o 87’2n+1 = 8t2n+1 + 0

lon+1
@ 15,1 as the complex conjugate of t,,, 11, in particular,
t; :=zand {1 := z, where z = = + iy.
e the functions ﬁ2n+1 = E2n+1, and ﬁ2n+1 = ﬁ2n+1.
(11) + (12) for n > 1 together with n = 0in (11) (or (12)) we get
the dVN hierarchy

Uy, oy = —(Hont1): — (Hony1)s, u, = —(Hi)s, (13)

(For n =1 = It's the dVN equation)
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Faber Polynomials

The n-th Faber polynomials

Def. ®,,(w) is the n-th Faber plynomial of p(\) defined by

g PN _ i Oult0) yn. (14)

n
n=1

in which p(A) is univalent function at infinity and the left hand
side is analytic for large A for fixed w € C
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Faber Polynomials

The n-th Faber polynomials

Def. ®,,(w) is the n-th Faber plynomial of p(\) defined by

p(A) —w o Pu(w)
A A 14
nzzjl AT (14)
in which p(A) is univalent function at infinity and the left hand
side is analytic for large A for fixed w € C

Take into account the symmetry conditions [Takasaki 06]

p(=A) = —p(N), ®p(—w) = (—1)"®p(w).

p()‘) —w B 2¢2n+1(w) —2n—1
wo Z 2n+1 A ’ (15)
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Faber Polynomials

Replacew in (15) by p(u) and by G(u), respectively. Then
Egs.(3) and (5) reduce to the following system of
Hamilton-Jacobi equations

9S(n)
Otant1

05(u)
Otant1

= ¢2n+1(p(,u)), = ¢2n+1(§(,u))' (16)
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Faber Polynomials

Replacew in (15) by p(u) and by G(u), respectively. Then
Egs.(3) and (5) reduce to the following system of
Hamilton-Jacobi equations

05(u) _ Pon 1 (p(11)), 95(n)

—— = Oy, 1(G . 16
T T on+1(G(1)) (16)

Differentiating the above equations with respect to z, z, we have
time evolutions of p(u), q(w), p(w) and G(w) in to,11-flow:

S 0 0aia(plu)): Gt = D:02ra(p()), (17)
I i), o) .0y (i0). (18)
o+l 2n+1
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Faber Polynomials

In the same way, for the Hirota equations (4) and (6), one can
derive the corresponding Hamilton-Jacobi equations via the
expression of Faber polynomials as

( _ 2<b2n+1(w 2n—1
|og7 —Z 1 i S S (19)

With substitutions of w = p(u) and w = q(i), we have also the
following time evolutions of p(u), ¢(1), p(r) and G(x) with
respect to 7o, 1-flow

O00). 0.8 (3(1)), 22— 0.6, 1(5(0)), (20)

Ol i1 Oton+1

9 : 4 ;

20— 9. ba(an). ) = 065 a(au). @)
8t2n+1 8t2n+1
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Faber Polynomials

Hypi1, Hon 1 generate Faber polynomials

We first differentiate (15) to the both sides with respect to A and
obtain

U)p/(A) G —2n—2
—— = ®y), AT
P*(A) —w? T;} 2n+1(1)
Putting p(A) = A — 0% 22222 \=22~1 into this expression and
comparing coefficients of powers of A on both sides, we solve
recursively
1(w) = w,
®3(w) = w4+ 3Hw, (22)
ds5(w) = w®+5Hiw®+5(H? + Hs/3)w,
o7(w) = w' +7THw® +7(2H? + H3/3)w®

+7(H3 + (2/3)H1H3 + Hs/5)w. (23)
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Faber Polynomials

They obey the recursive formula, forn =0,1,2,.. .,

Jen-Hsu Solutions for real dVN hi



Faber Polynomials

They obey the recursive formula, forn =0,1,2,.. .,

Similarly, the differentiation of (19) with respect to A obtains

2n— 2
2()\ Z¢2n+1 AT
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Symmetry constraint

The conservation laws

Consider the symmetry constraint for real « and S [Bogdanov,
Konopelchenko & Moro,2004]

Uy = (8%).3, (24)

@ S = S(u;) is evaluated at some point ;.

@ 0.5" = p(u;) = p* and 9:S° = q(u;) = ¢* = p* obey the
algebraic relation v = p'q" = p'p’ (by the extra equation
(10)).

@ Eq.(24) implies pL = ¢! = u,.
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Symmetry constraint

In the context of nonlinear geometry optics, arising
from the high-frequency limit of Maxwell equations
[Konopelchenko & Moro 04—-05], one has

2

@ u = n® = gou, n being the refractive index.

@ u = SS¢ = standard Eikonal equation in two dimensions.
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Symmetry constraint

Under the symmetry reductions, we discuss the relations of
conserved densities and the associated Faber polynomials
along the following two ways.

