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1. Introduction

• Invariance of the Lax representation w.r. to the group of gauge transformations

[L(λ),M(λ)] = 0 → [L̃(λ), M̃(λ)] = 0

L̃(λ) = g−1L(λ)g, M̃(λ) = g−1M(λ)g

• Example: NLS equation and HF equation (g ' sl(2))

iut + uxx + 2|u2|u(x, t) = 0 (NLS)

iS
(0)
t =

1
2
[S(0)(x, t), S(0)

xx ] S(0)(x, t) = g(0)−1σ3g
(0)(x, t); (S(0))2 = 11 (HF)

[Zakharov,Takhtajan;1979], [Lakshmanan;1977]
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• g(0) is determined by u(x, t) through

i
dg(0)

dx
+ q(0)(x, t)g(0)(x, t) = 0, q(0) =

(
0 u
−u∗ 0

)
, lim

x→∞
g(0)(x, t) = 11.

• Both equations are infinite dimensional completely integrable Hamiltonian
systems.

• Generalized Zakharov-Shabat system related to arbitrary simple Lie algebra g
(of rank r > 1):

L(λ)ψ ≡
(
i
d

dx
+ q(x, t)− λJ

)
ψ(x, t, λ) = 0,

where q(x, t), J ∈ g.
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• Fixing the gauge 1: J ∈ h- (real) constant, non-regular

L(λ)→ g−1
0 L(λ)g0, g0(x, λ) ∈ G

→ ∃∆0 3 α : α(J) = 0: q(x, t) ∈ g\g0, ∆0 ⊂ ∆, so

q(x, t) =
∑

α∈∆+\∆0

(qα(x, t)Eα + q−α(x, t)E−α)

E±α - root vectors of g, ∆+ - positive roots: ∆ = ∆+ ∪ (−∆+).

Hi - Cartan generators, {Hi, E±α} - Cartan-Weyl basis for g.

• This choice of J makes more difficult:

1) the derivation of FAS;

2) the construction of the related recursion operator;

3) the application of the gauge transformation.
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• MNLS type equations on g:

i
dq

dt
+ 2ad−1

J

d2q

dx2
+ [q, π0[q, ad−1

J q]]− 2i(11− π0)[q, ad−1
J qx] = 0,

L(λ) and M(λ) - Lax pair for MNLS:

M(λ) ≡ i d
dt
− V d

0 + 2iad−1
J qx + 2λq − 2λ2J.

where V d
0 = π0

(
[q, ad−1

J qx]
)

and π0 is the projector onto gJ = {X ∈
g | [J,X] = 0, ∀J ∈ h}.

• Fixing the gauge 2 (pole gauge): [Zakharov, Mikhailov; 1978-80]

L̃ψ̃(x, t, λ) ≡
(
i
d

dx
− λS(x, t)

)
ψ̃(x, t, λ) = 0,
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where ψ̃(x, t, λ) = g−1(x, t)ψ(x, t, λ),

S(x, t) = Adg · J ≡ g−1(x, t)Jg(x, t).

and g(x, t) = ψ(x, t, 0)- the Jost sol’s at λ = 0.

M̃ψ̃ ≡
(
i
d

dt
− 2iλad−1

S Sx − 2λ2S
)
ψ̃(x, t, λ) = 0,

• [L̃(λ), M̃(λ)] = 0 →

i
dS
dt

+ 2
d

dx

(
ad−1
S
dS
dx

)
= 0.

• L(λ) and L̃(λ) have equivalent spectral properties and spectral data

→ the classes of NLEE related to L(λ) and L̃(λ) are also equivalent.
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• the “squared” solutions:

e±α (x, t, λ) = (11− π0)
(
χ±(x, t, λ)Eαχ̂

±(x, t, λ)
)
,

where χ±(x, t, λ) is the FAS of the Lax operator L (see below)

• their completeness relations [Gerdjikov, Kilish; 1981-6] provide us the spectral
decompositions of the so-called generating (or recursion) operators Λ±:

Λ+e
±
±α = λe±±α, Λ−e±∓α = λe±∓α.

Λ± play crucial role in deriving the properties of the NLEE.

