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M.E. Fisher, “Walks, walls, wetting and melting”, J.
Stat. Phys. 34 (1984) 667-729
M.E.Fisher introduced models of one-dimensional random walk

of hard core particles on the lattice. We shall consider the

models that Fisher called random turn walk models. They de-

scribe a motion of particles where at each tick of the clock a

randomly chosen walker takes a random step.

In our case we consider a version of this model where parti-

cles move along a semi-line, and where also a particle may be

created at the origin.



The model.
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The probability is proportional:

• For the hop of a particle along an arrow i → j: e−Uj+Ui;

• For the birth process: 1√
2
e−U1;

• For the elimination process: 1
2eU1.



The probability to come from a configuration λ(0) to

a given configuration λ(T) in T steps is the ratio

p
λ(0)→λ(T) =

W
λ(0)→λ(T)(T)

Z
λ(0)(T)

(1)

where the denominator is a normalization function

Z
λ(0)(T) =

∑

µ
W

λ(0)→µ
(T) (2)

In what follows we shall omit superscripts for config-

urations.



Our goals are:

• To evaluate the asymptotic configuration of the

particles in case the hopping rate r(n) := e−Un+Un−1

does not depend on n.

• To demonstrate a sort of phase transition phe-

nomenon.

• To link transition weights and the normalization

function with tau functions of BKP hierarchy.



Neutral fermions.
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[φn, φm]+ = (−1)nδn,−m,

where [ , ]+ denotes the anticommutator. In partic-

ular, (φ0)
2 = 1

2. The action on vacuum states:

φn|0〉 = 0, 〈0|φ−n = 0, n < 0,

φ0|0〉 =
1√
2
|0〉, 〈0|φ0 =

1√
2
〈0|,



The bases of Fock spaces are formed by vectors

|λ〉 := φλ1
· · ·φλN

|0〉

〈λ| := (−1)|λ|〈0|φ−λN
· · ·φ−λ1

,

where

λ1 > · · · > λN > 0

and |λ| = λ1 + · · ·+ λN .



We have one to one correspondence between con-

figurations of hard core particles on the lattice 1, 2, 3, . . .

and the basis Fock vectors.

Consider the following operator:

B = B1(U) + B−1(U)



B1(U) =
∞∑

i>0
(−1)i+1φiφ1−ie

−Ui+Ui−1 =

= φ1φ0e−U1−φ2φ−1e−U2+U1+φ3φ−2e−U3+U2−· · ·

B−1(U) =
∞∑

i≥0
(−1)i+1φiφ−1−ie

−Ui+Ui+1 =

= −φ0φ−1eU1+φ1φ−2e−U1+U2−φ2φ−3e−U2+U3−· · ·



Random procces as a sequence of Fock vectors

|λ′〉 → (
B1(U) + B−1(U)

) |λ′〉 → · · ·

→ (
B1(U) + B−1(U)

)T |λ′〉 → · · ·
describes an evolution of the initial (basis) Fock vec-

tor |λ′〉 - where the variable T = 0,1,2, . . . plays a

role of discrete time - to linear combinations of dif-

ferent basis Fock vectors.



Transition weight of the T-step random process

Wλ′→λ(U ; T) := 〈λ| (
B1(U) + B−1(U)

)T |λ′〉

from an initial configuration described by coordinates

λ′1, . . . , λ′N ′ to a target configuration λ1, . . . , λN .

N is not necessarily equal to N ′.



Fermionic calculations yields:
Transition weights:

W0→λ(U ; T) =

=





0

iff T − |λ| odd,

T!(
T−|λ|

2

)
!
2|λ|−T−N

2 e
−∑N

i=1 Uλi
N∏

i=1

1
λi!

N∏
i<j

λi−λj
λi+λj

iff T − |λ| even



EXAMPLES

(1) |λ| = 0 corresponds to the returning to the initial

position (time T is even),

W0→0(T) =
T!

(
T
2

)
!
2−T = 2−

T
2(T − 1)!!



(2) The case T = |λ| corresponds to the non-stop

creation + forward motion processes. Then

W0→λ(T) = 2−
N
2 e
−∑N

i=1 Uλi
N∏

i=1

1

λi!

