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Commuting vector fields, integrable
multidimensional PDEs and the analytic
description of the gradient catastrophe of 2D
water waves near the shore

S. V. Manakov and P. M. Santini

We use the recently developed IST for one-parameter
families of vector fields, to study the dynamics of local-
ized waves evolving according to the heavenly equation
of Plebanski (describing self-dual Einstein fields) and to
the dispersionless Kadomtsev-Petviashvili (dKP) equa-
tion (describing the evolution of two-dimensional shal-
low water waves near the shore). In particular, in the
dKP case, we obtain the exact analytic description of
the gradient catastrophe of 2D water waves near the
shore.
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3) Theor. Math. Phys. 152 (2007) (Pavlov's equ.)
4) J.Phys.A: Math.Theor. 41 (2008) 055204.
(asymptotics, solutions and wave breaking in dKP)



Examples of equations solvable by the theory:
Nonlinear PDEs in 4 4+ N dimensions (N arbitrary):
ﬁtlzz - (_jtzzl + (ﬁzl ) va‘:’) (_jzz - (ﬁzz ) vf) (721 — 67 (1)

Its basic reduction, the (4-dimensional) second heavenly
equation of Plebanski:

0.y — Orx + 0§y — O0p20yy = 0, 0= O(x,y, z,t) (2)
The dKP system:

Ugt + Uyy = —(UUg )y — VolUagy + VyUge, u,v €ER, z,y,t € R,

Vgt + Vyy — —UVgy — VUgUzgy + Vy Uz

v=0": uz + uyy + (uuz); = 0, u=u(x,y,t) dKP

u=0": vy + vyy + VaVzy — VYV, = 0, v =v(x,y,t)Pavlov
(3)

The nonlinear wave equation (dToda):
v = (INv).z = (e = ¢.z, v =e?. (4)

Applications: heavenly: (self-dual Einstein fields). dKP:
small amplitude, nearly one-dimensional waves in shal-
low water, near the shore. dKP system: general Einstein-
Weyl metrics (M. Dunajski). dToda: Field theory, ..



dKP describes small amplitude, nearly one-dimensional
waves in shallow water, near the shore.

(ut + vwug )z +uyy =0, u=u(x,y,t) €ER (5)

If the y-dispersion is negligeable, dKP reduces to the
Hopf equation:

ur + uug, = 0, (6)

the universal model describing the gradient catastrophe
(breaking) of 1D waves.

NATURAL QUESTIONS:

Is dKP the universal model for describing the gradient
catastrophe of 2D waves? More concretely:

1) Do localized waves evolving according to dKP break?
2) If yes, does a small initial datum also break?

3) If yes, does breaking take place in a point of the (z,y)
plane or on a line?

4) Do the geometric and analytic aspects of breaking
exhibit universal feature, as in the (1+41)-dimensional
case?

5) How are these features connected with the dKP ini-
tial data?

To answer these basic questions on the 2D-wave break-
ing of dKP solutions, we have to construct: 1) the IST
for one-parameter families of vector fields; 2) the long-
time behavior of localized initial waves.
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The commutation of linear, first order, partial differ-
ential operators with scalar coefficients (vector fields)
leads to integrable quasi-linear PDEs in arbitrary dimen-
sions (Zakharov-Shabat, Funct. Anal. Appl. '79)

Our example:

Lii=0:+ X0y +u;-Vz, i=1,2 7)
v:ﬁ’ — (83317 "78:CN)7 ﬁl — (u@l? ,ui\f)
Lip=1Lop =0 = [L1,L2]=0: (8)

First order quasi-linear PDEs in 4 4+ N dimensions:

—

ulZQ — u22’17

4 s R R . R = 9
Uy, — U2p, + (U2 - Vz) ur — (U1 - Vz) iz = 0, (©)
First potential U:

i = U, i=1,2, .
ﬁt1z2 _ ﬁtgzl + <(721 : Vf) (722 - <(722 : vf) (721 — 67 ( )