(1) Let us take the derivatives of S(\) with respect to z, z, z and
noticing that —2F,; = u, we have

BS(N) 1 1 :
5550, = PN Feze = S D(Nus = DS (25)
Comparing to (3), it follows that
GO = (5005') =30, (e B0 ). (28
)

(
(@) = (50008) =30 (e 20E) . @)
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Symmetry constraint

Using (15) with w replaced by p’ and the expansions of p(\)
and ¢()\), Egs. (26) and (27) provide that the Hamilton-Jacobi
equations (17) can be read respectively by

op’ ,
% = az<p2’n—}—1(pl) = _8.'L'H27L+17

t2n+1

o' ) A
S = 9:00,1(p') = ~ 0 Hania, (28)
Otont1

where Hy, 1 = 20,0,,,.,F and Ho, 1 = 20:0,,, ., F. Hence,

Hy,1 and Ho, 1 appear to be the conserved densities
characterized by the associated Hamilton-dabobi equations.
They are connected by the compatibility relations

Oz Hopy1 = 0:Hopya,

and can be obtained by solving (28).
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Symmetry constraint

(1) In the similar way, the differentiation of S()) with respect to
z, z, x shows that

P*5(N)

I

We finally get the conservation lows

o5t . . _
a-i = 0:P2n41(P") = —0xHon1,

tont1

o' ~ . =

—p — 8zq>2n-‘,-1(ﬁL) — _aa;HZn—H- (29)
Otoant1

where H,, 1 = 20:0;, ,F and Hopyy = 20,0y, ., F. They obey

8,ZFIZ’n—I—l - 8EIA{Zn—s—l .
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Symmetry constraint

Relations of H»,.1 and Hy,.1

PUttIng p( ) A— Z;L.O 0 A27’3_7_11]_-’2n+15 CI(A) = - Z;L.O 0 A2;:_11]_-]'277.+1
into p(\)g(\) = u, and comparing the coefficients of powers A,
we can solve recursively

. . . 5
Hy = —u, Hs;=-3uH,, Hs= —§u(3H12 + H3),

A 7 3
H7 = —§U(3Hi)’ + 2H1H3 + gH5)7
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Symmetry constraint

Relations of H»,.1 and Hy,.1

PUttIng p( ) A— Z;L.O 0 A2;_7111]_-’2n+15 CI(A) = - Z;L.O 0 A2;:_11]_-]'277.+1
into p(\)g(\) = u, and comparing the coefficients of powers A,
we can solve recursively

By=—u, By=-3uby, M= u(3H} + Hs),
iy = —gu(SHf’ + 2H H3 + §H5),
The case of n = 1 in (13) reduces to the dVN equation
Uy, = 3(uH1), + 3(uHy)s, u, = —(Hi)s, (30)

with 7 := 73,V = 3H;.
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Symmetry constraint

How to construct conserved densities?

For simplifying calculations, we use Faber polynomials (22),
(23) and the identities

p. = P U,
upt = upt — g + ug(ph)?.
Example 1. By (28), forn =0
Hiz = =®1. = —pl = (u—p)a,
After integrating both sides with respect to = one yields

Hy=u—p' =p'p—p"

Jen-Hsu Chang Solutions for real dVN hierarchy



Symmetry constraint

Example 2. For n = 1 in (28), we use the expressions of ®3
and H; to get

Hz, = —®3.=—((p')’+3(u—p")),,
= Bu-p)?-0")),=BH - )),,

After integrating both sides with respect to x, we get

Hy =3H? — (p')*.
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Symmetry constraint

Example 2. For n = 1 in (28), we use the expressions of ®3
and H; to get

Hy, = —P3,=—((p')*+3(u—p")p),.
= (Bu—p") - )), = BH - (")),
After integrating both sides with respect to x, we get
Hs = 3H? — (p*)>.

Similar calculations can yield

20 .
Hs = —10H3 + ?H1H3 —(")?,

6 1 ')’
H, =7 (5Hf ~ SHYHs + HiHs + 115 — (p7) ) .
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Hodograph solutions

Hodograph equations

The conservation laws (28), (29) provide that

_ =0,d )+ 8 ;O ,
<pz) ton+1 g et (ﬁl z 2 ﬁl z
<pi) — (7 P
_ =9 i¢2n+1 ( > + 3 ¢2n+1 ( > ,
pl Ton+1 g ﬁl z ﬁl z

where we have used the fact that pt = .
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Hodograph solutions

