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Benney hydrodynamic chain

Let us consider the remarkable Benney hydrodynamic chain

Ak
t = Ak+1

x + kAk−1A0
x , k = 0, 1, 2, ...

Let us introduce N field variables ak(x , t) such that

Ak =
N∑

i=1

fi(k)(a
i ),

where the functions fi(k)(a
i ) are not yet determined.

A substitution of the above ansatz in the Benney hydrodynamic chain
leads to



Benney hydrodynamic chain

N∑
i=1

f ′i(k)(a
i )

(
ai
t −

f ′i(k+1)(a
i )

f ′i(k)(a
i )

ai
x − k

fi(k−1)(a
i )

f ′i(k)(a
i )

A0
x

)
= 0.

Suppose each expression (in brackets) vanishes simultaneously. It means,
that

ϕi (a
i ) =

f ′i(k+1)(a
i )

f ′i(k)(a
i )

, ψi (a
i ) = k

fi(k−1)(a
i )

f ′i(k)(a
i )

.

Then Benney hydrodynamic chain reduces to the form

∂tϕi (a
i ) = ∂x

(
ϕ2

i (a
i )

2
+

N∑
m=1

εmϕm(am)

)
,

where

N∑
m=1

εm = 0, ψi (a
i ) =

1

ϕ′i (a
i )

, Ak =
1

k + 1

N∑
n=1

εn[ϕn(a
n)]k+1.



Benney hydrodynamic chain

Under the scaling ϕi (a
i ) → ai the above hydrodynamic type system can

be rewritten as the so-called waterbag reduction

ai
t = ∂x

(
(ai )2

2
+ A0

)
,

where

A0 =
N∑

m=1

εmam.

Let us replace ai by p. A corresponding equation

pt = ∂x

(
p2

2
+ A0

)
is nothing but a generating function of conservation laws for the Benney
hydrodynamic chain.



Benney hydrodynamic chain

Indeed, let us substitute a formal series

p = λ− H0

λ
− H1

λ2
− H2

λ3
− ...,

where a parameter λ goes to infinity. Then the Benney hydrodynamic
chain can be written in the conservative form

∂tHk = ∂x

(
Hk+1 −

1

2

k−1∑
m=0

HmHk−1−m

)
,

where H0 = A0,H1 = A1,H2 = A2 + (A0)2,H3 = A3 + 3A0A1, ... All
conservation law densities Hk can be found by the above substitution into
the inverse series

λ = p +
A0

p
+

A1

p2
+

A2

p3
+ ...



The Gibbons–Tsarev system

Let us suppose that moments An depend on N Riemann invariants
rk .Then the Benney hydrodynamic chain reduces to a family of
hydrodynamic type systems

r i
t = pi (r)r i

x , i = 1, 2, ...,N,

parameterized by N arbitrary functions of a single variable.
Each hydrodynamic type system possesses the same generating function
of conservation laws

pt = ∂x

(
p2

2
+ A0

)
.

It means that a generating function of conservation law densities p
satisfies the Löwner equation

∂ip =
∂iA

0

pi − p
,

where A0 is a function of all Riemann invariants rk .



The Gibbons–Tsarev system

The compatibility condition ∂i (∂kp) = ∂k(∂ip) leads to the
Gibbons–Tsarev system

∂ip
k =

∂iA
0

pi − pk
, ∂ikA

0 = 2
∂iA

0∂kA
0

(pi − pk)2
, i 6= k,

whose solutions are parameterized by N arbitrary functions of a single
variable



Vlasov type kinetic equations

Let us consider the so-called Vlasov kinetic equation

λt = {λ,Ψ},

where λ(x , t, p), u(x , t) are unknown functions and Ψ(u, p) is some
given function. Here the Poisson bracket is canonical

{λ,Ψ} ≡ ∂λ

∂x

∂Ψ

∂p
− ∂λ

∂p

∂Ψ

∂x
.