Divergence-less (and Hamiltonian, if N = 2) reduction:

—

VyU=0 =V;4=0,i=1,2 (11)



Important subcase: N =2, 2z =z, 1=1,2. (12)

change of notation: t1 =z, to=t, x1=x, x2 =1y

(13)
UeR? = (z,y), Vi=(0:0,),
corresponding to the Lax pair:
Ly=0.4X0:+u1- Ve, d1=Us (g

z2=6t—|—)\8y+ﬁ2-v;, UQ:Uy.
If V-u; =0, :=1,2, the two vector fields are Hamilto-
nian:
Existence of a second potential 6:

(Hi, H2) = V0, U= (6,,—0.),

U1 = (Ozy, —022), to = (Oyy, —Ouy).
Then the Lax pair (15) and the system (14) can be

written in Hamiltonian form with respect to the times
z,t:

wz — {Hl + >\y7 w}fa ¢t — {HQ — Axaw}fa

(17)

01 — 0y + {6, 6,}z = constant, heavenly equation.
(18)

{f,9}z = fa9y — fy9z, PoOisson bracket. (19)



Since the Lax pair is made of vector fields, Hamiltonian
in the heavenly reduction:

1) The space of eigenfunctions is a ring: if fi1, f» are two
eigenfunctions, then an arbitrary differentiable function
F(f1, f) of them is also an eigenfunction.

2) In the heavenly (Hamiltonian) reduction, the space of
eigenfunctions is also a Lie algebra, whose Lie bracket
is the natural Poisson bracket: if fi, f» are two eigen-
functions, then their Poisson bracket {fl,fg}(w) is also
an eigenfunction.

Cauchy problem within the class of rapidly decreasing
real potentials u}:

u! €R, (z,y,2) €R3 ¢>0,
interpreting t as time and the other three variables x, y, z
as space variables.

(20)

If f is a solution of L1 f = 0, then

f(&2,7) = fL(&X), z— Foo,
=7 —(\,0)z=(x— \z,y);

i.e., asymptotically, f is an arbitrary function of (z—\z),
y and .

(21)



Jost eigenfunctions J(Z, z, \):

(22)

Their integral equation:

B(Z, 2, \)+
[oe dT'd2' Gy (& — &, 2 — 2/; N) (@ (T, 2) - V) (@, 2/, \) = €,

G (Z,z;A) = 0(2)6(z — Az)d(y).
(23)
Analytic eigenfunctions ¥+ (Z, z, A):

@E:I:(a_{a 2 )‘)_" . -
Jpo dT'dZ'GL(T — T2 — 23 N) (U (T, 2") - Vi) (T, 2, N) = &,

Gi(fa Z, )‘) — :tQWi[mi((y)\)iiﬁ)z] '

(24)
J+(a?,z,>\) and _ (&, z,\) are analytic in the upper and
lower halves of the complex A - plane, with:

Di (@2, 0) = €+ LED L oA2). A >> 1,

%(f f) da'iy (o', y, z), (25)
01(%, 2) = —Qua(F, 2).



Spectral data The z = +o0 limit of ¢ defines the scat-
tering vector o of Li:

ZHTOOSO(CC 2 A) =S(EN) =E4+5(EN). (26)
Direct Problem : 1i1(&,z) — &(E,\) (27)
Linear limit: If |u1] << 1:

o (61,62, ) = — / w(er + Ae, €2, 2)dz. (28)

R

The ST is a nonlinear analogue of the Radon transform
w.r.t. the 1% and 3¢ variables!

