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Abstract

New entropic inequalities for Rènyi entropy are discussed. The inequalities are
presented for functions of one continuous variable and functions of two continuous
variables which are mapped onto tomographic-probability distributions using frac-
tional Fourier transforms in one and two dimensions, respectively. The Shannon
entropy and the entropic inequalities for the tomograms are studied. The mini-
mum value of the Shannon entropy associated to saturation of entropic inequality
is discussed. The discrete Fourier transform is used to obtain some inequalities
for entropies associated to unitary matrices. The radiation beam modes in opti-
cal waveguides are described by tomographic-probability distributions containing
complete information on the modes. The partial case of Hermite–Gauss modes is
studied in detail.
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Figure 1: Wave function of light beam in optical fiber.

Introduction

The radiation beams in waveguides are described by the beam mode-profile func-

tion Ψ(x, y, z) where x and y are transversal coordinates and z is the longitudinal

coordinate. The complex function Ψ(x, y, z) can be a solution to a linear or non-

linear equation. For, example, this function can be the soliton solution of nonlinear

Schrödinger equation. In the case of linear propagation, the beam mode-profile

function can be chosen as the solution to a linear Schrödinger-like equation.

2



There exist integral transforms which map the functions Ψ(x, y, z) on the prob-

ability distribution densities. The transforms can be given as the so-called tomo-

graphic maps like symplectic tomogram or Fresnel tomogram. In these cases, the

probability characteristics like entropy can be associated to the beams propagating

in the media. The idea of this association is that for any probability distribution

there exists a well-known construction of Shannon entropy or Rènyi entropy. Also

for these entropies some nontrivial inequalities were found in an abstract context.

In view of this, one can employ these known inequalities and implement them in a

new domain of radiation beams propagating in optical waveguides.

C. E. Shannon, Bell. Tech. J., 27, 379 (1948).

A. Rènyi, Probability Theory, North-Holland, Amsterdam, 1970.
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We review here the properties of tomographic invertible map of beam mode-profile

functions onto the probability-distribution densities and, in view of the known

inequalities of Shannon and Rènyi entropies, apply these inequalities for obtaining

new characteristics and properties of the beams propagating in the waveguides.

In addition, we discuss the new entropic inequalities for the functions of discrete

variables which are analogs of spinors. Such functions can also be mapped onto

probability distributions (called spin tomograms). For such functions, there exist

discrete analogs of entropic inequalities and we apply these inequalities to associate

them with properties of discretized “beam profiles.” It can be considered as a model

in which the beam-profile function of continuous coordinates is replaced by a finite

set of functions depending on discrete variable. The issues of the talk are

• Schrödinger-like equation;

• Two-dimensional Hermite–Gauss modes in optical waveguides;

• Symplectic tomogram for two-dimensional mode-profile function;

• Fresnel tomograms;

• Entropic inequalities for light beams;

• Entropic inequalities for discrete variables.
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Fock–Leontovich approximation for paraxial beams

of electromagnetic radiation

In reality, it is not unusual that purely classical systems can be described by a

quantumlike equation. For example, Fock and Leontovich used this ansatz in their

study of the electromagnetic-wave propagation along the Earth’s surface [Fock V

A and Leontovich M A 1946 Zh. Éksp. Teor. Fiz. 16 557]. They have shown

that Maxwell’s equations in nondispersive media for paraxial beams of the electro-

magnetic field can be reduced to a Schrödinger-like equation (the so-called paraxial

approximation).

