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How does the classical notion of phase apply
to quantum systems?

Example 1 The classical decomposition of the electric field into amplitude
and phase components follows by simply writing the complex c-number mode
expansion coefficient in its polar form:

(= hw i(E-F—w 2hw o=
E(7,t) = \/m;[a,;e( t)+c.c} = ”E;lalﬂ cos (/c-r—wt+90,;)

1. What is the meaning of the phase of the field at the quantum level?
2. Once defined, how it is to be measured?

3. How does one write down a quantum mechanical operator corresponding
to the phase observable of the field?

e In a QM-treatment a; — a; and a;% — &L», with [&E, &E'] = (5,3’,;,1; the polar

decomposition is no longer straightforward. Decompose each mode operator
into Hermitian amplitude and phase components as (Dirac, 1927):

D=

a=e% N - P =GN , N = (&‘L&)l/2 (1)
(%, N] = ¢ (Lerner criterion) would result into [N,§] =i ; N and ¢ are
canonically conjugate operators and AN A¢ > % But upon closer examina-
tion A

(n —m) (n|g|m) = ibpm (2)

since one has both (n|[N, ¢]|m) = i, and (n|Nop—pN|m) = (n—m) (n|¢|m).
The diagonal matrix elements have therefore contradictory properties since
we are lead to the equation 0 = 7!

Conclusion 2 There is something wrong with the Dirac approach to the
problem.



Sources of difficulties

e Pauli’s argument: there is no self-adjoint operator canonically conjugate
to a Hamiltonian if the Hamiltonian spectrum is bounded from below.

e Within the Dirac framework the phase operator (/3 cannot be a Hermitian

operator. The spectrum of N does not extend to negative values and e as
. . . PN A oxrl .

defined via (1) is not unitary (a property needed to obtain a = ¢ N2, since

N AT .
N =ala = R! (e‘z¢) e’ R). Besides, is not possible to divide both sides of

an operator of the type & = 4N'/2 by N*/2 carelessy; we can use N/, being
o
N = Zn‘1|n >< n
n=1
the pseudo-inverse of N. The operator u is not defined uniquely.

Outlining ways out
e Introduction of negative number states? For instance (Pegg-Barnett)

o
=3 Imn+1]
n=—oo

n=—oo

o o\t ~
Unitarity of €%, (ew) et =3 In + 1) (n + 1| = 1, and hermiticity of
qg, would follow. However, one would be still faced with relevant problems.

e When dealing with angle operators, é-functions should be actually intro-
duced into the basic commutation relation:

[N, =i —2mid (¢ — ) , —m<¢<m ; (3)

(n|[N, ¢]lm) = (n|i — 2mi8(¢ — 7)|m) provides a mathematically consistent
relation ((¢|n) oc e™?), and reduces to the canonical form [N, ¢] = i except
at one boundary of the domain of ¢.



e Working with periodic functions of the operator rather than with the op-
erator itself? Proposal by Susskind and Glogower connecting the operators

1
2

_1 _
EE(NH) 8, ETEaT(NH) :

analogs of eii‘;’, and the basic field operator a. Analogs of cosine and sine
operators are defined according to

C=;(B+8) , §=0=_(B-#

Theory with some remaining formal problems. One may expect problems
with the unitarity of the operators. Indeed

EEt=1 |, FE'E=1-10)(0] |,

8] =i . 8[s.8]=-ic |
SEC | o am a1
(€8] =500, C2+8=1-Z(0) (0

Remark 3 The vacuum-state projector spoils the unitarity of E.

The SG operator can be made unitary on a smaller Hilbert space by intro-
ducing an upper limit n,,,, on the number of allowed modes. The dimension
of the Hilbert space is allowed to tend to infinity only after nn,..-phase statis-
tics have been calculated. In states with large average number occupations
<N>=7 "> 1, the operator E may be treated as approximately unitary.

An overcomplete set of eigenfunctions for E |e®) = e |¢**) can be found
of the form

o0 s
|ei¢> = Zeim ny 1= i/ do |ei¢> <ei¢|
o 2 | .