The Jost solutions ¢12 and A form a basis in the space
of eigenfunctions of I; (which is a ring). The represen-

tation of the analytic eigenfunctions @Zi in terms of ¢
defines other spectral data y:

D (Z, 2, \) = K (B(&, 2, \), ) = @(F, 2,\) + X (@’(f,(z, Ag, A),
29

The step: 7(&,)) — va(EN):

F+(@,0) + 0(w1) (3@, N) + [ diT $1(7, M)Q(T, 3, 1)) =
X—(&,A) + 0(—w1) (G(&,N) + [ di x(n,A)Q(n,w,Az) =)

30
for the Fourier transforms:

(&, A) = Jpe d£o<£ Ne@E Y@, ) = Jo dEX(E N)e ¢

Q(7, 3, \) = fR2 W et (7— w)&[eiﬁ3(€ A) 1].
(31)



Inverse Problem

An mverse problem can be constructed from equatlons

i = Ki(B,A) = @+ X=(F,\). Subtracting &, applying
the analyticity projectors P+ and P_:

_ 1 dN
P =+ / __ (32)
27 Jp N — (X =+ ie€)

and adding up the resulting equations, one obtains the
following nonlinear integral equation for the Jost eigen-
function g:

_)(f ~ >‘) + 21ri Iz X—(dAA;L@'G)X’—(SE(f, z, ), N)—
27rz fR N — ()\ ze)X+(¢(f7 2, Al); >\/) = £

Given the spectral data x+, one reconstructs the eigen-
function g from (33), the analytic eigenfunctions from
(29), and #; from the X large asymptotics. This inver-
sion procedure was first introduced in [Manakov (KP1)].

(33)

t-evolution of the spectral data

As the potentials w1 evolve in time according to equa-
tion (14), the ¢t-dependence of the spectral data & and
X+ is described by the equation:

F(E,\t) = &(€— (0, \)t, A, 0),

- - 34
(€M) = e (E— (0,A)¢, A, 0). (34)



The heavenly reduction
In the heavenly (Hamiltonian) reduction,

the transformations £ — S(E,)), € — Ki(E ) are
canonical:

{S1, 82} = {Kx1, Kin}p = 1, (35)
or, in terms of (&, y,A) and x¥+(&,y, \):

o1¢ 02y + 101,02} = Xt1e + X2y T X1 X2} = 0.
(36)



Other inverse problems
1. A nonlinear RH problem

Solving the algebraic system (29)_ with respect to ¢:
@ = L(¢_,)) (assuming local invertibility) and replac-
ing this expression in the algebraic system (29)4, one
gbtains the representation of the analytic eigenfunction
Y4 in terms of the analytic eigenfunction ¢_:

by =R(p_,\) =+ R(p-_,\), NER, (37)

which defines a vector nonlinear RH problem on the
real A\ axis. The RH data R are therefore constructed
from the data y+ by algebraic manipulation. Viceversa,

given the RH data ﬁ, one constructs the solutions @Zi of
the nonlinear RH problem (37) and, via the asymptotics
(25), the potential 1.

As for the other spectral data, one can show that the
t-dependence of R is described by R(&, M\ t) = R(€E —
(0,\)t, A\, 0), and the reality constraint takes the follow-

ing form, for A € R: R(R(C,\),\) = C, VC. At last, the
heavenly constraint reads {R]_,RQ}C—.’: 1, or, in terms of

R(C,A):
Ry, + Rag, + {R1, Ra}z = 0. (38)



2. Linearization of the inverse problem via exponentia-
tion

Define the new eigenfunctions:

(T, 2, \, &) = TPE2N W (F,2,\, @) = 4@ F e R
(39)

From the scattering equation Ji = I@i(gB, A), one gets

the linear representations the analytic eigenfunctions W4

in terms of the Jost eigenfunction &:

Wi(Z,2,\A) = (T, 2,\, &) + [ dBKL(, B, \)P(Z, 2, B),

Ki(d,F,)) = [, el DEax@EN — 1],

(40)
and the linear integral equation of the inverse problem:

CD()\, C_é) + 2]7:('1L fR X—(d;\-lhiﬁ) fR2 dgK—(&a B: )‘/)CD(Ala E)eial(k’—k)z_

1 ax 3 > 3 2N iocn(N=N)z — i€
2 fR N—(A—1i€) f]R2 dﬂK‘F(a)B: )\/)CD(A/,B)G ( ) — ? f),
4
Reality constraints for A € R:

CD(:E’,z,)\, 62) — ¢(£7Z7>‘7 _62)7 \l!+(f,z,)\, C_'Z) — \U_(:E’,z,)\, _C_é))
K_|_(C_f, ga >‘) — K—(_C_éa _B: )‘)7

(42)
t-evolution of Ki:

Ki(a, B, \t) = K+(@, 3, A, 0)ea=r)t, (43)



RH - Dressing for heavenly

Consider the nonlinear RH problem on the real \-axis:
7T =R(7,)\), MeER,

#aan = (17 )+o0n

for the functions 7 (&, z,t,\) and ©_(Z,z,t,\), analytic
respectively in the upper and lower halves of the complex
plane A\, with asymptotics:

Ru(F, 2 ) = ( S )+Qi<f\’z’“+0(ﬂ>. Al>> 1,

(45)
If, in addition, the spectral data R((,\), ¢ € C2, satisfy
the following properties:

RR() =C  vec?, reality (46)
Ric, + Roe, + {R1, Rg}g — 0, heav. constraint.

then the potentials ;> satisfy the heavenly equation
(18b), where

ﬁl(f7zat) — _C_j:l:a:, ﬁ2(5727t) — _éiy-

= R T — Az (47)
G = (- (573))



The dKP system

Ugt + Uy = —(UUg )y — VolUagy + VyUge, uw,v € R, x,y,t €R,

Vgt + Vyy — —UVUgx — VUzUgy + VyUzx
(48)
Reductions:
v=0": Uz + uyy + (uuzy), =0, u=u(z,y,t) dKP
u=0": vy + Vyy + VyUzy — VyUzz = 0, v = v(x,y,t)Pavlov
(49)

Lax pair formulation
Lip =0, Lryp=0, = |[L1,L]=0 (50)
ay + (>\ + UCB)aCU - 'U»a:a)\;

O + ()\2 + vy +u — Uy)a:z: + (_pum + uy)a)\-
(51)

L,
Lo

Setting v = 0 in (54), one obtains the
Hamiltonian formulation of the dKP equation
(Zakharov 94):

Yy + Ay — ugpy = Py + {Hla w}(A,m) = 0,
Yt + (A + w)be + (—Aug + uy)oy = Y + {H2,%}(a2) = O,

Hyy — Hoy +{H2, Hi}(\2) = 0,
(52)
H1=>§—|—u, H2=%3—|—)\u—8;1uy,
(53)
15,902 = gz — fz9n,
Elegant integration scheme (Krichever 94).



Main differences between dKP and heavenly:

0y + A — uz0)) = O,
(O + (W2+u)d: + (—Aue + 1))y =0

i) The vector fields contain derivatives wrt the spectral
parameter ); ii) quadratic in the spectral parameter
ignplyingqthe following t-evolution of the spectral data
S, K+, R:

(54)

Zl(€7 A t) :t(ZQ(g - )‘Qtv A O))2 + Zl(€ - )‘Qtv A O)a
22(67 )‘7 t) — 22(§ — )‘Qta )‘7 0)7
(55)
where 31 and >, are the two components of the vector
>, identifiable with S, K+ and R.

The resonant character of the explicit t-dependence of
the spectral data, absent in the heavenly case, is the
spectral reason for the blow-up at finite time of the
slope of the localized solution (the breaking) of dKP.