In fact, since it is the standard procedure for studying the electromagnetic waves,

starting from Maxwell’s equations, one obtains the Helmholz equation for the com-

ponent of the electric field. The Helmholz equation is obtained for the wave with

given frequency, neglecting the media dispersion and influence of polarization,

∂2E

∂2x
+
∂2E

∂z2
+ k2n2(x, z)E = 0 (1)

(we consider a slab or planar waveguide configuration). In Eq. (1), λ = 2π/k is the

wavelength in vacuum, z is the longitudinal coordinate, and n(x, z) is the refractive

index.
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For paraxial beams, we introduce the complex function Ψ(x, z), which is a slowly

varying amplitude of the electric field, using the following formula:

E(x, z) = n
−1/2
0 (z) Ψ(x, z) exp

[
ik

∫ z
0
n0(ξ) dξ

]
. (2)

The ansatz (2) reduces the Helmholz equation (1) to the Schrödinger-like equation

iλ
∂Ψ(x, z)

∂z
= − 1

2n0(z)

∂2Ψ(x, z)

∂x2
+ U(x, z) Ψ(x, z), (3)

with U(x, z) being an effective potential related to the refractive index of the

medium n(x, z) as

U(x, z) =
1

2n0(z)

[
n2

0(z) − n2(x, z)
]
,

where n0(z) = n(0, z) is the refractive index of the medium at the beam axis.

While deriving this equation, one neglects the second-order derivatives of ψ with

respect to the coordinate z and the derivatives of the function n0(z), that can be

done in the case of a slow variation of the refractive index along the beam axis.

Analogous Schrödinger-like equation can be obtained for the light propagating

in optical fibers. This case corresponds to a quanutmlike system with two degrees

of freedom.
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Two-dimensional Hermite–Gauss modes in optical fibers

In the case of parabolic profile of refractive index in optical fibers (selfoc) where the

potential is given in dimensionless variables as

U(x, y, z) =
x2

2
+
y2

2
,

one has the solutions of Schrödinger-like equations in the form of Hermite–Gauss

functions (Hermite–Gauss modes) labeled by two integer numbers m,n = 0, 1, 2 . . .

For given distance z0, for example z0 = 0, one has in dimensionless units

Ψmn(x, y) = fm(x)fn(y),

where

fm(x) =
e−x

2/2

π1/4

1√
2mm!

Hm(x),

with Hm(x) being the Hermite polynomial. The same ansatz is valid for fn(y).

For example,

f0(x) =
e−x

2/2

π1/4
, f1(x) = f0(x)

√
2x, etc.
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Symplectic Tomography of Two Beams

We review tomographic approach to describe modes propagating in optical waveg-

uides, e.g., optical fibers. The longitudinal coordinate z is considered for a moment

to be fixed, e.g., z = 0. The profile of the mode field at this coordinate is given

as a function Ψ(x, y) of the fibers’ transversal coordinates; it is considered to be

normalized, i.e., ∫
|Ψ(x, y)|2 dx dy = 1. (4)

The tomographic-probability distribution (called also tomogram) is defined by

Radon transform [J. Radon, Berichte Sachsische Akademie der Wissenschaften, Leipzig,

Mathematische-Physikalische Klasse, 69 (1917), S. 262] generalized for two dimensions

as symplectic tomogram [G.M. D’Ariano, S. Mancini, V.I. Man’ko, and P. Tombesi, Quan-

tum Semiclass. Opt., 8, 1017 (1996)] and given as Fresnel integral squared in [Man’ko

M A, Man’ko V I and Mendes R V 2001 J. Phys. A: Math. Gen. 34 8321] as follows:

w(X1, µ1, ν1, X2, µ2, ν2) =

1

4π2|ν1ν2|

∣∣∣∣∣∣
∫

Ψ(x, y) exp

 i
2

µ1

ν1
x2 +

µ2

ν2
y2 − 2X1

ν1
x− 2X2

ν2
y

 dx dy
∣∣∣∣∣∣
2

. (5)
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The symplectic tomogram (5) w(X1, µ1, ν1, X2, µ2, ν2) =

1

4π2|ν1ν2|

∣∣∣∣∣∣
∫

Ψ(x, y) exp

 i
2

µ1

ν1
x2 +

µ2

ν2
y2 − 2X1

ν1
x− 2X2

ν2
y

 dx dy
∣∣∣∣∣∣
2

is nonnegative function of six real variables X1, µ1, ν1, X2, µ2, and ν2. It satisfies

the normalization condition∫
w(X1, µ1, ν1, X2, µ2, ν2) dX1 dX2 = 1 (6)

and can be interpreted as the joint probability density of two random variables

X1 = µ1x + ν1px, X2 = µ2y + ν2py, (7)

where x and y are coordinates of an intersection point in transversal plane of the

light ray and px and py are small angles determining the unit direction vector

parallel to the light ray propagating along the fiber axis.