Another set of eigenstates (coherent phase states): |€) = /1 — |7 322, &" |n),
(€] < 1).



e Owing to the difficulties in defining self-adjoint phase operator through
Poisson brackets quantization, one may wonder if phase (more generally, an
angle variable) does correspond to a proper quantum variable. A multiplicity
of quantum phase concepts have been proposed and investigated in the years
(see e.g. topical reviews by a) Carruthers and Nieto, 1968; b) Bergou and
Englert, 1991; c) Lynch, 1995; d) Pegg-Barnett, 1997; and books by i) Peri-
nova, Luks and Perina, 1998; ii) Dubin, Hennings and Smith, 2000). These
concepts find important applications in quantum measurements, quantum
communication, quantum cryptography, BEC, etc.

e The canonical phase distribution for a quantum state described by the
density operator p

AP(e) = 52 3" pumespliln —m) o] (4)

n,m=0

plays a special role. It has been derived on very different grounds (London,
Helstrom, Holevo etc). By using the full statistical content of Born’ statistical
rule, dP [p(z)] = Tr {pdji(z)}, a canonical quantum phase for the quantized
harmonic oscillator can be uniquely defined from correspondence principle in
the context of elementary quantum mechanics (Paris, 1997).

Remark 4 Another way to both enlarge the 1-photon Hilbert space and to
allow for a a "negative number” of photon states would be possible if we con-
sider the original mode interacting with an appropiate apparatus. Consider
the (Shapiro-Wagner) operator Yow = a + IA)T, where a denotes the annihi-
lation operator for a photon signal mode and bt by a creation operator of
an tmage mode. Then we have a system composed of two independent and
distinguishable subsystems in the extended Hilbert space H = H,QHy. Signal
and image modes can be described by the complete orthogonal discrete bases
of Fock states |m >4 ®|n >p, m,n = 0,1, ..., or alternatively by means of
the Relative Number State (RNS) representation

In,m>>=0(n)m+n>4|m>p+60(—n—1)m >4 m—-—n>g, (5)

where —oo < n < oo, m>0,0(n)=1forn >0 and O(n) =0 forn <0, so
that |n — m, min(m,n) >>= |m >4 |n >p .Basis of the RNS’s is complete
and orthonormal, and

Nln,m >>=nln,m >> N =afa — bfb. (6)
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The spectrum of N is unbounded and an unitary operator D ezists on the

Hilbert space H obeying DDt = D'D =1 and [D, N] = D. Precisely,

15:200: i In—1,m>><<m,n| . (7)

m=0n=—o0

The commutation rule [YSW, }Afgw] = 0 tells us that joint measurement of the
real and tmaginary part of the operator can be performed, e.g. through an
heterodyne apparatus (Shapiro-Wagner).

e A consistent progress in better approaching the phase problem follows
by distinguishing two ways to proceed while defining quantum mechanical
phase operators: one based on the polar decomposition of the annihilation
operator of a photon (ideal phase), and the other based on the use of phase-
measurement processes (feasible phase). Concepts of ideal and feasible phases
may be linked by resorting to the definition of generalized measurements and
introduction of positive operator valued measures (POVM’s).

Criterion 5 One way to generalize the measurement concept beyond the
(Von Neumann) QM orthogonal measurements is to suppose that a quan-
tum system A is a part of another system S = A + B so that the Hilbert
space associated with A is a part of a larger space that has the structure of a
direct sum,

H="Hs®H;

Observers O4 tn Ha have access only to observables M A with support in
Ha, for which

My [t = (MA \¢L>)T:o LV ety eny.

Orthogonal measurements one might perform in the tensor product will not
necessarily be orthogonal measurements in A alone. Observer O, will see
only components of that state in Ha. These are not necessarily orthogonal
in Ha and he concludes that the measurement prepares only a set of non-
orthogonal states.

e Quantum observables are generally positive operator valued measures.
Phase operators are POVM’s that transform covariantly under time transla-
tions.



e A POM is necessarily a partial trace of a PVM coming from a selfadjoint
operator defined on a larger Hilbert space.

Theorem 6 (Naimark) Let Hg the Hilbert space of a physical system S
and let dji(y) a POM defined on Hg. Then it is possible to prove the existence

of:
1. a Hilbert space H D Hs with H = Hp @ Hg;

2. a selfadjoint operator Y in H

~

Y lyy=y ly , i er , W)=l =0 y-1y) ;

3. a density operator pp € Hp in the complement space such that given
the PVM dE(y) = |y) {(y| dy one has

di(y) =Trp {ﬁP ® 14 dE(y)}

(Generalized measurements of multiboson
linear operators
e Interactions that are linear and bilinear in the field modes play a major

role in quantum information, and can be experimentally realized in optical
and condensate systems.

e The quantum optical problem of simultaneous detection of quadratures is
that of simultaneous measurement of a pair of conjugate observables. The
quadratures obtained provide the action and phase-angle variables via a polar
transformation.