*) AKNS approach;

**) Gelfand–Dickey approach.
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• The interpretation of the ISM as a generalized Fourier transform and the
expansions over the “squared solutions” allows one to study all the fundamental
properties of the relevant NLEE’s. These include:

1) the description of the whole class NLEE related to the Lax operator L(λ)
solvable by the ISM;

2) derivation of the infinite family of integrals of motion

3) the Hamiltonian formulation of the NLEE’s.
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2. FAS and scattering data for the MNLS systems

• The direct scattering problem is based on the Jost solutions:

lim
x→∞

ψ(x, λ)eiλJx = 11, lim
x→−∞

φ(x, λ)eiλJx = 11,

and the scattering matrix:

TJ(λ) = (ψ(x, λ))−1φ(x, λ).

The FAS ξ±(x, λ) of L(λ) are analytic functions of λ for λ ≷ 0 and are related
to the Jost solutions by

ξ±(x, λ) = φ(x, λ)S±J (λ) = ψ(x, λ)T∓J (λ)D±
J (λ),
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where S±J (λ), T±J (λ) and D±
J (λ) are the factor of the generalized Gauss

decomposition for TJ(λ):

TJ(λ) = T−J (λ)D+
J (λ)Ŝ+

J (λ) = T+
J (λ)D−

J (λ)Ŝ−J (λ).

where

S±J (t, λ) = exp

 ∑
α∈∆+

1

s±J,α(t, λ)E±α

 , T±J (t, λ) = exp

 ∑
α∈∆+

1

t±J,α(t, λ)E±α

 ,

D±
J (λ) = exp(±d±1 (λ)H1 ± 2d±2 (λ)H2 + d±α1

(λ)Eα1 + d±−α1
(λ)E−α1)

On the real axis ξ+(x, λ) and ξ−(x, λ) are related by

ξ+(x, λ) = ξ−(x, λ)G0,J(λ),
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G0,J(λ) = Ŝ−J (λ)S+
J (λ),

and the function G0,J(λ) can be considered as a minimal set of scattering data
in the case of absence of discrete eigenvalues [Shabat;1974] [Gerdjikov;1994].

• If q(x, t) evolves according to the MNLS then

i
dS±J
dt
− 2λ2[J, S±J (t, λ)] = 0, i

dT±J
dt
− 2λ2[J, T±J (t, λ)] = 0,

while D±
J (λ) are time-independent.

→ the MNLS eq. has four series of integrals of motion.

*)This is due to the special (degenerate) choice of the dispersion law

fMNLS = 2λ2J.
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**) only two of these four series are in involution, which in turn is related to
the non-commutativity of the subalgebra gJ .
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3. FAS and scattering data for the gauge-equivalent MHF
systems

• FAS for the gauge equiv. systems:

ξ̃±(x, λ) = g−1(x, t)ξ±(x, λ)g−, g− ∈ GJ

where g− = limx→−∞ g(x, t) = T̂J(0) ∈ GJ .

ξ̃±(x, λ) are analytic w. r. to λ ← the scattering matrix TJ(0) ∈ H.

Asymptotics of the FAS for x→ ±∞:

lim
x→−∞

ξ̃+(x, λ) = TJ(0)S+(λ)T̂J(0)
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lim
x→∞

ξ̃+(x, λ) = e−iλJxT−J (λ)D+
J (λ)T̂J(0)

∴ T̃J(λ) = TJ(λ)T̂J(0).
Obviously T̃J(0) = 11 and

S̃±J (λ) = TJ(0)S±J (λ)T̂J(0),

T̃±J (λ) = T±J (λ) D̃±
J (λ) = D±

J (λ)T̂J(0).

On the real axis ξ̃+(x, λ) and ξ̃−(x, λ) are related by:

ξ̃+(x, λ) = ξ̃−(x, λ)G̃0,J(λ),

G̃0,J(λ) = ˆ̃S−J (λ)S̃+
J (λ) ξ̃(x, 0) = 11.

again G̃0,J(λ) can be considered as a minimal set of scattering data.
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4. Hierarchy of Hamiltonian structures for MNLS type
models

Both classes of NLEE possess hierarchies of Hamiltonian structures.

