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Benney hydrodynamic chain

Let us consider the remarkable Benney hydrodynamic chain
A = AL AR A k=0,1,2, ...

Let us introduce N field variables a*(x, t) such that

N

A= "f(d),

i=1

where the functions f;(x)(a’) are not yet determined.
A substitution of the above ansatz in the Benney hydrodynamic chain
leads to



Benney hydrodynamic chain
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Suppose each expression (in brackets) vanishes simultaneously. It means,
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Then Benney hydrodynamic chain reduces to the form
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Benney hydrodynamic chain

Under the scaling ¢;(a’) — a' the above hydrodynamic type system can
be rewritten as the so-called waterbag reduction

2
ai _ ax <(32) +AO> )

where
N
0
A’ = g €ma.
m=1

Let us replace a’ by p. A corresponding equation

2
Pt = Ox <pz +A0>

is nothing but a generating function of conservation laws for the Benney
hydrodynamic chain.



Benney hydrodynamic chain

Indeed, let us substitute a formal series

where a parameter A goes to infinity. Then the Benney hydrodynamic
chain can be written in the conservative form

k—
OrHy = O (Hk+1 EmZH Hk—l—m>,

—

where Hy = A%, Hy = Al Hy = A% + (A%)2 Hy = A3 +3A%AL .. All
conservation Iaw densntles Hy can be found by the above substitution into
the inverse series
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The Gibbons—Tsarev system

Let us suppose that moments A” depend on N Riemann invariants
rk . Then the Benney hydrodynamic chain reduces to a family of
hydrodynamic type systems

ri=p'(r)r i=1,2,...,N,

X!

parameterized by N arbitrary functions of a single variable.
Each hydrodynamic type system possesses the same generating function

of conservation laws )
ptzax (p2+AO> .

It means that a generating function of conservation law densities p
satisfies the Lowner equation

0;A°

oip=——"7,
pi—p

where A0 is a function of all Riemann invariants r¥.



The Gibbons—Tsarev system

The compatibility condition 9;(9xp) = Ok(Jip) leads to the
Gibbons—Tsarev system

;A 5. 40 _ o IADA
ik =
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i+ k,

whose solutions are parameterized by N arbitrary functions of a single
variable



Vlasov type kinetic equations

Let us consider the so-called Vlasov kinetic equation
>\t = {Aa w}v

where A(x, t, p), u(x, t) are unknown functions and W(u, p) is some
given function. Here the Poisson bracket is canonical

_ONOW 9N OW
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Under the semi-hodograph transform A(x, t, p) < p(x,t, A), the above
equation reduces to the conservative form

Pt = 8Xw(u7p)a

which is nothing but a generating function of conservation laws with
respect to parameter \.



Vlasov type kinetic equations

Suppose the above equations possesses hydrodynamic reductions
= 10
Then such hydrodynamic type systems preserve the above generating
function. It means, that a generalization of the Lowner equation is given
by
v,

Op = ——2
p— W,

3,'U.

The compatibility conditions 9;(0xp) = 9k(9;p) leads to a generalization
of the Gibbons—Tsarev system.



Three distinct generating functions

Here we consider three distinct generating functions of conservation laws
pe =Ju+U(p)l.  qe=0k[vW(q)l. s =k[ws+ W(s)],

where functions U(p), V(q), W(s) satisfy to three ODE'’s of the second
order

U' = aU 18U+, W' =aV 48V +y,  sW' =aW’ +3W' +r.



Three distinct generating functions

Corresponding semi-Hamiltonian hydrodynamic reductions

ri=U'(pHr! = vV (q')r, rn=w+W(sHr, i=12,..,N

oF
are connected with generalized Lowner equations

oiu ~ V(q)9iInv Bs — soiw
U'(p’) - U(p)’ - V() - V'(q)’ TW(sT) = Wi(s)

where 9; = 0/0r’. These generalized Lowner equations are equivalent to
each other under the transformations
dq

dp = Vig) = dins, u=hhv=w, U(p)=V'(q)=W(s).

Oip = diq



Three distinct generating functions

These hydrodynamic reductions written in the so-called symmetric form
a = 0u(@)+U@)], B =akV(B)b) = dklcw(e) W(C)],

are connected with corresponding generalized Lowner-like equations
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where u(a), v(b) and w(c) are some functions, and
0; =0/0a',0; = 0/0b',0; = 0/Ac’, respectively.