N∏

i<j

∣∣∣∣∣∣∣∣

λi − λj

λi + λj

∣∣∣∣∣∣∣∣

In case the potential is a rapidly decreasing func-

tions Ui−1 >> Ui (and, therefore, left hopping rates

are much larger than right hopping rates), then the

configurations where T = |λ| are dominant. Let us

note that up without the factor 2−
N
2 e
−∑N

i=1 Uλi the



number W0→λ(T) is equal to the number of shifted

standard tableau of shape λ, that is the number of

ways the Young diagram of the strict partition λ may

be created by adding box by box to the empty parti-

tion in a way that on each step we have the diagram

of a strict partition.



(3) For given λ in large T limit (this means that T À
|λ|) by the Stirling’s approximation we have

W0→λ(T) = W0→0(T)T
|λ|
2 2−

N
2 e−

|λ|
2 2|λ|eo(T0)e−Eλ,

where

Eλ = − log
N∏

i=1

e
−Uλi

λi!

N∏

i<j

λi − λj

λi + λj

means an electrostatic energy of Coulomb particles

(placed in an external field) which are attracted by



their image. We see that in the large time limit the

weight of a configuration increases with |λ|, and for

given T and |λ| depends only on the Eλ.



The normalization function (partition function), count-
ing weights for all possible target configurations, which
may be achieved in the time duration T, is

Z(U ; T) :=
∞∑

N=0

∑

λ1>···>λN>0
〈λ|(B−1 + B1)

T|0〉 =

∞∑
N=0

2−
N
2

∑

λ1>···>λN>0
T−|λ| even

2|λ|−T

Γ(T−|λ|
2 + 1)

N∏

i=1

e
−Uλi

λi!

N∏

i,j

∣∣∣∣∣∣∣∣

λi − λj

λi + λj

∣∣∣∣∣∣∣∣

Due to the Gamma function this sum is finite.
Discrete version of a random matrix theory !



The probability to come to a configuration λ in T

steps starting from the vacuum one is given by

p0→λ(U ; T) =
W0→λ(U ; T)

Z(U ; T)



Asymptotic configuration of the particles in T → ∞
limit

Saddle point method. The density of particles σ(u),

where u = λ
R where R is the size of configuration.

The density interpolates between full package state

(σ(u) = 1), and empty state (σ(u) = 0):

0 ≤ σ(u) ≤ 1



The model: creation rate is r(1) := e−U1√
2

= r and
the external potential is

Un = −n log r + (β − 1) logn! , n = 2,3, . . .

which means that creation and (the right) hopping
rates are as follows

r(n) = rn1−β , n = 1,2,3, . . . (3)

β > 1 describes a locking potential while β < 1 -
driving particles to the right from the origin.



The case β = 1 may be considered as a discrete

time version of the so-called asymmetric simple ex-

clusion process (ASEP) on the half-line, now, the

parameter r being an asymmetry parameter.



Saddle point equation for sum Z(T) which will de-

fine the density function σ in the large time limit,

T →∞. For λ ∈ (0, R) we get

log
r

λβ
+ P

∫ R

0

σ(xR−1)dx

λ− x
− P

∫ R

0

σ(xR−1)dx

λ + x
+

1

2
log2

(
T −

∫ R

0
xσ(xR−1)dx

)
= 0

where P
∫ stands for the principal value. F.D.Gakhov,

“Boundary Problems”, ed. 2, Moscow, Nauka 1977



Asymptotic configuration of the particles. Given
distance from the origin, λ, we find the particle den-
sity for 0 < β < 2 as

σ(λR−1) =
β

π
arccos

λ

R
, λ ∈ [0, R]

where the size R and duration T are related as

T =
β

8
R2 +

22−2β

8r2
R2β

Thus, for large T, the dependence of R on T is dif-
ferent in regions 0 < β < 1, β = 1 and 1 < β < 2.



In the large T limit

R = R(β, T) =





√
8T
β if 0 < β < 1

√
8T

1+r−2 if β = 1

2
(
2r2T

) 1
2β if 1 < β < 2

As we see the discontinuity appears at β = 1 in the
large T limit. The same behavior has the number of
particles:

N(r, β, T) = R
∫ 1
0


β

π
arccosu


 du =

βR(β, T)

π



The weight of the asymptotic configuration for large

enough T is

|λ(T)| = βR2

8
≈





T + O
(

Tβ
)

if 0 < β < 1
T

1+r−2 if β = 1

β
2

(
2r2T

)1
β if 1 < β < 2



 R
0  

1/2

Asymptotic density of particles.