Problem 7 Generalized measurements of the multimode operator

mi 2
Z(mlamz) = Z Akl a/kjl + Z Bklajnl+k2 ’

ki1=1 ko=1

mi m2
[z Zmm 1] = 37 |4 = 3 1B # 0

k1=1 ko=1



~

([ar,al] = 6,51, rys =1,...,m =my +my)

Solution 8 Introduce proper Naimark modes and device likely experimental
setups.

Define
Sy _ (2T Ehe) gy (20— he)
2 ’ 2
[X (m1m2) plmima)] — %[2<m1,mz>, Zlmma)t] £
and
Z](le,mz) = ZA(m1,m2)+C_v'7 &0+C+&In+1 , |C,‘2—‘C+‘2 _ Z |Bk1|2_z |Ak1‘2
k2=1 ki1=1
ZA(ml’mQ) h Z(ml,mz) —h
o _ (Zy + h.c) s (Zy .C)
XN - 5 PN = .
2 21
so that

Y

[X](le,mfz) P](leym2)i| _ % [ZA](le,mfz) Z](le,Mz))T -0

e Minimal Naimark extensions of currents Z(™2): introduce just one ad-
ditional mode. That is, take

=0, Cr= 3 14~ IB.P

k1=1 ko=1

if sign([Z(mim2) | Zmma)1]) > () otherwise

C_= Z |Bk1‘2 - Z |Ak1‘2 ) C+ =0
k1=1 ko=1



Remark 9 The feasible phase for the operator Zmima) i

. 1 Z(ml,mz)
o) =
4 <Z](vm1;m2)) .

Cosine and sine quadrature operators

O exp[if ™)) + exp[—if ™)) & explif ™)) — exp[—i 6]

2 ’ 2i
obey the correct relation C? + 52 = 1.

e Introduction of the (m; + my + 1)-mode relative number operator

mo—+1 mi
N = Z Nk — Zle—I—k , Ny = alay
k=1 k=1
(k=1,2,3), yields to CCR that one expects for genuine phase operators.

o Measurement scheme: modes a; interact each other through an unitary
operator U(™1™2) which imposes the linear transformation

by a; a1
52 oot ... N
=U Ul moy = M™1m2)
~ 1,M2 ~
ce (m1,ms) Uy +mo ( ) Omy4+ma
bm1+m2+1 an an

Quadratures of output modes have to be measured to obtain
Tr(ml’mﬂ [RX(ml’mﬂ] = TT’(mhmz,l) [R XRo X](thmz)]

Tr(mlamﬂ [Rf/(mhmz)] = TT(mI,TTLle) [R R o f/}\(]ml’mﬂ]
for any state R € H(m, ms)-

e The rank m + 1 transfer matrix M should be implemented in practice, as
for example in a quantum optical setting. For modes of the radiation field,
the simplest two-mode interaction is the corresponds to a beam splitter.

Problem 10 Can this kind of extensions be implemented using only bilinear
interactions among modes followed by measurement of quadratures at the
output?

Solution 11 Decompose M into a set of SU(2) transformation (BS’s).



e Consider the case [Z(ml’"”), Z(ml’m)f] > 0 (i.e.C— = 0). We can pay atten-
tion to the case of real positive couplings Ay, ..., An,, B1,--., Bn,, without

loss of generality. Define

(m1,m2)
M3 ,m+1

M(m1 ,mz)

b = 1

m—+1,m+1

A, . A, By .. B,
A, . A, —B; .. —B,,
M-(l—ml7m2) = M3(In1’m2) M?E,Tnlljmﬂ M?E,THI;—TIZ) s M3(,Tz’lfll,m2)
M i
where m = m; +my, and C; = \/Zkl 1 e B?).
Mim1,m2)M_(|_m1,m2) T _ im—l—l,m—l—l
From
(Mim1,m2)MJ(rm1 m2) T) -1 7 n—= 1, 27 r
one gets
mi 1 mi m—+1
S =t Sae —o S,
ki=1 r=1 r=1
and
1 & (m1,m2)
M_(|_m1,m2)k,m—|—1 == _C_ ZBTM+ P k,mi1+r
+
Set
(073} e (67°% Um+1
, o .~ — Qi1
m(mth) . M(ml ma) . (m1,m2) " ﬁ m:r,lma
+ = 31 cee e 3,m+1
205 AL T
B s,
where o = (aq,...,0my1) = (Al, ceis Apy, B, oo, By, Cy) s0

