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Experiments with lattice solitons

optical media with modulated refractive index – Segev;
Christodoulides; Kivshar; Chen; ... – application to
optical computing, Photonic Crystal fibers, ...

Bose-Einstein condensates with optically induced
lattices – Cornell; ...

solitons are localized NL dispersive waves that
propagate in lattice-type potentials while maintaining
their shape

observed solitons are usually stable



Inhomogeneous NLS model

NL Maxwell + refractive index modulation =⇒ focusing
inhomogeneous nonlinear Schrödinger (NLS) model

iψt(x, t) + ∆ψ + |ψ|2σψ − V (x)ψ = 0 , ψ(x, 0) = ψ0(x) ,

ψ = dimensionless complex electric field

t = time or propagation direction

x ∈ R
d , ∆ ≡

∑d
i=1 ∂

2
xixi

(diffraction/dispersion)

σ = 1 : Kerr effect (cubic NLS)

V (x) = modulation of linear refractive index

also saturable NL, NL potentials, ...



Examples of potentials

can be extended, a-symmetric, a-periodic, ...

solitons can be computed

theory can be challenging



Rigorous theory



Existence of solitons(V ≡ 0)

iψt(x, t) + ∆ψ + |ψ|2σψ = 0

Ansatz: ψ(x, t) = fE(x)eiEt

E = propagation constant

fE(x) = real profile, positive bright soliton
satisfies bound-state eqn

→֒
[

−∆ − (fE)2σ
]

fE = −EfE , fE(|x|)
|x|→∞

→ 0

ground states: ∃fE(x) = Rσ,d(|x|;E) > 0, e.g.:

σ = 1, d = 1: integrable (1+1)D NLS, sech(x)

σ = 1, d = 2: non-integrable (2+1)D NLS, R(r)



Orbital stability (V ≡ 0)

iψt(x, t) + ∆ψ + |ψ|2σψ = 0

Fundamental scale invariants:
phase: ψ → ψeiγ

translation: ψ → ψ(x + x0)

fE is “orbitally stable” if ψ(x, t) remains close to
ψ0 = fE + ε for all time modulo phase & translation

ρ2
E [ψ, fE ](t) ≡ inf

x0∈Rd

inf
γ∈[0,2π)

[

‖∇ψ(x + x0, t)e
iγ −∇fE(x)‖2

2

+E‖ψ(x + x0, t)e
iγ − fE(x)‖2

2

]

orbital (Lyapunov) stability ≫ linear stability



Stability theory (V ≡ 0)

A ground state fE of the homogeneous NLS is orbitally
stable iff it satisfies power-slope/V-K condition

dP (E)

dE
> 0 , P (E) ≡ ‖fE‖

2
2 =

∫

f2
E dx

Vakhitov & Kolokolov (1973); Weinstein (1985, 1986);
Grillakis, Shatah, & Strauss (1987)

soliton is stable ⇐⇒ σd < 2

instability manifested in amplitude, e.g., collapse

many studies use this criterion



Inhomogeneous NLS

iψt(x, t) + ∆ψ + |ψ|2σψ − V (x)ψ = 0

→֒
[

−∆ + V (x) − (fE)2σ
]

fE = −EfE

no translation invariance

orbital stability redefined: ψ remains close to fE

modulo phase (alone)

most studies rely on power-slope (V-K) condition

rigorous studies: need “spectral condition” as well,
e.g., Rose & Weinstein (1988); Oh (1989); Fukuizumi &
Ohta (2002); Stuart (2006); Fibich, Sivan, & Weinstein
(2006); Rapti et al. (2007); Sivan et al. (2008)

no general proof



Stability theorem

Ilan & Weinstein (preprint): A positive bright soliton, fE, is
orbitally stable if it satisfies two conditions

1. power-slope/V-K: dP
dE

> 0

2. spectral condition:
L+ = −∆ + E + V (x) − (2σ + 1)(fE)2σ

has at most one (simple) negative e-v

V (x) ∈ R, periodic, defect, quasi-crystal, ...