Explicit hydrodynamic reductions

Hydrodynamic chains associated with generating function of conservation
laws can be found by the approach presented at the beginning.

1. Replacing p by N field variables a in the corresponding generating
functions of conservation laws

Pt = 8X[u + U(p)]7
one can obtain the symmetric hydrodynamic type system
ay = Ox[u(a) + U(a)],

where u(a) is a some function, which is not determined yet.
2. The corresponding Léwner type equation

6,'U 6‘mu -
=5 T [ T T

can be integrated just in some special cases.



Explicit hydrodynamic reductions

3. Let us consider the function u(A), where A = Y.f,,(a™). These
functions f,,(a™) are not yet determined.
4. In such a case, the solution

sp+(ate)U( )ZOO AX
)\ = priaTe P
e prt U/k+1 (p)

of the Lowner type equation can be found explicitly, where the moments
Ak are given by their derivatives

N
dAk _ Zeie(ﬁ—6)3[+(a—e)U(ai) U’k(ai)dai,
i=1

and i 1
u=>-InA==1InAC.
€ €



Explicit hydrodynamic reductions

5. A corresponding integrable hydrodynamic chain is given by

Af = A§+1+€%[(a(k+1)—e)Ak“+(ﬂ(k+1)—5)Ak+7kAk—1]A§, k=0,1,.

Remark:If the parameter € = 0, then
u=A=B"

In such a case, the above equation of the Riemann surface reduces to the
form

Bp+al(p) fpra(p)N~_ B
A= p+aU(p) 4 p+aU(p )
/e P+e kz:%U/k+1(p)

The corresponding hydrodynamic chain
BF = BK 1 (a(k+1)B* T +(B(k+1)—0)B*+~vkB*"1)BY, Kk =0,1,2,...
is determined by the moment decomposition
N
dB — Zﬁie(ﬂ—é)a’#ozu(a")U/k(ai)dai’
i=1
where BY = A.



Hamiltonian formulation

This hydrodynamic chain can be written in different forms. Below, we
have derive another moment decomposition assuming that hydrodynamic
reductions

a; = Ox[u(a) + U()],

possess the local Hamiltonian structure

i_ 1, 0h
o= €; X&‘a"'
In such a case,
Oh ; 0?h du(a) du(a) .
poe eifu(a) + U(a")], B5Bok — S gk = kgt | # k.

It means, that u(a) is a some function of Xe,a". A substitution of this
anzac in the above Ldwner type equation leads to u(a) = Xe,a" for
a =0 and u(a) =In(Xe,a")/a in a general case.



Hamiltonian formulation

The equation of the Riemann surface (£ = Xe,)

efp+2aU(p) © K
A=—¢ | —r——dp+ eBP+2aU(p)Z —
U'(p) — U (p)
and corresponding integrable hydrodynamic chain
k
=0, <C1 + g In c°> . Ck= ka+1+m(ack+l+ﬁck+yck*1)cf,

are connected with the above hydrodynamic type systems via moments
C¥ determined by their derivatives

N
dck = Ze,- U'k(ai)dai.
i=1

This hydrodynamic chain preserves a local Hamiltonian structure. A
corresponding Poisson bracket is given by

{C0 C% = ¢d'(x—x), {CK C"} = M0, +0,T™|6(x—x"), k+n >0,
where " = k(aCktrtl  gCk+n 4y Cktn=1),



Generalized Benney hydrodynamic chain

The generating function of conservation laws
pr = Ox[u+ U(p)]
associated with ODE
U =al” +BU +~

can be split on four distinguished sub-cases.

1. a # 0, and quadratic equation az® + 3z + v has two distinct roots
(without loss of generality we can fix « = =1, =1,7 =0). In such a
case, the first generating function is reducible to

pr = Ox[In(e? + 1) — u].



Generalized Benney hydrodynamic chain

2. a # 0, and quadratic equation az? + 3z + 7 has two coincided roots
(without loss of generality we can fix & = 1). Then the first generating
function is reducible to

Pt = aX(In p+ u)'

3. =0, but 8 # 0. Without loss of generality we can fix 3 = 1. Then
the first generating function is reducible to

pr = Ox(€” + u).

4. =0 and 5 =0. Then we obtain a generating function for the
remarkable Benney hydrodynamic chain

2
ptzax(p2+u>-