2Ek1 14
my 2 __ 1
that ) ' o, = 5.
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For instance:

e mi=4,my=0; (as=& =i +a3+a+al=

( a3 oy

(673} Q9 —03 —04

(4 0) _i o102 Q103 o104
om0 = 5 srq gred  gfed
0 __§§_ a3 Q204

+ +£+ +€+

2 2 i 2 53

0 0 —3 934

\ e e

e m=3my=1 (a5 =/al+a2+al—a?

aq 0%) a3 Oy
aq Qo —Q3 —O4
(31) __§z_ o100 Q103 O
MO = | TeF e e
_ 83 aa4
0 Foge
0o 0 0 -
3
& = /Zes::kl esa2 61 =€y =e3=—e4 = 1)
o my=2,my=2; (a5 =4/3 — a3 —aj)
(03] (67) a3 (6 7]
(03] (67) —Q3 —0y
+
me = | —g 0 0
1 6162
0 0 -8 wu
&2 6283
0 0 0 -3
3

1
)
O \
0

0

\/ 3 —ad).

Q5

0
0

a4as

€34

073

[e %107
&283

Q405

£364

& = /Zszkl e e =€y = —e3 = —ey = 1)
eg—
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Example 12 Consider the operator

A(lamQ) — A AT “ o AT
Z = @101 + QG + **+ + Uy 110Gy, 41

with of — (a3 + -+ a2, 1) >0, o € Ry Hence

21(\1-’777&)
and

( v o oy
o1 —0o —0Q3 —04
0 _ & wmoaz asoy

(1m2) S R
ym2) __ _ 83 203
ﬂﬁ+ - 0 0 & &8s
0 0 0 0

e e 0

\ 0 0 0 0

o ~t ~t ~t
= o101 + oy + -+ + Oy 18y, 1 + Cray

amz—l—l O5Tn2—|—2
_am2+1 _am2—|—2
Qa20mqy+1 Q20mq+2
§1&2 &6
.. - ,
_ bm &m )
gmfl Emfl

with&:al:%, & =2 =Y 1,02 (s=2,...

that

A A A

A

,mo+1) . It turns out

U(ml,mz) - %2%m+1,m%m+1,m71 e %m+1,1%m,m71%m,m72 s %2,1

where
%2 = [Hl@BZ(ﬂ—) ®]I3® .. -]Im+1i| )

with

By(m) = exp (z’wagag) . Bir(0j1) = exp

B =

The needed beam splitters are identified via

. (677 .
sinfp = ———— , sinb,; =

k
ZSZI ag

5¢j7k

{ =i (a0 +aal) }

7
2 T 2
NI

2<k<m+1,2<j<m,j<r<m).
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Revisiting heterodyne detection

Heterodyne detection allows to perform the joint measurement of two con-
jugate quadratures of according to the scheme depicted above (Shapiro and
Wagner, 1984). A single-mode signal field E; of nominal frequency w; is
mixed through a beam-splitter with a local oscillator field E7, whose frequency
wy, is slightly offset by an amount w; < w; from that of the input signal,
i.e. w; = wr + wy. A photodetector is placed right after the beam-splitter
The output photocurrent, which generally depends on fields parameters and
on specific assumptions on the apparatus, is filtered at the intermediate fre-
quency wy. In standard optical heterodyne detection (Shapiro and Wagner),
measuring the filtered photocurrent corresponds to realize the quantum mea-
surement of the normal operator Yoy = a; + aJ; , where a; (res. d;) denotes
the photon annihilator (resp. creation) operator for the input (resp. image)
signal. Measuring the real and imaginary parts of the (actually rescaled)
output photocurrent thus provides the simultaneous measurement of both
input field quadratures.

Remark 13 Whenever one is not restricted to an input field frequency in
the optical regime, but, rather, one is concerned with microwave (or radio)
heterodyning, then the interaction of the input signal field with the apparatus
(approzimatively) results in a different measurement operator. Quite a dif-
ferent situation arises when heterodyne detector is not of the SW type, but
rather a power-detector for which the measurement operator takes the form
(Caves, 1984)

~ w w ~ ~ W
Yo=/(l+ Da+,/(1- )b, e, Yi=2"#0  (8)
w1 w1 w1

The standard heterodyne detection cannot achieve the simultaneous measure-
ments of signal quadratures of Y¢.