Under the semi-hodograph transform λ(x , t, p) ↔ p(x , t, λ), the above
equation reduces to the conservative form

pt = ∂xΨ(u, p),

which is nothing but a generating function of conservation laws with
respect to parameter λ.



Vlasov type kinetic equations

Suppose the above equations possesses hydrodynamic reductions

r i
t = µi (r)r i

x .

Then such hydrodynamic type systems preserve the above generating
function. It means, that a generalization of the Löwner equation is given
by

∂ip =
Ψu

µi −Ψp
∂iu.

The compatibility conditions ∂i (∂kp) = ∂k(∂ip) leads to a generalization
of the Gibbons–Tsarev system.



Three distinct generating functions

Here we consider three distinct generating functions of conservation laws

pt = ∂x [u + U(p)], qt̄ = ∂x̄ [vV (q)], st̃ = ∂x̃ [ws + W (s)],

where functions U(p),V (q),W (s) satisfy to three ODE’s of the second
order

U ′′ = αU ′
2

+βU ′+γ, VV ′′ = αV ′2+βV ′+γ, sW ′′ = αW ′2+βW ′+γ.



Three distinct generating functions

Corresponding semi-Hamiltonian hydrodynamic reductions

r i
t = U ′(pi )r i

x , r i
t̄ = vV ′(qi )r i

x̄ , r i
t̃ = [w+W ′(s i )]r i

x̃ , i = 1, 2, ...,N

are connected with generalized Löwner equations

∂ip =
∂iu

U ′(pi )− U ′(p)
, ∂iq =

V (q)∂i ln v

V ′(qi )− V ′(q)
, ∂i s =

s∂iw

W ′(s i )−W ′(s)
,

where ∂i ≡ ∂/∂r i . These generalized Löwner equations are equivalent to
each other under the transformations

dp =
dq

V (q)
= d ln s, u = ln v = w , U ′(p) = V ′(q) = W ′(s).



Three distinct generating functions

These hydrodynamic reductions written in the so-called symmetric form

ai
t = ∂x [u(a)+U(ai )], bi

t̄ = ∂x̄ [V (bi )v(b)], c i
t̃ = ∂x̃ [c

iw(c)+W (c i )],

are connected with corresponding generalized Löwner-like equations

∂ip =
∂iu

U ′(ai )− U ′(p)

(
1 +

∑ ∂mu

U ′(am)− U ′(p)

)−1

,

∂iq =
V (q)∂i ln v

V ′(bi )− V ′(q)

(
1 +

∑ V (bm)∂m ln v

V ′(bm)− V ′(q)

)−1

,

∂i s = s
∂iw

W ′(c i )−W ′(s)

(
1 +

∑ cm∂mw

W ′(cm)−W ′(s)

)−1

,

due to the extra transformations

dai =
dbi

V (bi )
= d ln c i ,

where u(a), v(b) and w(c) are some functions, and
∂i ≡ ∂/∂ai , ∂i ≡ ∂/∂bi , ∂i ≡ ∂/∂c i , respectively.



Explicit hydrodynamic reductions

Hydrodynamic chains associated with generating function of conservation
laws can be found by the approach presented at the beginning.
1. Replacing p by N field variables ai in the corresponding generating
functions of conservation laws

pt = ∂x [u + U(p)],

one can obtain the symmetric hydrodynamic type system

ai
t = ∂x [u(a) + U(ai )],

where u(a) is a some function, which is not determined yet.
2. The corresponding Löwner type equation

∂ip =
∂iu

U ′(ai )− U ′(p)

[
1 +

∑ ∂mu

U ′(am)− U ′(p)

]−1

can be integrated just in some special cases.



Explicit hydrodynamic reductions

3. Let us consider the function u(∆), where ∆ = Σfm(am). These
functions fm(am) are not yet determined.
4. In such a case, the solution

λ = eδp+(α+ε)U(p)
∞∑

k=0

Ak

U ′k+1(p)

of the Löwner type equation can be found explicitly, where the moments
Ak are given by their derivatives

dAk =
N∑

i=1

εie
(β−δ)ai+(α−ε)U(ai )U ′

k

(ai )dai ,

and

u =
1

ε
ln∆ ≡ 1

ε
lnA0.