fE can be centered @ any critical point of V (x)

can check both condition numerically



Linearized operators

Linearize NLS eqn around fE. Get

L− ≡ −∆ + E + V (x) − (fE)2σ

L+ ≡ −∆ + E + V (x) − (2σ + 1)(fE)2σ

orbital stability requires bounding L±

L−fE = 0; 0 is the smallest e-v & is simple

for L+:
λmin < 0

no translation invariance =⇒ λ
(i)
0 shifted from 0



Spectrum ofL+

V (x) ≡ 0 =⇒ λ
(i)
0 = 0 (i = 1 . . . d)

λλmin

0 Ε

 spectrum
continuous 

0

(j)

V (x) 6= 0 =⇒ λ
(i)
0 6= 0 (i = 1 . . . d)

stable bands &
gaps

0

minλ(V)

(V)  Ε

λ(i)

0

unstable

Conclusion: unstable if ∃λ(i)
0 < 0



Sketch of proof

Lyapunov functional E [ψ] = H[ψ] − EP [ψ],
H ≡ Hamiltonian

bound δ2E [ψ] =⇒ bound L±

upper bounds using Gagliardo-Nirenberg inequalities

lower bound of L−: 0 is simple e-v of L− ala
Perron-Frobenius (cf. Reed & Simon IV)

lower bound of L+: use Lagrange multipliers. Need
both power-slope & spectral condition



Stability conditions

V (x, y) = 2.5
[

cos2(2πx) + cos2(2πy)
]

−100 2
11.2

11.7

12.2

−E

P

power−slope (V−K)

saddle
max

min

−100 2
−2.3

0

2.3

−E

λ
0

spectral condition

λ
0
min

,

,λ
0
max

λ
0
(1)

λ
0
(2)

power-slope (V-K) & spectral conditions are
independent

orbital stability requires both conditions



Interim summary

Rigorous theory: soliton is orbitally stable iff

1. power-slope/V-K: dP
dE

> 0

2. spectral condition: ∀i, λ(i)
0 > 0

Questions:

1. What happens if only one condition is satisfied?

2. Qualitative/quantitative measure of instabilities?

Need asymptotic + computational tools!



Instability dynamics



Asymptotics

Sivan, Ilan, & Fibich (2008, preprint):
∣

∣

∣

dP
dµ

∣

∣

∣
determines strength of amplitude (in)stability

|λ
(i)
0 | determine strength of drift (in)stability

short-time dynamics of center of mass:

d2<xi>

dt2
∼ −C2λ

(i)
0 <xi> ,

C2 ≡
<fE , fE>

<fE , (L−)−1fE>
> 0

usually drift-stable when @ minimum of V (x)



Computational examples



Solitons on lattice min

ψ0 = soliton slightly shifted from lattice min

solitons centered @ min are drift-stable

center-of-mass dynamics matches asymptotics



Soliton on lattice max

ψ0 = soliton slightly shifted from (2+1)D lattice max

0 1
t=z/L

diff.

<y>

max

min

max

 

 

numerical
asymptotics

solitons centered @ max are drift-unstable

center-of-mass dynamics matches asymptotics



Soliton on shallow max

(2+1)D square lattice with shallow max

V (x, y) = 2.5 [1 + cos(2πx) + cos(2πy)]2

narrow soliton @ max =⇒ drift unstable

wide soliton effectively @ min =⇒ drift stable

λ
(i)
0 predict drift (in)stability



Shallow max – cont.

λ
(i)
0 changes sign as soliton becomes wider



Conclusions

Stability theory:

V (x) can be extended, a-symmetric, any dimension
need power-slope & spectral conditions

Instability dynamics:

Violation of power-slope condition =⇒ amplitude
instability
Violation of spectral condition =⇒ drift instability

analytic formulae for drift/oscillations

|dP
dE

|, |λ
(i)
0 | determine strength of (in)stabilities

Thank you for your attention!
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