13



Problem 14 Accomplish simultaneous phase and amplitude measurements
for the non-normal operator

W —wr
Wy +wr

27:011+70'; ) Y=

<1 , [2,Z]]=1-%* (9
Solution 15 FEzploit previous results to realize a suitable linear amplifier.

Let

(Zv + ZJ;) = % (pr — vp2)

N | —

1 1
X7:§(Z7+ZD:$(Q1+VCZ2) , Y, =

1 1 )
( ;Tc-i- ak) Pk = —= (a,t - ak) (45, P] = 161

gk = ﬁ \/5
(k = 1,2). Since [X,,Y;] = £(1 —~?), then these sum- and difference-
quadratures of the two modes can be jointly measured only when a general-
ized measurement is be devised. Indeed, eigenstates of Z, for v # 1

2))y = D) @1|n)..
D(z) = exp{zal —z'ai} , M) =vV1-72) 7"In) ®|n)

do not provide a resolution of the identity,

2
d”z,

/— D))y (2] = (1= +?) ,YZa,Ta

™

The operator Z, is defined on the Hilbert-Fock space Hi of two harmonic

oscillators. A Naimark extension for the operator Z, is a triplet (Ha, 7 N, a) ,

where Z ~ is an operator defined on an extended Hilbert space Hi» ® H, and
o is a state (density operator) in H,, such that for any state R € Hiy we
have

TI'12 [R : Xy] = Tl'lga [R ® oRe ZN]
Trip[R: Y] = Triz [R ® olm ZN] (10)
Equations (10) ( Zy traces the operator Z,) do not hold for higher moments:

14



Remark 16 The generalized measurement of Zy unavoidably introduces some
noise of purely quantum origin. In general we have

Trip [RX7] # Trioa [R® 0 (Re Zn)"| n>2

T7‘12 [RY,Yn} 75 T’f’lza [R@ o (Im ZN)n] n Z 2 (11)

Minimal Naimark extension involves just a single additional bosonic mode
as, Zy = Z, + kak. The trace condition of Eqs. (10) and the normality
constraint for Zy require

Tra[aaqzo ; K2 =1—~2

Naimark extensions have been implemented using only bilinear interactions
among modes followed by measurement of quadratures at the output Pre-
cisely, in the case under consideration the SU(2) transformations BQ,l, 33,1, 33,2,
followed by a 7-rotation ( Ry = exp{imalay}) are needed. For v — 1
the mode a3 decouples from the other two modes and the scheme reduces
to the standard joint measurement of quadratures for the normal operator
Z1 =ai + CL;.

a.l i
bam GICH) m\

] Al
By —@—e

/
e N ——e A
2,8 Be,)[ =/ —— 3

Each outcome from the joint measurement of the quadratures (J; and P,
corresponds to a complex number 7 = Q1 + 7P, that represents a realization
of the observable Zy. The probability density of the outcomes K, (7) for a
given initial preparation R ® o is obtained as the Fourier transform of the
moment generating function =(\),

d2)\ s _
J(r) = / A pexr (),

T2

(1]

(\) =Tr [R® o exp ()\ZNJr — /_\ZN>]

exp{A\Zx' — AZx} = Di(\) ® Dao(—X\7) ® Ds(—Ak)

15



where D;(z) is the displacement operator for the mode a;. Therefore, the
moment generating function rewrites as

Ey(A) = x12(A) x3(=Ak) ,  x12(A) = tr[RD1(A) ® Da(—X)]
and x3(z) = Trlo Ds(z)] is the characteristic function of the mode as. The
probability density of the outcomes is given by the convolution

Lo () e wy(=r/r) (12)

K2

K,(r) =

W3(z) being the Wigner function of the mode a3, * the convolution product,
and H,(z) the density obtained by the Fourier transform of x12(A).

Remark 17 For factorized preparations R = 01 ® g, the moment generating
function x12(A) = x1(A) x2(=A) factorizes into the product of the character-
istic functions of o1 and gy respectively, and the density H,(T) reduces to the
convolution of the Wigner functions of the two input signals

H, (1) = vi Wi (r) % Wa(—r/7)

Variances of the measured quantities Q1 and Py are related to the variances
of the quadratures of interest. We have

1
where Ag2 = Trlo ¢3] and analogously Ap3 = Trlo p3] (remind that Eq. (10)
implies Trlo g3] = Trlops] = 0). Notice that the added noise in Eq. (13)
s the minimum noise according to generalized uncertainty relations for joint
measurement of non commuting observables (Yuen, 1982). On the other

hand, the covariance between the measured quadratures i.e. the quantity

1
5T’f‘12a [R@O' (Q1P2 —+ PQQl)] — T’I"12a [R® O'Ql] T7°12a [R@ O'PQ] 5

may be written as

EQIPQ =

1 1
EQle = EX’YY"/ - _(1 - 72) T’I"a |:§0- (p3Q3 + q3p3):| (14)

2

where Yx vy, = 3Tri [R(X,Y, + Y, X,)] — Triz[RX,] Triz [RY,] is the co-
variance of the desired quadratures.