Riemann-Hilbert dressing for dKP
Consider the vector nonlinear Riemann problem on the
real line:

(A =7 (\) + RET(V), AeR,

#:(A\) = (N2 — 2ut,y,t) + O(A D), (56)
where
(X _)‘Qt—)\y+$—2ut>
Ay - 2 t, ,t pr— ’
(N — 2ut, y,t) \ (579

u=lim (A5 (A) = A),

and the spectral data R(¢) = (R1(¢1,¢2), Ra(C1,(2)) €
C?, ¢ € C?, satisfy the following properties:

RR()) =( v eC?  reality (58)
ngl + f{QC2 + {Rl, Rz}g = 0, dKP constraint.
Then
u=F(x—2ut,y,t) € R (59)
is solution of the dKP equation, where
dA B _
Fent) = [ oRo(m Nign, 0,75 i, D). (60)
R

The solution of this Riemann problem, depends para-
metrically on (x — 2ut,y,t) through the normalization
of the RH problem. The inverse formula is an implicit
equation for the dKP solution, similar to the solution
of the 141 dimensional Hopf equation = localized so-
lutions of dKP are expected to break at finite time.



Longtime behavior of solutions of dKP
Let £t >> 1 and

r =1+ vit, y = vot,

T —2ut,vi,vp = O0(1), vo#=0, t>>1. (61)
On the parabola
2 2
- Yy U5
= _ = ——), 62
s=i-5 (n=-2) (62)

the longtime behaviour of the solution of the dKP equa-
tion is given by

u = %Foo<x—2ut—|—éyl—i,2%)—l—o (%),
Fo(§,m) = —ﬁfduRz(ﬁ + 12 4+ a1(p; €,m),n + azx(p; f,n)),
R

(63)
where a;(u : €,m) are associated with the following “asymp-
totic” vector nonlinear Riemann problem on the real
axis:

At(u€,m) = A= (u; €,m) + R(A~(1;€,7)), peR,

= 2
A (p; &,m) = < “;7” ) +a(pu; &n), |pu| >>1,

a(p; &,m) = O™ 1).
(64)
Outside the parabola, the solution decays faster.
Also asymptotically, the solution u depends parametri-
cally on (x — 2ut): (small) localized solutions will break
in the longtime regime.



Asymptotic breaking of solutions
Equation (63) defines a nonlinear functional equation
for the asymptotics of the dKP solution wu.

Let U(x,y,t) be the exact solution of the functional
equation (63); i.e.:

y> > (65)

1
U ) 7t :_G( —2Ut —
(@y,1) Vt ’ +4t 2t

where G is a largely arbitrary differentiable function of

two arguments. It is easy to verify that U is the general
solution of the quasilinear PDE in 2 4+ 1 dimensions:

v

42
Its implicit solution (65) suggests to introduce the con-
venient variables:
V =+tU,
T=a+Y, §=4 T=2V4
transforming the PDE (66) into the 1 4+ 1 dimensional
Hopf equation:

U
Ut—l—%Uy— Us+ 5, +UU, =0. (66)

(67)

Vi4 VVi: = 0. (68)



The longtime behavior of the dKP solutions is reduced
to the study of the evolution of a two-dimensional lo-
calized wave under the 1+ 1 dimensional Hopf equation

(63).

Its solution is defined implicitely by the equations
V=G(&,9)
- I~ 69
T=¢&4+ G )T, (69)

describing a 2-parameter family (the parameters being
£,7y) of straight line characteristics.

On each y = const plane, we have a 1-parameter family
of intersecting straight lines. The first breaking will
occur at a certain time, in a specific point of the (z,y)
plane, and all the characteristics of this breaking depend
on the initial condition u(xz,y,0) through the Riemann-
Hilbert spectral data.




2D wave breaking according to the Hopf equation
One solves (70b)

V = G, ),
F=¢+ G DI (70)

with respect to the parameter &, obtaining &(Z,7,1),
and replaces it into (70a), to obtain the solution V =
G(&(z,y,1),7). The inversion of equation (70b) is pos-
sible iff its &-derivative is different from zero.