1

2
(T − |λ|) =





O
(

Tβ
)

if 0 < β < 1
T

2(1+r2)
if β = 1

T
2 − β

4

(
2r2T

)1
β if 1 < β < 2

Then, as we see the normalization function Z(T)

which according to the saddle point method has the

same leading term in the large T limit as W0→λ(T)(r, β; T)



has a discontuinity at β = 1 which may be inter-

preted as a sort of the first kind phase transition in

our non-equilibrium system.

Now we can evaluate the type of asymptotic of prob-

ability to achieve a given configuration in T → ∞
steps. We have Z(T) = W0→λ(T)(T)eO(lnR), where

the last factor originates from the Gaussian integral



around the saddle point configuration λ(T). Then

for T À |λ| we have

p0→λ(r, β, T) ≈ W0→λ(r, β, T)

W0→λ(T)(r, β, T)
≈

≈ T
|λ|
2 e−

|λ|
2 2|λ|e−Eλ(r,β)eω(T,r,β)

where ω does not depend on λ.



The answer depends on the region of β

eω(T,r,β) =





e
β−1
2 TlnT−T

(
β
2ln

8
β+β

2+lnr)
)
+T

2ln(2e)+O(
√

T)
if 0 < β < 1

e
−T





ln 2(1+r2)
2 + b

2(1+r−2)



+O(

√
T)

if β = 1

e

β
4

(
2r2T

)1
β(1−β)+O


T

1
2β




if 1 < β < 2

where b = 2ln 2 − 1. As we see, in each case, in

the large T limit eω is vanishing.



Phase transitions

(i) As we see in case of decreasing potential (or,

the same, increasing rightward hopping rate), 0 <

β < 1, the weight of the asymptotic configuration

is equal to T which means that asymptotic configu-

ration is created by only creating events at the ori-

gin and rightward hops, there were no elimination



events and backward hops in the history of this con-
figuration.

For β < 0 solution does not exists. In β → +0 limit
the number of particles vanishes, while the weight
is equal to T. Indeed, the external potential Un is
decreasing so rapidly that the largest weight has the
one particle configuration where the particle moves
in the ballistic way: is is located at the distance T to
the origin. β = 1 first kind transition.



(ii) When β > 2 we have a locking potential which
forces particles to form a sort of a condensate of
particles (the region of full package) which fills a
region near the origin The size of the condensed
phase is defined by β. β = 2 third kind transition.
This problem is treated by a method similar to
M.Douglas and V.Kazakov, “Large N phase transi-
tions in continuum QCD2 ”, arXiv: hep-th/9305047
Along this way we can show that the solution is given
in terms of elliptic integrals of the first and third kind.



(ii) The other model where the injection rate is a free

parameter may be considered and an analog of the

phase transition



Relation to the BKP tau function

The link of the described stochastic system to inte-

grable equations is two-fold.



I. A BKP tau function as generating function for

transition weights Wλ′→λ(T).

BKP τ − function: τ(s, s̄;U, z) =

∑

T,N,N ′
2−

N
2−N ′

2
∑

λ1>···>λN>0

λ′1>···>λ′
N ′>0

zT

T!
Qλ


s

2


 Qλ′


 s̄

2


 Wλ′→λ(U ; T),

where Qλ

(
s
2

)
, λ = (λ1, λ2, . . . ), are projective

Schur functions,



II. Generating function for “partition functions”:

Z(U ; z) = e
z2
4 〈0|eH(t)eC(z)


1 + √

2
∑

n≥0

zn

n!
φ(n)φ0


 |0〉

C(z) =
1

2

∑

n,m≥0

zn+m

n!m!
φ(n)φ(m)sign(m− n),

Un = −
∞∑

m=1,3,5,...
nmtm, φ(x) :=

+∞∑
k=−∞

xkφk

BKP τ − function: Z(U ; z) =
∞∑

T=0

zT

T!
Z(U ; T)



This is another example of the BKP tau function

which may be related to the so-called resonant multi-

soliton solution where the number of solitons is in-

finite and momentum of solitons are nonnegative

numbers. Thus, the tau function of this (dual) BKP

hierarchy is a generating function for normalization

functions. The higher times t = (t1, t3, t5, . . . ) of

this dual BKP hierarchy parametrize hopping rates

of the particles of our stochastic model.