The tomographic-probability density determines the modulus and phase factor

of the mode-profile function Ψ(x, y) due to the inverse relation

Ψ(x, y)Ψ∗(x′, y′) =
1

4π2

∫
dX1 dX2 dµ1 dµ2 dν1 dν2

×w(X1, µ1, ν1, X2, µ2, ν2)δ(ν1 − x + x′)δ(ν2 − y + y′)

× exp

 i2[2X1 − µ1(x + x′) + 2X2 − µ2(y + y′)]

 . (8)
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The symplectic tomogram (5) has the homogeneity property

w(λ1X1, λ1µ1, λ1ν1, λ2X2, λ2µ2, λ2ν2) =
1

|λ1λ2|
w(X1, µ1, ν1, X2, µ2, ν2). (9)

In view of this, it can be expressed in terms of optical tomogram depending on four

real variables

wopt(X1, θ1, X2, θ2) =
1

4π2| sin θ1 sin θ2|

∣∣∣∣∣∣Ψ(x, y) exp

 i
2

(
cot θ1(x

2 +X2
1 )

+cot θ2(y
2 +X2

2 ) − 2ixX1

sin θ1
− 2iyX2

sin θ2

 dx dy
∣∣∣∣∣∣
2

. (10)

In fact, due to definitions of symplectic (5) and optical (10) tomograms, one has

wopt(X1, θ1, X2, θ2) = w(X1, cos θ1, sin θ1, X2, cos θ2, sin θ2) (11)

and, due to the homogeneity property (9),

w(X1, µ1, ν1, X2, µ2, ν2) =
1√

(µ2
1 + ν2

1) (µ2
2 + ν2

2)

×wopt

 X1√
(µ2

1 + ν2
1)
, arctan

ν1

µ1
,

X2√
(µ2

2 + ν2
2)
, arctan

ν2

µ2

 . (12)
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Another tomogram called Fresnel tomogram of the light mode in the optical fiber

is given by the integral transform

wF(X1, ν1, X2, ν2) =
1

4π2

1

|ν1ν2|

∣∣∣∣∣∣∣
∫

Ψ(x, y) exp

i(X1 − x)2

2ν1
+
i(X2 − y)2

2ν2

 dx dy
∣∣∣∣∣∣∣
2

.

(13)

Fresnel tomogram wF is related to symplectic tomogram

wF(X1, ν1, X2, ν2) = w(X1, 1, ν1, X2, 1, ν2). (14)

One can obtain symplectic tomogram w(X1, µ1, ν1, X2, µ2, ν2) in terms of Fresnel

tomogram wF

w(X1, µ1, ν1, X2, µ2, ν2) =
1

|µ1µ2|
wF

X1

µ1
,
ν1

µ1
,
X2

µ2
,
ν2

µ2

 . (15)

In view of mutual tomogram relations one can find the mode-profile function Ψ(x, y)

either in terms of optical tomogram or in terms of Fresnel tomogram.

These tomograms and their mutual relations were considered, for example, in:
[S. De Nicola, R. Fedele, M.A. Man’ko, and V.I. Man’ko, ‘New uncertainty relation for to-
mographic entropy: Application to squeezed states and solitons,” Eur. Phys. J. B, Vol. 52,
pp. 191-198 (2006) [ArXiv quant-ph/0607200v1]; “New inequalities for tomograms in the
probability representation of quantum states,” Theor. Math. Phys., Vol. 152, pp. 1081–1086
(2007) [ArXiv quant-ph/0611114 v1]; “Symplectic entropy” (Feynman Festival, University of
Maryland, August 2006), J. Phys. Conf. Ser., Vol. 70, 012007 (2007)].
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For Hermite–Gauss modes of light propagating in optical waveguides, one has

the tomograms:

(1) Optical tomogram

woptmn(X1, θ1, X2, θ2) =

1

4π2| sin θ1 sin θ2|

∣∣∣∣∣∣∣∣
∫ e−(x2/2)−(y2/2)

√
π

Hm(x)Hn(y)
1√

2m+nm!n!