Explicit hydrodynamic reductions

5. A corresponding integrable hydrodynamic chain is given by

Ak
t = Ak+1

x +
1

εA0
[(α(k+1)−ε)Ak+1+(β(k+1)−δ)Ak+γkAk−1]A0

x , k = 0, 1, ...

Remark:If the parameter ε = 0, then

u = ∆ = B0.

In such a case, the above equation of the Riemann surface reduces to the
form

λ =

∫
eβp+αU(p)dp + eβp+αU(p)

∞∑
k=0

Bk

U ′k+1(p)
.

The corresponding hydrodynamic chain

Bk
t = Bk+1

x +(α(k+1)Bk+1+(β(k+1)−δ)Bk+γkBk−1)B0
x , k = 0, 1, 2, ...

is determined by the moment decomposition

dBk =
N∑

i=1

εie
(β−δ)ai+αU(ai )U ′

k

(ai )dai ,

where B0 = ∆.



Hamiltonian formulation

This hydrodynamic chain can be written in different forms. Below, we
have derive another moment decomposition assuming that hydrodynamic
reductions

ai
t = ∂x [u(a) + U(ai )],

possess the local Hamiltonian structure

ai
t =

1

εi
∂x
∂h

∂ai
.

In such a case,

∂h

∂ai
= εi [u(a) + U(ai )],

∂2h

∂ai∂ak
= εi

∂u(a)

∂ak
= εk

∂u(a)

∂ai
, i 6= k.

It means, that u(a) is a some function of Σεna
n. A substitution of this

anzac in the above Löwner type equation leads to u(a) = Σεna
n for

α = 0 and u(a) = ln(Σεna
n)/α in a general case.



Hamiltonian formulation

The equation of the Riemann surface (ξ = Σεn)

λ = −ξ
∫

eβp+2αU(p)

U ′(p)
dp + eβp+2αU(p)

∞∑
k=0

C k

U ′k+1(p)

and corresponding integrable hydrodynamic chain

C 0
t = ∂x

(
C 1 +

ξ

α
lnC 0

)
, C k

t = C k+1
x +

k

αC 0
(αC k+1+βC k+γC k−1)C 0

x ,

are connected with the above hydrodynamic type systems via moments
C k determined by their derivatives

dC k =
N∑

i=1

εiU
′k (ai )dai .

This hydrodynamic chain preserves a local Hamiltonian structure. A
corresponding Poisson bracket is given by

{C 0,C 0} = ξδ′(x−x ′), {C k ,C n} = [Γkn∂x+∂xΓ
nk ]δ(x−x ′), k+n > 0,

where Γkn = k(αC k+n+1 + βC k+n + γC k+n−1).



Generalized Benney hydrodynamic chain

The generating function of conservation laws

pt = ∂x [u + U(p)]

associated with ODE

U ′′ = αU ′
2

+ βU ′ + γ

can be split on four distinguished sub-cases.
1. α 6= 0, and quadratic equation αz2 + βz + γ has two distinct roots
(without loss of generality we can fix α = −1, β = 1, γ = 0). In such a
case, the first generating function is reducible to

pt = ∂x [ln(ep + 1)− u].



Generalized Benney hydrodynamic chain

2. α 6= 0, and quadratic equation αz2 + βz + γ has two coincided roots
(without loss of generality we can fix α = 1). Then the first generating
function is reducible to

pt = ∂x(ln p + u).

3. α = 0, but β 6= 0. Without loss of generality we can fix β = 1. Then
the first generating function is reducible to

pt = ∂x(e
p + u).

4. α = 0 and β = 0. Then we obtain a generating function for the
remarkable Benney hydrodynamic chain

pt = ∂x

(
p2

2
+ u

)
.