16



Remark 18 Notice that the added noise to the covariance, Eq. (14), may
vanish for some preparation of the state o whereas the added noise to the
variances, Eq. (138), cannot vanish for any physical preparation o. This
raises the question of the consequences of different field states on the statistics
of the measurement and, in turn, of the role played by preparations of states
i concrete erperiments.

Within experimental frameworks, one may take full advantage of possi-
ble freedom in preparing some of the modes. This is definitively the case of
the Naimark mode a3, even though its preparation needs to be compatible
with the prescription (10) for the expectation values of position and momen-
tum operators. In particular, a valid Naimark extension can be obtained by
preparing the mode a3 in the vacuum state o = |0)(0| to let its contribution
to the noise in formula (14) to vanish, since Tr,[o(gsps + p3gs)] = 0, and to
minimize Agi and Ap3 in (13), since both the terms would be equal to one
half. Each of the other two fields may be, for instance, in one among the most
meaningful types of states, such as number states, coherent states, thermal
states or phase states (eigenstates of the operator C+ zS’) or prepared in an
entangled states.

Example 19 Consider the fully separable state described by the density op-
erator p = R® 0 = 01 ® 0o ® 0, where g, with k = 1,2, denotes the
preparation for the k-th bosonic field in the arbitrarily mized state

= p®|m)(m
m=0

on the Hilbert space Hy, then the system moment generating function is
lo |
Try, [ox Di(c)] me (laxl?)

where the L,’s are Laguerre polynomials. For instance, for coherent and
phase states it should be used with

(k) — -lo2 0" d k) — (1 — |]2)]5|2m
m =€ and  py) = (1= [2[7)|z]

p |
m.

respectively (phase state formulae can be used even when dealing with ther-
mal states upon the identification z = exp[—%ﬁhw], B being the inverse of
temperature).

17



Suppose no specific conditions do constraint, in principle, the preparation
for the mode ay. Once again a vacuum choice may be advantageous. Let us
therefore focus on the specific case of the measurement of 27 on the class of
factorized signals described by R = p; ® |0)(0| where g, is a generic prepa-
ration of the mode ay while |0) is the ground state of the mode ay. In this
case

e=a®[0){(0[@[0){0] ,

Eq. (12) becomes a Gaussian convolution and the moment generating func-
tion becomes independent of the parameter y

- 1
=00 =0 exp (=3A7) (15)
The measured variances are thus given by

AQI=S(AG+1) AP = (A1) . (16)

|~

Equations (15)-(16) contain a remarkable result that may be expressed
as follows (Paris,GL and Soliani, 2007).

Conclusion 20 The measurement of Z, on the class of states R = 01®[0)(0]
does not lead to added noise with respect to the measurement of the normal
operator a, + Go.

We thus learn how the simultaneous measurement of the field quadratures
for a quasi-monochromatic signal can be realized in the case the heterodyne
apparatus yields a non-normal measurement operator. Moreover, a suitable
preparation enables one to avoid additional noise with respect to that result-
ing in the measurement of signal field quadratures within the framework of
the standard optical heterodyne detection.

e A feasible phase can be naturally defined within the Caves description of
heterodyning at the cost of introducing of a Naimark mode

N 1. Zn A
bv=omZY |2y, 2] =0
N QiHZJTV N an

18



e Cosine and sine quadrature operators

. exp (léN> + exp (—ifr)
) S = 2 )

exp (zéN> + exp (—ifr)

C= 5

obey the correct relation C? 4+ 52 = 1.

e Introduction of the 3-mode relative number operator N = N; — (N, + N3),
where Nj, = &,Tc&k (k =1,2,3), yields to what one expects for genuine phase
operatorsThe commutator [fy, N] can then be interpreted as the canonical
conjugation of the feasible phase for Caves heterodyne measurement operator
with respect to the operator mode number difference N.