× exp

 i
2

cot θ1(x
2 +X2

1 ) + cot θ2(y
2 +X2

2 ) − 2ixX1

sin θ1
− 2iyX2

sin θ2

 dx dy
∣∣∣∣∣∣
2

.

(16)

(2) Fresnel tomogram

wFmn(X1, ν1, X2, ν2) =
1

4π2

1

|ν1ν2|

∣∣∣∣∣∣∣∣
∫ e−(x2/2)−(y2/2)

√
π

Hm(x)Hn(y)
1√

2m+nm!n!

× exp

i(X1 − x)2

2ν1
+
i(X2 − y)2

2ν2

 dx dy
∣∣∣∣∣∣∣
2

. (17)

Thus, we constructed in the explicit form tomographic-probability distributions

for both optical and Fresnel tomogram of Hermite–Gauss modes in optical fibers.
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Tomographic Entropies of Light Beams

In this section, we consider tomographic entropies associated to light beams in

optical waveguides. There exists Shannon construction [C.E. Shannon, Bell. Tech.

J., 27, 379 (1948)] of entropy associated to a probability distribution function P (n)

of a discrete variable n

H = −∑
n
P (n) lnP (n). (18)

One can apply the Shannon construction to introduce tomographic entropy associ-

ated to tomographic probability distribution (5)

w(X1, µ1, ν1, X2, µ2, ν2) =

1

4π2|ν1ν2|

∣∣∣∣∣∣
∫

Ψ(x, y) exp

 i
2

µ1

ν1
x2 +

µ2

ν2
y2 − 2X1

ν1
x− 2X2

ν2
y

 dx dy
∣∣∣∣∣∣
2

.

as follows:

H(µ1, ν1, µ2, ν2) = −
∫
w(X1, µ1, ν1, X2, µ2, ν2) lnw(X1, µ1, ν1, X2, µ2, ν2) dX1 dX2.

(19)

The above entropy is a new information characteristic of the light-beam profile in

optical waveguides.
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The generic symplectic entropy (19)

H(µ1, ν1, µ2, ν2) ≡ −
∫
w(X1, µ1, ν1, X2, µ2, ν2) lnw(X1, µ1, ν1, X2, µ2, ν2) dX1 dX2

yields also the optical tomographic entropy of the light beam

Hopt(θ1, θ2) = −
∫
wopt(X1, θ1, X2, θ2) lnwopt(X1, θ1, X2, θ2) dX1 dX2 (20)

and the Fresnel tomographic entropy

HF(ν1, ν2) = −
∫
wF(X1, ν1, X2, ν2) lnwF(X1, ν1, X2, ν2) dX1 dX2. (21)

All three entropies (19), (20), and (21) are mutually related. An interesting property

of tomographic entropies is connected with the uncertainty relation associated to

the light-beam intensities determined by the mode-profile function Ψ(x, y) and its

Fourier transform

Ψ̃(px, py) =
1

2π

∫
Ψ(x, y) exp−i(pxx+pyy) dx dy. (22)

This entropic uncertainty relation reads (see, e.g., I. Bialynicki-Birula, “Formulation of

the uncertainty relations in terms of the Rènyi entropies,” Phys. Rev. A, 74, 052101 (2006)

[ArXiv quant-ph/0608116 v1])

−
∫
|Ψ(x, y)|2 ln |Ψ(x, y)|2 dx dy−

∫
|Ψ̃(px, py)|2 ln |Ψ̃(px, py)|2 dpx dpy ≥ 2 ln(πe).