Hodograph equations

The conservation laws (28), (29) provide that

_ =0,d )+ 8 ;O ,
<pz) ton+1 g et (ﬁl z 2 ﬁl z
<pi) — (7 P
_ =9 i¢2n+1 ( > + 3 ¢2n+1 ( > ,
pl Ton+1 g ﬁl z ﬁl z

where we have used the fact that pt = .
The dVN hierarchy is then governed by

P’ P’ P’
<_,L> = apngnH (_Z> + 8]3¢M2n+1 <_1> , n>1, (31)
p Ton+1 p z p z

where My, 11 = Popy1 + Popta.
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Hodograph solutions

The above equation has the following implicit form of
hodograph equations

oo
24+ fonr1 (0, 9)n1 = FO', 1),

n=1

- o o (32)
24> g1 (p', 0 7ani1 = GO, 1),

n=1
where F' and G are the initial data at 7,41 = 0.
= G and F obey the constraint
P'Fy = —p'Gg—(1—p' —p')Gp. (34)
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Hodograph solutions

(33) = there exists ¢(p,7") s.t. F = 0,0, G = Opicp.

(]
® (34) = p'oyiyi + P opp + (1= — P )ppip = 0.
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Hodograph solutions

@ (33) = there exists p(p',p") s.t. F = 8,ip, G = Oip.
® (34) = p'oyiyi + P opp + (1= — P )ppip = 0.
Let p’ = (p1 —ip2)/2, 7' = (p1 +ip2)/2, then

Corpr + 2P2Pp1py + (1 - 2101)9992/?2 =0. (35)
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Hodograph solutions

@ (33) = there exists p(p',p") s.t. F = 8,ip, G = Oip.
® (34) = p'oyiyi + P opp + (1= — P )ppip = 0.
Let p’ = (p1 —ip2)/2, 7' = (p1 +ip2)/2, then
Cpip1 T 202Pp1p, + (1- 2101)9992/?2 =0. (35)

In fact, due to the existence of ¢,
° F= ano Mnf2n+1; G = ano §ngzn+1, where Hn = gn
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Hodograph solutions

@ (33) = there exists p(p',p") s.t. F = 8,ip, G = Oip.
® (34) = p'oyiyi + P opp + (1= — P )ppip = 0.
Let p’ = (p1 —ip2)/2, 7' = (p1 +ip2)/2, then

Corpr + 2P2Pp1py + (1 - 2101)9992/?2 =0. (35)

In fact, due to the existence of ¢,

o F= ano Mnf2n+1s G = ano §ngzn+1, where fn = &n.
@ We deduce that ¢ has the polynomial-type solution in p1, p»:

P = Z pnMani1(p1, p2) (36)
n=0
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Hodograph solutions

For instance, some cases are established as follows.
Q@ =M =d; + b =py.
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Hodograph solutions

For instance, some cases are established as follows.

Q@ =M =0+ =p1.

Q ¢ = M; =3+ D3 =p} —3p2 + 3(p? + p3), we derive
Corpr =601 =3, ©pip, =0, ©pyp, =3,

which satisfy (35).
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Hodograph solutions

For instance, some cases are established as follows.
Q@ v=M =+ =p1.
Q ¢ = M; =3+ D3 =p} —3p2 + 3(p? + p3), we derive

Corpr =601 =3, ©pip, =0, ©pyp, =3,

which satisfy (35).

Q ¢ = Ms= b5+ s =
P} — 201+ 1003 + 303(p + p3) — B p1(p3 + p3) + 3 (01 + 3)?,
we have the following set of equations satisfied by (35):

Ppm = 20p7 —40p7 + 15p1 + 10p3,
©ppy = 20p1p2 — 15p2,
Ppap2 = IOP% —15p¢1 + 2OP%~
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Hodograph solutions

One has several simple cases of finding solutions of
the certain PDEs in Eq. (35):

(a) Ppipr = 0 and 2,0280p1pz + (1 - 2:01)90p2p2 =0,
(b) ©pip, =0and @y, p, + (1 —201)Pppp, =0,
(c) Pp2p2 = 0 and Ppipy T 2p290p1,02 =0.
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Hodograph solutions

One has several simple cases of finding solutions of
the certain PDEs in Eq. (35):

(a) Ppipr = 0 and 2,0280p1pz + (1 - 2:01)90p2p2 =0,
(b) ©pip, =0and @y, p, + (1 —201)Pppp, =0,
(c) Pp2p2 = 0 and Ppipy T 2p290p1,02 =0.

@ Cases (a) and (b) have solutions of polynomial type
involved in (36).
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Hodograph solutions

One has several simple cases of finding solutions of
the certain PDEs in Eq. (35):

(a) Ppipr = 0 and 2,0280p1pz + (1 - 2:01)90p2p2 =0,
(b) ©pip, =0and gy, p + (1 —2p1)¢p,p, =0,
(c) Ppapr = 0 and Pp1p1 + 2p290p1,02 = 0.
@ Cases (a) and (b) have solutions of polynomial type
involved in (36).