The two - dimensional singularity manifold (SM):

1

S y,t)=14+G(,9)t=0 = t=——. (71)
: Ge(€,7)
Since
— Ve G(E7)
VanV = 1-(|f();£(g,g%f’ (72)

the gradient catastrophe takes place on the SM
The first breaking time t,, and the corresponding char-
acteristic parameters &, = (&, §,) are defined by

. 1
ty = — —— = global min (——N) > 0, (73)
Ge(&) Ge(€,7)
and characterized by the equations:
Ge(§) <0, Gee () = Gey(&) = 0,
Geee(&) > 0, a = Geee (&) Gegg(&) — G2;(&) > 0.

3 (74)
The breaking point T, = (T, 7p):

T = & + G(E). (75)



Now we evaluate equations (70b) and (71) near break-
ing, in the regime:

%:§b+%/7 g:gb—l_g/) f:fb—i_i‘/) €:£b+€/7 (76)

where 7', 7', ¥, & are small. At the leading order, we get
a cubic equation in ¢’:

&+ a(@)e? + (7, 1) —vX(@,7,T)=0,  (7T7)

where

(~/) — 3GGasJy7 b( t/) — [Gﬁé + Ggggy }
X@,y,7) =7 — G(&Qnyb -l- )t' [G<€bayb +97) —Glt, ~
g G@?z? - ~/ 71 Jyy N G
/-I_Gy_Gt/_I_Q_GEy/ _G;&y/t/+6(;£y ’ 7_6@|—£;|7
(78)
with the small parameter
t — 1
e=2-—— " (79)
123

corresponding to the maximal balance:
€1, 17 = O(el*?),  1X| = O(le[*?). (80)



The three roots of the cubic are given by the well-known
Cardano’s formula:

o (@, 7,7) = -2+ (A3)7 4+ (A5,
€L (@ y 1) = =4 = 3 (A3 4 (A1) £ 80 ((A)f = (A1)
(81)
where
Ar = R+ VA, (82)
A = R? 4+ Q3, discriminant
with
~ 77\ — 3b—a® __ |G a 72
Q(y 7t ) - s} - G&ge —I_ G?g y 9 (83)

R,y ,T) =3X@,¢,t) + 5 + 30, ).
At the same order;

S(&,7,t) = Gl + L[Geeel? + 2Gees €7 + Geggi' 15
(84)




Known ¢’ as function of (z,7,t) solving the cubic, the
solution V of the Hopf equation and its gradient are
then approximated, near breaking, by the formulae:

V(£7 g: f) ~ G(gb + 5/7 gb + g/)7
VAV~ Ve G(&+E 5+7) (85)
(Z.9) Get'+3 [Geeet”+2G ;€ T+ Gy 18

Another distinguished point: the inflection point %f:
Tr= (@@, ), TrF) =7+ G¥ (86)
at which
R:X:g/:azglzgéizgégzoj

_ _1(1 G _ _ (87)
V=G VepV=1%(1.g) Ve=Vg=o0

Before breaking. If ¢ < f, (f < 0), the discriminant
A = R? 4 @3 is strictly positive and only the root &
is real. = the real solution of the Hopf equ. is single
valued and described by Cardano’s formula. In addition,

S >0 and Vi,V is finite V 7, 4.



More explicit solution in the narrower strip around the
inflection point:

7| =0(e), |X(@.,7.7) =k (Z—Z;({T)) = 0(etD),
max(%,p) <g<p+1, p>1i
k= (1,@), breaking direction

3
(88)
The solution exhibits a universal behaviour, coinciding
with the exact similarity solution of the Hopf equation:

V o~ -2+ (Gy/Ge) (=)

%, y
V(~ ~)V ~ VienG 5 (89)
oY Gy Sese [ THGGOOTCY | Cegy ) o ~/27
3 +2‘GE‘ 7 +@y +2\G§\G§E§y
Therefore
VanV ~ % (1, %’;), n the narrow strip, (90)
VanV = 0(Q), [ X| = O(|e])




At breaking: t T %,, the inflection point becomes the
breaking point: Z; — (Z,9,), the above tangent plane
becomes vertical, with equation =/ — G5(&, %)y’ = 0, the
above strip reduces to the breaking point (&, 71).