(23)
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The entropic uncertainty relation was generalized for the symplectic tomographic

entropy as well as for the optical and Fresnel tomographic entropies. We consider

below the example of optical tomographic entropy and introduce the function

R(θ1, θ2) = Hopt(θ1, θ2) +Hopt(θ1 + π/2, θ2 + π/2) − 2 ln(πe), (24)

where Hopt(θ1, θ2) is given by (20)

Hopt(θ1, θ2) ≡ −
∫
wopt(X1, θ1, X2, θ2) lnwopt(X1, θ1, X2, θ2) dX1 dX2.

The function (24) takes minimum value equal to zero. This value is realized for the

light-beam profile in the fundamental Hermite–Gauss mode with m = n = 0.

According to new entropic uncertainty relations, the function R(θ1, θ2) must be

nonnegative for all the values of angles θ1 and θ2, i.e.,

R(θ1, θ2) ≥ 0. (25)

This means that, if one measures the modulus and phase of the mode-profile func-

tion Ψ(x, y) by any method, the results of the measurement yield also the function

(24) which must be nonnegative.

Nonnegativity of the function R(θ1, θ2) for all the angles θ1 and θ2 can serve as

an extra control of accuracy of the measurements.

The inequality constructed can be checked for the Hermite–Gaussian mode pro-

files in optical waveguides.
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New inequalities for Rènyi operator symbol entropies

In this section, we continue the study of tomographic entropies along the line of our

previous work: M.A. Man’ko, V.I. Man’ko, and R. Vilela Mendes, “A probabilistic opera-

tor symbol framework for quantum information,” J. Russ. Laser Res., Vol. 27, pp. 507-532

(2006) [ArXiv quant-ph/0602189 v1] and derive new inequalities for spin tomographic

entropies related to quantum Fourier transform. For continuous conjugate vari-

ables (position and momentum), the inequalities for Rènyi entropy associated with

probability densities in the position and momentum were obtained in [I. Bialynicki-

Birula, Phys. Rev. A, 74, 052101 (2006) [ArXiv quant-ph/0608116 v1]. In this work, for

N -dimensional Hilbert space an analog of the uncertainty relation for the Rènyi

entropies was given in the form

1

1 − α
ln

 N∑
k=1

p̃αk

 +
1

1 − β
ln

 N∑
l=1
pβl

 ≥ lnN, (26)

where α and β are real numbers, p̃k =| ãk |2, pl =| al |2, (1/α) + (1/β) = 2, and

the complex numbers ãk and al are connected by quantum Fourier transform

ãk =
1√
N

N∑
l=1

exp

2πikl

N

 al =
N∑
l=1
Fklal, (27)

while Fkl are the matrix element of quantum Fourier transform matrix F .
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The quantum Fourier transform matrix F has the form

Fm′m =
1√
N



1 1 1 · · · 1

1 a a2 · · · aN−1

1 a2 a4 · · · aN−2

· · · · · · · · · · · · · · ·
1 aN−1 aN−2 · · · a


, a = exp

2πi

N

 . (28)

Below we use the inequality of Bialynicki-Birula to obtain new inequalities for

Shannon and Rènyi entropies associated with the so-called unitary spin tomograms.

The unitary spin tomogram of a j-spin state with the density N×N -matrix ρ

can be considered as a column probability N -vector ~w(u) N = 2j + 1 depending

on unitary N×N -matrix u with the components

wm(u) ≡ w(m,u) = 〈m | u†ρu | m〉,

m = −j,−j + 1,−j + 2, . . . , j − 1, j, j = 0, 1/2, 1, 3/2, . . .

Then we can introduce another N -vector with components pm(u) =
√
wm(u).
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Applying the B-B inequality (26)

1

1 − α
ln

 N∑
k=1

p̃αk

 +
1

1 − β
ln

 N∑
l=1
pβl

 ≥ lnN

to these vectors and using the notation∣∣∣∣∣∣∣
j∑

m′=−j′
Fmm′

√
w(m′, u)

∣∣∣∣∣∣∣ =
√
wF (m,u), (29)

where Fmm′ is matrix with matrix elements of quantum Fourier transform and

wF (m,u) is the probability distribution given by (29), we obtain inequality

1

1 − α
ln

 j∑
m=−j

w(m,u)α
 +

1

1 − β
ln

 j∑
m=−j

wF (m,u)β
 ≥ lnN. (30)

In this sum, the first term in this sum is called Rènyi entropy Rα(u) and second

term is called Rènyi entropy Rβ(u).