• The phase space MMNLS of the MNLS type models is the linear space of
off-diagonal matrices q(x, t)tending to zero fast enough for |x| → ∞

MJ ≡ {q(x, t), π0q(x, t) = 0},

and the hierarchy of symplectic structures is given by:

Ω(k)
q = i

∫ ∞

−∞
dx

〈
δq ∧

′
Λkad−1

J δq(x, t)
〉
.
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• The phase space MS of their gauge equivalent equations is the nonlinear
manifold of all S(x, t) satisfying equations of the nonlinear constrains and such
that S(x, t)−J are smooth functions tending to zero fast enough for |x| → ∞:

M̃S ≡ {S(x, t), S(x, t) = g−1Jg(x, t)}.

The family of compatible 2-forms is:

Ω̃(k)
S = i

∫ ∞

−∞
dxtr

(
δS ∧ Λ̃k[S, δS(x, t)]

)
.

Here Λ and Λ̃ are the recursion operator of the MNLS type equations and its
gauge equivalent: Λ̃ = g−1Λg(x, t).
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5. Dressing Method and Soliton Solutions

• Main goal: starting from a solution χ±0 (x, t, λ) of L0(λ) with potential
Q(0)(x, t) to construct a new singular solution χ±1 (x, t, λ) with singularities

located at prescribed positions λ±1 ;

the reduction p = q† ensures that λ−1 = (λ+
1 )∗.

• The new solutions χ±1 (x, t, λ) will correspond to a potential Q(1)(x, t) of L(λ)
with two additional discrete eigenvalues λ±1 , related to the regular one by

χ±1 (x, t, λ) = u(x, λ)χ±0 (x, t, λ)u−1
− (λ). u−(λ) = lim

x→−∞
u(x, λ)

Here u−(λ) is a diagonal matrix.
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• The dressing factor u(x, λ) must satisfy the equation

i
du

dx
+Q(1)(x)u− uQ(0)(x)− λ[J, u(x, λ)] = 0,

and the normalization condition

lim
λ→∞

u(x, λ) = 11.

– Besides χ±i (x, λ), i = 0, 1 and u(x, λ) must belong to the corresponding Lie
group G;

– in addition u(x, λ) by construction has poles and/or zeroes at λ±1 .

• The construction of u(x, λ) is based on an appropriate anzats specifying
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explicitly the form of its λ-dependence:

u(x, λ) = 11 + (c1(λ)− 1)P1(x, t) +
(

1
c1(λ)

− 1
)
P 1(x, t),

c1(λ) =
λ− λ+

1

λ− λ−1
,

where the projectors P1(x, t) and P 1(x, t) are of rank 1 and are related by
P 1(x) = SPT

1 (x)S−1.

– They must satisfy

P 1(x, t)P1(x, t) = P1(x, t)P 1(x, t) = 0.

– By S we have denoted the special matrix which enters in the definition of
the orthogonal algebra, i.e. X ∈ G if X + SXTS−1 = 0.

Nonlinear Physics: Theory and Experiment. V (Gallipoli (Lecce), June 12–21, 2008 (Italy)) 20



Georgi Grahovski On the Nonlinear Schrödinger Equations on Symmetric Spaces and their Gauge Equivalent

– In the typical representation of so(5) we have

S =
5∑

k=1

(−1)k+1Ek,6−k

where (Eij)km = δikδjm.
The explicit construction of P1(x, t) and P 1(x, t) using the ‘polarization’
vectors is done in [Gerdjikov,Grahovski,Kostov;2005].

– The new potential equals:

Q(1)(x, t)−Q(0)(x, t) = (λ+
1 − λ

−
1 )[J, P1(x, t)− P 1(x, t)].

• The λ-dependence of u(x, λ) may depend [Gerdjikov,Grahovski,Ivanov,Kostov;2000]
on the choice of the representation of g.
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• For the gauge-equivalent MHF systems (g ' Br,Dr):

ũ(x, λ) = 11 +
(
c1(λ)
c1(0)

− 1
)
P̃1 +

(
c1(0)
c1(λ)

− 1
)
P̃−1,

where P̃±1 = g−1
(0)P±1g(0)(x, t).