Fortcoming steps in this activity

e Better (more economical) setups for generalized measurements of phase
in the case of linear amplifiers?

e Detection schemes to perform phase generalized measurements for non-
linear operators of physical interest (quadratic, cubic,...).
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Classical action-angle variables for the time-
dependent oscillator

e Classical one-dimensional standard harmonic oscillator with constant mass
and frequency.

2

2,2
mow
HO = P + 0% 5 00 = tan_l P s
2m0 2 Mmowopq

Transformation (q,p) — (6o, —wy ' H) is canonical, {6y, —wy ' Ho}qp = 1.

(17)

The result does not hold anymore once a generalized oscillator having
mass m = m(t) and frequency w = w(t) arbitrarily depending on time is
considered. The Hamiltonian

g P mie)e (18)
2m(t) 2
can no longer be an action variable. The naive time-invariance is lost and
more complicated symmetry group and conservation law have to be consid-
ered.
Angle-action variables for the time-dependent oscillator (18) can be easily

obtained. One has a basic quadratic invariant, the Ermakov invariant,

= mg(f n [%p - \/an% <ln %)} : , (19)
g =Lcos(f + 6) = c% cos(0 + 6) (20)

o=—, M="" keR* (21)
m

generated by a vector field of the type

el w

The quantity J = ﬁ can be therefore as the natural action variable for
the time-dependent oscillator. The associated angle variable is

oo = {5 - e} <o (e i)

(Standard harmonic oscillator: o2 — “5—?)
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Quantum angle-action operators for the time-
dependent oscillator

The quantum phase problem for the standard harmonic oscillator is effec-
tively attacked by resorting to number shifts operators. Another way to
proceed is based on the use of phase-space distributions and quantization the
classical phase variable by means of ordering rules for the momentum and
position operators. Each Hermitian phase operator (;AS such that the phase
distribution X
P(p) = tr[6(¢ — ¢)] (24)

attributes the correct sharp phase to any large amplitude localized state p
is expressible as the operator obtained from (17) by direct quantization of
phase-space variables and introduction of an ordering rule. The relevance
of the angle variable 6(p, ¢) given above relies on the possibility to adopt a
similar strategy in the case of the time-dependent oscillator as well.

A likely way to tackle the problem of the definition of the quantum phase
operator for the time-dependent oscillator by taking account of (23), is there-
fore based on the introduction of an operator of the type

0(p.0) — {65,0)} (25)

where €2 means an operator ordering (e.g. the Weyl ordering).

Remark 21 The appearance of %lnf = %lnﬁ = (% — %) in the clas-
sical angle variable, and thus in quantum phase operator (25), for a time-
dependent oscillator is meaningful from the physical point of view. At the
quantum level the quantity measures in fact the departure from the mini-
mum uncertainty of states that at an initial time are coherent but during
their time evolution under the time-dependent oscillator dynamics generally

become squeezed:

h o2 m \?
AfGAup > =414+ — |6 — — 26
od ap_2\/+ﬁ<0 2m0>, (26)
Minimum uncertainty is preserved during the time-evolution whenever the
amplitude ¢ is constant, say o = c\/m, or equivalently when mw = ﬁ being
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¢ a constant. In such a case, it would therefore result

. T p . 1 (VE., & .
O = tan™? [ﬁg] , Jomu = 2 (?qz + ﬁ]ﬂ) (27)
Q

while the Hamiltonian would read Hyy = ﬁ (;62 + %), thus showing an

explicit time-dependence.

Weyl-ordered polynomial quantum form for the
TDO angle variable

An explicit formal representation of the quantum phase operator for the
time-dependent oscillator in terms of the Weyl ordered operators

. 1/ i 1/ o

(A A — AS A At—S ~S AL AJ—S

Tz,g(q,p)—ziz<s>pqp =52 () eve (28)
s=0 s=0

can be found in a way similar to that considered for the harmonic oscillator

(Bender and Dunne, 1989)

o Let

A

T = J(@:5,1) = Jpp(t) B* + Jog(t) & + T (1) (D4 + D) (29)
be an action operator. A solution for the associated angle operator can be

found of the form (GL, 2008)

éW(QA, ﬁ) = Z a—k,k(t) T—k,k(qAaﬁ) 3 k= Oa 13 2a s
k=0
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with