For α→ 1, Rènyi entropy Rα(u) has as the limit Shannon entropy H(u).
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Also using for pure state N -vector | ψ〉 the definition of spin tomogram

w(m,u) = |〈m | u | ψ〉|2 , we obtain another similar inequality

1

1 − α
ln

 j∑
m=−j

w(m,u)α
 +

1

1 − β
ln

 j∑
m=−j

w(m,Fu)β
 ≥ lnN, (31)

where F is quantum Fourier transform matrix with matrix elements

Fm′m =
1√
N



1 1 1 · · · 1

1 a a2 · · · aN−1

1 a2 a4 · · · aN−2

· · · · · · · · · · · · · · ·
1 aN−1 aN−2 · · · a


, a = exp

2πi

N

 .

Thus one has for Rènyi entropy the inequality for each unitary matrix

Rα(u) +Rβ(Fu) ≥ lnN. (32)

Thus the unitary spin tomogram of the particle with spin j for the state withN×N
density matrix ρ, where N = 2j + 1, must satisfy inequality (31).

In the limit α→ 1, β → 1, one gets inequalities for Shannon entropy of spin state

H(u) +H(Fu) ≥ lnN, (33)

with the first term on the left-hand side being Shannon entropy and the second

one, its quantum Fourier transform.
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Another inequality reads

H(u) +HF (u) ≥ lnN, (34)

whereHF (u) is Shannon entropy associated with probability distribution wF (m,u).

For minimum value of the Shannon entropy realized for unitary matrix u0, one

has the von Neuman entropy defined by the density matrix ρ as SvN = −Tr ρ ln ρ,

i.e., the equality

H(u0) = SvN. (35)

This means that the von Neuman entropy SvN of a quantum state can be found as

the minimum value of Shannon entropy H(u) where the minimum takes place for

a specific unitary matrix u0.

Inequality (33) H(u) +H(Fu) ≥ lnN written for unitary matrix u0

H(u0) +H(Fu0) ≥ lnN (36)

provides a new inequality for von Neuman entropy

SvN +H(Fu0) ≥ lnN, (37)

where H(Fu0) is a new entropy.

The inequality has the following physical interpretation.
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If the density operator ρ̂ of the quantum state of spin is given in the form of

spectral decomposition

ρ̂ =
j∑

q=−j
λq | q〉〈q |, (38)

one can choose the eigenstate | q〉 of the density operator ρ̂ and identify it with a

discrete “position” state. Then the states

| p〉 = F̂ | q〉, (39)

where F̂ is the Fourier transform operator, are interpreted as “momentum” eigen-

states. The matrix elements

〈p | F̂ | q〉 = Fpq (40)

provide the matrix F which coincides with the quantum Fourier transform matrix.

Now position and momentum became discrete numbers but the relation between

the position and momentum vectors is analogous to the relation between these

vectors in the case of continuous position and momentum which is known to be

given by the standard Fourier transform.

Thus we have the interpretation of the new inequality in the same manner as it

was done in the case of continuous variables.
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The new entropy H(Fu0) in (37)

SvN +H(Fu0) ≥ lnN,

is the Shannon entropy for “momentum” distribution, if we identify the standard

von Neuman entropy with Shannon entropy for “position” distribution.

Let us illustrate the inequalities on the example of pure qubit state, i.e., the spin

state s = 1/2 and sz = 1/2 with density matrix ρ =

 1 0

0 0

 .
“Position” operator q̂ is identified with Pauli σz matrix, σz =

 1 0

0 −1

 , and

“momentum” operator p̂ is identified with Pauli σx matrix, σx =

 0 1

1 0

 .
Two position eigenvectors | q〉, where q = ±1/2, are

 1

0

 and

 0

1

 and two

momentum eigenvectors | p〉, where p = ±1/2, are 1√
2

 1

1

 and 1√
2

 1

−1

.