VNG( 3 ~ = ,“‘) — Va}Nw G&(é)) . "‘:"‘,
€b+\/7($ xb) Yy 3 m Yy Yb

L[6Gs f~  ~\ ~ ./ 2G;  Ge(&
VG la— GG 0) = Vi~ e

T
(91

\—’



After breaking. If ¢ >, (¥ > 0), the SM equation S = 0:

2 ~ ~ 2

Geee€ ™ + 2Geegl§ + Geggy”™ = |Gele (92)

describes an elliptic paraboloid in the (&, 4,1) space, with
minimum at the point (&, 1)

(&,,Yp)

Eliminating £ from equations (92) and (77), one obtains
the SM equation in space-time coordinates:

[3’G£‘G§§§ (il + %?7 — Gt + %?j — Gyﬂ’t’ + 66Jy ) +
_ 2
GfEfGéf,ﬂGE.ﬂﬂ ( e + y ) aGSEy (| £L e _ y/Q) g/} —

a3 (%e — 3}"2) : A = 0 condition

«

(93)
It describes a closed caustic of the (Z,¥y) plane possess-
ing two cusps

_’i(t) \/|G€|G€€§€( y ) (94)




On the caustic A = 0, the cubic has three real solu-
tions, but two of the branches coincide and their slopes
are oco. At the cusps, all the three branches coincide . In-
side the caustic, A < 0 and the solution is three-valued
(this multivalued region has to be replaced by a proper
shock layer, whose features depend on the wanted regu-
larization). Outside the caustic, A > 0 and the solution
IS single valued.

In addition:

The caustic is the boundary of a narrow region of thick-
ness O(e3/2) in the longitudinal direction, and of thick-
ness O(el/2) in the transversal direction =

the caustics develops, at the breaking point, with oo
speed in the transversal direction and with O speed in
the longitudinal direction

That's way, when we watch a 2D water wave breaking,
it appears that it breaks on a transversal line and not at
a point ....



The cage made by the vertical planes delimiting the
caustic.



Four snapshots describing the evolution of such caustic
immediately after breaking:

0.2 0.2

0.2 0.2
0.4 0.4

0.4 0.2 0 0.2 0.4 0.4 0.2 0 0.2 0.4
0.4 0.4

0 0

The similarity solution before breaking, the vertical in-
flection at breaking, and the caustic after breaking make
clear the universal character of the gradient catastrophe
of two-dimensional waves, for the Hopf and dKP equa-
tions.



Longtime breaking of dKP waves. Inverting the trans-
formation

V =+tU,

T=a+Y, §=4 T=2V4
one describes the longtime breaking of dKP solutions.
Now

(95)

U(x,y,t) = %G(gag)a (96)
g:x—F%—Q\/zG(gag)? g:%

and

1 (Ge(&,9), £Ge(&,9) + 2656, D))
Vit 1+ 2VtG(&, §)

Let 5, = (&, 4p) be the breaking parameters and (Zy, 9, tp)

be the breaking point associated with the Hopf solu-
tion, then for a longtime solution U(x,y,t) of dKP the

VU = (97)

breaking point ¥, = (xp,y,) and the inflection point
Z(t) = (z7(t), ys(t)) read:
N\ 2
ry, = (xp,up) - Ty = Ty — Yits,  Yb = 20pts;
zp(t) = xp + 2G(Vt — Vb)) — Gy (t — t) ~ zp+
2|Ge|G(1 —¢/4) — g7] (t — ), (99)

yr(t) =y + 2u(t — 1p),
where the small parameter € reads

t—t
€ = " (100)
Ly




zp and Z;(t) are the intersections of the parabolas x +

y2/4tb = I and £C+y2/4t =Ty = :Eb—|—2G(\/E— V1p) with
the straight lines y =y, and y = y¢(¢).