The projectors P̃±1 satisfy the equations:

i
dP̃1

dx
+ λ−1 P̃1S(0) − λ−1 S(1)P̃1 = 0,

i
dP̃−1

dx
+ λ+

1 P̃−1S(0) − λ+
1 S(1)P̃−1 = 0,

and the ”dressed” potential can be obtained by:

S(1) = S(0) + i
λ+

1 − λ
−
1

λ+
1 λ

−
1

d

dx
(−λ+

1 P̃1(x) + λ−1 P̃−1(x)).
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The dressing factors can be written in the form:

ũ(x, λ) = exp
[
ln

(
c1(λ)
c1(0)

)
p̃(x)

]
,

where p̃(x) = P̃1 − P̃−1 ∈ g and consequently ũ(x, λ) belongs to the
corresponding orthogonal group.
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6. Examples

• Example 1: g ' so(5)

∆+ = {α1 = e1 − e2, α2 = e2, α3 = α1 + α2, α4 = α1 + 2α2}.

I Choose α1(J) = 0 ∆+
1 = {α2, α3, α4} of so(5),

q(x, t)≡
∑

α∈∆+
1

(qαEα + pαE−α) =


0 0 q11 q12 0
0 0 q1 0 q12
p11 p1 0 q1 −q11
p12 0 p1 0 0
0 p12−p11 0 0

 ;

J = diag (a, a, 0,−a,−a).

� This choice is not related to any symmetric space!!!
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I 6-component MNLS:

i
∂q12
∂t

+
1
2a
∂2q12
∂x2

+
1
a
q12(q1p1 + q11p11 + q12p12) +

i

a
q1q11,x −

i

a
q11q1,x = 0,

i
∂q11
∂t

+
1
a

∂2q11
∂x2

+
1
a
q11(q1p1 + q11p11 +

1
2
q12p12) +

i

a
q12p1,x +

i

2a
q12,xp1 = 0,

i
∂q1
∂t

+
1
a

∂2q1
∂x2

+
1
a
q1(q1p1 + q11p11 +

1
2
q12p12)−

i

a
q12p11,x −

i

2a
q12,xp11 = 0,

i
∂p1

∂t
− 1
a

∂2p1

∂x2
− 1
a
p1(q1p1 + q11p11 +

1
2
q12p12)−

i

a
p12q11,x −

i

2a
p12,xq11 = 0,

i
∂p11

∂t
− 1
a

∂2p11

∂x2
− 1
a
p11(q1p1 + q11p11 +

1
2
q12p12) +

i

a
p12q1,x +

i

2a
p12,xq1 = 0,

i
∂p12

∂t
− 1

2a
∂2p12

∂x2
− 1
a
p12(q1p1 + q11p11 + q12p12) +

i

a
p1p11,x −

i

a
p11p1,x = 0.
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I The corresponding MHF system takes the form:

iSt −
5

4a2
[S, Sxx] +

1
4a4

(
(ad S)3Sx

)
x

= 0,

where S is constrained by S(S2 − a2)2 = 0.

I Impose the “canonical” reduction → 3-component MNLS

i
dq12
dt

+
1
2a
d2q12
dx2

− 1
a
q12(|q1|2 + |q11|2 + |q12|2) +

i

a
q1q11,x −

i

a
q11q1,x = 0

i
dq11
dt

+
1
a

d2q11
dx2

− 1
a
q11(|q1|2 + |q11|2 +

1
2
|q12|2) +

i

a
q12q

∗
1,x +

i

2a
q12,xq

∗
1 = 0

i
dq1
dt

+
1
a

d2q1
dx2
− 1
a
q1(|q1|2 + |q11|2 +

1
2
|q12|2)−

i

a
q12q

∗
11,x −

i

2a
q12,xq

∗
11 = 0,

For the gauge-equivalent system: S† = S.
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7. Open problems

• to study reductions of the MNLS and their gauge equiv. systems;

• to study the internal structure of the soliton solutions and soliton interactions
(for both types of systems);

• to study the spectral decompositions for the recursion operators (for both
types of models).
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Thank you!

grah@inrne.bas.bg
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