The quantum Fourier transform matrix F reads: F = 1√
2

 1 1

1 −1

 .
For our case, matrix u0 = 1.
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Inequality (37) for the von Neuman entropy SvN+H(Fu0) ≥ lnN is saturated

since

SvN = 0, H(F ) = ln 2 (41)

and

SvN +H(F ) = ln 2 ≥ ln 2. (42)

Also inequality (32) for Rènyi entropy Rα(u) +Rβ(Fu) ≥ lnN is saturated

Rα(u0) +Rβ(Fu0) = ln 2 ≥ ln 2. (43)

To illustrate in more detail the inequalities obtained, let us now discuss the

example of mixed state of spin s = 1/2 state (qubit) with diagonal density matrix

with real nonnegative matrix elements

ρ =

 a 0

0 b

 , a + b = 1. (44)

Then inequality (33) H(u) +H(Fu) ≥ lnN can be visualized as follows.

Von Neuman entropy of this state reads: SvN = −a ln a− b ln b.

The density matrix subjected by quantum Fourier transform

F =
1√
2

 1 1

1 −1

 reads F †ρF =

 1/2 (a− b)/2

(a− b)/2 1/2

 . (45)
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Its tomographic entropy

H(Fuo) = ln 2, u0 = 1. (46)

Thus inequality (33) H(u) +H(Fu) ≥ lnN looks as follows:

−a ln a− b ln b + ln 2 ≥ ln 2, (47)

which only means that von Neuman entropy is nonnegative.

But inequality (34) H(u) +HF (u) ≥ lnN gives better estimation, as we see

below, since the number ln 2 is replaced by a smaller number.

In fact, the tomographic-probability vector of the qubit state

~w =

 a
b

 (48)

is associated to the probability-amplitude vector with positive components

~W =


√
a√
b

 . (49)

Then after making the quantum Fourier transform of this vector, we get the column

vector

~WF =
1√
2


√
a +

√
b√

a−
√
b

 . (50)
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The probability-distribution vector associated to the above probability-amplitude

vector reads

~wF =

 (1/2) +
√
ab

(1/2) −
√
ab

 . (51)

Thus we apply inequality relating Shannon entropies to two vectors (49)

~W =


√
a√
b


and (51) and obtain

−a ln a− b ln b−
1

2
+
√
ab

 ln

1

2
+
√
ab

 −
1

2
−
√
ab

 ln

1

2
−
√
ab

 ≥ ln 2,

(52)

or

SvN −
1

2
+
√
ab

 ln

1

2
+
√
ab

 −
1

2
−
√
ab

 ln

1

2
−
√
ab

 ≥ ln 2. (53)

This inequality looks more complicated though we know that SvN ≥ 0.
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Some inequalities for unitary matrix can be obtained.

Let us consider unitary N×N -matrix ujk. In view of the formalism developed,

one has the inequality

−
N∑
j=1

(
|ujk|2 ln |ujk|2 + |(Fu)jk|2 ln |(Fu)jk|2

)
≥ lnN (54)

or

−
N∑
j=1

N∑
k=1

(
|ujk|2 ln |ujk|2 + |(Fu)jk|2 ln |(Fu)jk|2

)
≥ N lnN, (55)

where Fjk is the Fourier transform matrix.

We demonstrated on the example of qubit (s = 1/2) that, for the tomograms

of spin states connected by quantum Fourier transform, one has constraints in the

form of inequalities for Shannon tomographic entropies.

One can demonstrate analogous constraints for Rènyi tomographic entropies too.
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Conclusions

The new entropic inequalities are discussed for tomograms
of the light-beam profiles in optical fibers. The discrete
analogs of the entropic inequalities are obtained. These
inequalities can be interpreted as inequalities for tomo-
graphic probabilities associated to spin states (qudits).
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