Before breaking, in the narrow strip of the figure, U is
approximated by the exact similarity solution of equation
(66):

v = 1 Gy =
T IA GG e et t) + (0 2GeG) [y—y =20 (t=t)]
2VAE—E) =

(101)
describing the plane tangent to the wave at &y,

t<ty,




1 (Ge, %Ge + 5,Gy)

Vi Gy o

- , (102)
5~ ~,2
G+ S (e + ) +

Vil =

1333

At breaking, the plane tangent to the wave becomes
vertical,

U kG (6 AG - i) = U~ S y =y
U~ 76 (&5 + V/27GeG(y — w), %) =
Uy ~ VGG T —xp + My — y) + -(yZZb)2- =0

3V ‘\/3 (y—y;,)27 ( )
103

After breaking t > t,, the intersection of the SM with
any t - constant plane, defines an ellipse in the (§,7) -



plane corresponding to the following caustic in the (z,vy)
- plane, defined, as in (93), by

[3|G§|G€§€X + GsﬁngﬂGEﬂﬂ (Ciiye + §/2> :'y"/_
- ~12 ~o\3
OéGggg (| £|a e y/2) y/} — a3(|G£|aG5£s€ _ y/2) ,

where now

(104)

y _gy yf()7

X =2 —a,— [2GIGel(1 - 1) — B(1 - 1t — )+ >
[+ 266G — v (1) + Gy~ w)?] (1 — ) + S (22)”

Yo
2|Ge| Gy (t — tp) = yf(t) -+ 65} 73 (%Z(t))

(105)
The caustic exhibits two cusps at the points

FE(t) ~ a?bq:\/ —E5(t — ). (B + 2G¢Gy, ~1)  (106)

In addition, if (z*(y),y) are the two intersection points
of the caustic with the line y = const., we have

3/2 2
r () — o () = g (19l (VU)o
3|Ge|Geee 2t
(107)

therefore the caustic is the boundary of a narrow region
of thickness O(|e|3>/?) in the longitudinal direction, and of

thickness O(\/Q%(t — tp)) in the transversal direction.




On it, the discriminant A of the cubic is zero and, away
from the cusps, the solution of equation (65) is three
valued, two of the branches coincide:

1 1 /o~ ~/
(108)

and the slopes of the coincident solutions are oco. At
the two cusps, characterized by the condition Q = R =
0, the three real roots of the cubic coincide and the
corresponding three solutions of equation (65) coincide
as well:

Uo G(Sb + 567 gb + g/)a U—|- =U- =

, 3/2
L@:apﬂﬁzéﬁ@ﬁﬂ%ﬁJV%m—@L
5 721G\ /%t - 1)),

(109)
Inside the caustic, the discriminant A is strictly neg-
ative, the cubic admits three different real roots and
the solution of equation (65) is three-valued. Outside,
A > 0 and the solution of the equation (65) is single
valued.




The cage made by the vertical planes delimiting the
caustic.

The formulae of this section describe, after replacing
U by u, the longtime breaking of the dKP solutions u
if, for instance, the dKP initial data uo(z,y) = u(x,y,0)
are small. For small initial data, the inverse spectral
transform for dKP simplifies enormously. The RH spec-
tral data are expressed in terms of the initial data as
follows:

1 d¢'d
Ra(G1,G2) ~ — / cf—?

RQ

uog (€' + 2y, ), (110)

and function GG, appearing in all formulas of this section,



IS also given explicitly in terms of wug:
1 d¢'dudy
2772 5 _ ,LL2 o 5/

RB

G(&n) ~ uoe (€' — Ny, ). (111)

Summarizing, small and localized initial data evolving
according to the dKP equation break in the longtime
regime; the similarity solution before breaking, the verti-
cal inflection at breaking, and the caustic after breaking
make clear the universal character of such a gradient
catastrophe.

Analogous considerations can be made in the case of a
not small initial datum; in this case the solution breaks
at finite time, but the main features of the phenomenon
are the same.