A ~
Qo = - tan™" [Jq;}] , (30)
) (-DF A J.a 1 1 1
. S = | Jaa= Fl—-Z_p k= _j
O 1-2k,142k (+2K) Jpp | (L4 2) 2 1( 5 k,—k, % Jqp>
(31)
JopA N 1 3
o — (=1 k+1“4gp . qq ~ F (__ . k, —k, =, _j2)
2 ok2t2k = (—1) T 1+ Jgp) 241 B B ap
(32)
Ao X®) jFo_dw 5 _Ju
» Jpp ’ “ JPP

2/ dog — I 202/ Jgq — J2,

Problem 22 The concrete action of the operator éw should be elucidated.
This implies the investigation of phase states associated with it as well as the
analysis of the way they are affected by the mechanism of loss of coherence.
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e Weyl ordered T_,, ,-expansions for quantum canonical pairs are known for
the:

1) free particle

9
~ p -~ A
H=— Ty g=—mT_
om ) A—B m 1 l(qap)
2) harmonic oscillator
22 ~2 > k
g P, 4 ; (=" =
H= —+ =— 0= ———— T on_19n
2+ 5 g(l-l-?k)! 2n—1,2n+1

3) time-dependend oscillator:

m o d o 2 A
I=k—§+ |—p — vVmojg— | In — W
/{0261 -i-[\/_p math<n )] , 0

Problem 23 Study of the operator

A 1 n n . .
T ppn= = )@ p" ¢!
IS (e

7=0

This is concerned with the question of the definition of the operator p .
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Operator p—* is defined by means of

(el p7 )y =~¥ ,  {alp7[e)= > (a|p " Iox) (Brl¥)

k0

"N =

where ¢y, = ¢ = %eik”q are the standard momentum eigenfunctions. Hence

(d1T np

) = (a1 T [64) (Sel0)

k0

Coordinate representation of T_n,n

(| T nn

$) = /D T (d10) w(0) dy

Evaluation of kernels 7", ,,(¢'| ¢) provides
(g +4)]" q—d
T nldle) = T g (120 o - g

n! 2

L e+ ) B, (q’ 2— q) o q)

n!

where the B, (z)’s denote Bernoulli polynomials of n-th order and ©(z) is
the Heaviside step function.

A

The action of an arbitrary operator O = Yoo oI nn on the eigenstate

|m > of the HO is

(¢'|Om) :icn(”?n ( /q <q,+(—1)" /q qu) [(q+q’)"Bn(q'T_q)Hm(q)eq2 dgq

n:
n=0

In particular

<ql| Z C2nT—2n,2n|m> = Z

n=0 n=0 k=0 a=0

2n

N

n—k it 2n
Con <5> Gk (¢ —1)%7°



The problem can be also approached with the assumption that particles is es-
sentially confined, say g € [—/, £]. Define position and momentum operators
as (Galapon et al, 2005)

(@) (9) = q¥(a) VY €D(q) = L*[~L. () =H

) de L peM: P ek,
(b19) (@) = —i - V¢ € D(by) = { ¢(=0) = e ¢(£), v € [0,1) }

dq
q and p are self-adjoint operators canonically conjugate in a dense subspace of
D(p,). The eigenfunctions of the momentum spectral problem p,¢) = p. i ¢,

are

$ = —e | po=h(y+km) , k=0,%1,+2 ...

The inverse momentum operator exists, it is bounded and self-adjoint:

1 -~
<¢k|ﬁﬂw>=m o (alpy ) = > (alpy k) (Gl

k

and 17, |t >= > k0 17, . bk > (d|t)). Seeking for coordinate represen-

—n,n —n,n

tations of TAZWL would lead to the Fredholm integral operator representation

0
(1T0al0) = [ Tl vy
with the kernels 77, .. (¢'| q)

o dn-1 eiz7r|q’—q|
17 n(d'lq) x (q+¢)" e 9 {[ lim ( - 1)] (¢ —q) +
e Mz __

27T dzn—1
) dn—1 e—izw\q’—q\ ,
i i (1=05) [ o)

. x l 1

(symmetric, 77, (q'|q) = T2, »(q|¢"), and bounded, [° dq [*, d¢'|T, ,(¢'|9)| <
0o, hence self-adjoint). Being compact, kernels have a complete set of eigen-
functions and discrete spectrum.
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T 32(q'|q) = 2—2[2 +6(g—¢)+3(g—q)

4
V_o0(g) =) &q"
r=0
1.
T35(d q) = (icoty —1)(g + 7)%lqg—d|

4 4
q
0 — § ey (-
_2,2(q) é-'l‘ T ( 16)\’12,2>

r=0

where the F’s are functions of the hypergeometric type.
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