@ However, case (c) has solutions of the form:
© = co + c1p1 + c2p2 + c3p2exp(—2p1).
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Hodograph solutions

Example of hodograph solution

Example 3. The (2+1)-dimensional solutions in (z, Z, 7): Now
&3 = (p')3 + 3Hp' with Hy = u — p, we expand (32) up to
T3 =T

F(p',p')=z+ fzr =2+ (3(pi +5')? - 6pi)7,

. o . (37)
G, 7') =2+ 937 =2+ (30" + 7)? — 67 ).

Jen-Hsu Chang Solutions for real dVN hierarchy



Hodograph solutions

Example of hodograph solution

Example 3. The (2+1)-dimensional solutions in (z, Z, 7): Now
&3 = (p')3 + 3Hp' with Hy = u — p, we expand (32) up to
T3 =T

F(p'p') =24 far =2+ (3(pi +7)? - 6pi)7,
G, 7') =2+ 937 =2+ (30" + 7)? — 67 ).

Choosing, for example, F' = f3,G = g3 for uy = & =1, we
solve p’ by

(37)

1

po= m(3(7’—1)+(z—2)

+/9(r — 12 —6(r — 1)(= + 7).

Jen-Hsu Chang Solutions for real dVN hierarchy



Hodograph solutions

Therefore, v is read as

o 1
u=p'p = - 18(7 - 12 —6(r—1)(z+42) — (2 — 2)?
144(r — 1) ( )

+6(r — 1)\/9(r —1)2 —6(1 — 1)(z + z)).

One can verify that (38) satisfies the dVN equation (30).
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Hodograph solutions

Therefore, v is read as

o 1
u=p'p = - 18(7 - 12 —6(r—1)(z+42) — (2 — 2)?
144(r — 1) ( )

+6(r — 1)\/9(r —1)2 —6(1 — 1)(z + z)).

One can verify that (38) satisfies the dVN equation (30).
Consider 05" /9z = p* and 05" /9z = p’, then S is solved by

B 1
- T72(1 - 1)2

N 2\/§<3(r 12— 2(r—1)(2 + 7:)>3/2>,

S'(z,2,7) (3(T )(z—2)2+18(1 — 1)*(2 + 2 + 4C)

where C'is an arbitrary constant.
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2 N-component case

2N-component case

Let us consider a more general symmetry constraint of the form
[Bogdanov, Konopelchenko & Moro, 2004]

N

; uw=p'p,Vi=1,...,N,
Uy = €5 -. Ansatz: { N '
; - Y16 =1

we have the following relations between conserved densities
and the associated Faber polynomials:

N
(H2n+1)ac = _Zeiazq)%wrl(pi)a
i=1
N .
(H2n+1)x — _Z€i82¢2n+1(p2)7
i=1

where the Faber polynomials ®,,1(p') are defined as before.
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2 N-component case

In similarly lengthy calculations, some of Hj, 1 for the
2N-reduction system are given by

N
Hl =Uu-— Z Eipia
i=1
N .
Hs=3H; =) a(p')’,
i=1
20 N
Hs = —10H7 + ?H1H3 — z;ei(p%)57
1=
42 7 N
Hy =35H3 — 35H2Hs + — HiHs + - H — > &(p')".
> 3 =1
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2 N-component case

Under the symmetry constraint, the Hamilton-Jacobi equations
can now be written in the following way:

ap" k. 1 N -1 N
mzaz%nﬂ(zf R A N A
;;Zl = 0z 1 ("t PN, B BY),
azpil = 0. 001 (B0, NP Y)
a?jil = 05@2n+1(ﬁk;p17 PN ,]JN),

where k=1,..., N.

Jen-Hsu Chang Solutions for real dVN hier.



2 N-component case

After incorporating the above evolution equations to the
Ton+1-flow of dVN hierarchy and noting that p. = p.. for
i=1,...,N, we get

' ) (P o (7
<ﬁk> = Z f27/l+1 <ﬁl> i + Zz_; g2;l,+1 <]5’L>

T2n+1 =1 z

where k =1,...,N, and

f2(:1)+1(19ka27k) = 0pi(Pans1(P") + Ponr1(B")),
gL = 05(Pons1(PF) + Bansa (7))

Jen-Hsu Chang Solutions for real dVN hierarchy



2 N-component case

For example, in the case of N = 2 we have

1

. . p
Iz AL+ giawh) A%+ g8 | (5

p p
7 £330+ gAY L +g280%) | \
T2n+1 z

where we denote fk L= 08 5), gl(g];)g = 951 (0", 7). and
I, is the 2 x 2 identity matrix and

Z. 0 1 ,
A(p ) = 7111 l—pi_—ﬁi ) 1= 17 2.
p* p*

In principle, the last evolution equation can be solved by
hodograph method. But exact solutions are not found.

Jen-Hsu Chang Solutions for real dVN hierarchy



