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Noncommutative (nc) integrable systems

• Remove assumption that dependent variables commute.
• Still have Lax representation.
• Construct nc hierarchy.
• Results are valid for range of cases: matrix versions,

quaternion versions, Moyal star product.
• Integrability is preserved. Can often find exact solutions.
• Find solutions from Darboux transformations.
• Solutions expressed as quasideterminants which are the

natural replacement for determinants entries in a matrix do
not commute.



ncmKP hierarchy

– Gelfand and Dickii 1976, Oevel and Rogers 1993
• Define pseudo-differential operator

T = ∂x + w + w1∂
−1
x + w2∂

−2
x + w3∂

−3
x + · · ·,

• w and ws(s = 1,2, . . .) don’t necessarily commute and
depend on x and tq(q = 1,2, . . .), and ∂i

x denotes the nth
partial derivative operator ∂i

∂x i .
• As in standard, commutative Sato theory, we define the

ncmKP hierarchy as

Ttq = [P≥1(Tq),T ], q = 1,2, . . .

• P≥1

(∑
i wi∂i

x

)
=

∑
i≥1 wi∂i

x denotes projections of powers of
the operator T onto the differential part.



ncmKP equation

– Wang and Wadati 2004, Dimakis and Müller-Hoissen 2006
• We set t2 = y and t3 = −4t . From the ncmKP hierarchy:

wy = wxx + 2w1x + 2wwx + 2[w,w1],

w1y = w1xx + 2w2x + 2w1wx + 2ww1x + 2[w,w2],

wt = wxxx + 3w1xx + 3w2x + 6ww1x + 3w1wx + 3wxw1

+ 3wwxx + 3w2
x + 3w2wx + 3[w2,w1] + 3[w,w2].

• Eliminating w2 to get:

−
1
2

wt − 2wxxx − 3w1xx − 6ww1x − 3w1y − 6wxw1 − 6wwxx

−6w2
x − 6w2wx − 6[w2,w1] = 0.

• Simplify via w1 = −1
2(wx + w2

−W).



ncmKP equation

• This gives the ncmKP equation
0= −4wt + wxxx − 6wwxw + 3Wy + 3[wx ,W ]+

−3[wxx ,w] − 3[W ,w2], (1)
0= Wx − wy + [w,W ]. (2)

• This could also be obtained from the Lax pair:
L = ∂2

x + 2w∂x − ∂y ,

M = 4∂3
x + 12w∂2

x + 6(wx + w2 + W)∂x + 4∂t .

• (2) is satisfied identically by change of variables

w = −fx f−1(, −(log f)x), W = −fy f−1(, −(log f)y).

• f = f(x , y , t) is invertible. It is not assumed that f and its
derivatives commute.



quasideterminants
– Gelfand and Retakh 1991
– Gelfand, Gelfand, Retakh and Wilson 2005
• An n × n matrix Z over a ring R (noncommutative, in

general) has n2 quasideterminants written as |Z |ij .

Z =



Z ij c i
j

r j
i zij


• 1 ≤ i, j ≤ n and assume Z ij is invertible
• Then |Z |ij exists and

|Z |ij = zij − r j
i (Z

ij)−1c i
j = −

−1



quasideterminants

• For example, if n = 2, there are 4 quasideterminants.

• Let Z =

[
a b
c d

]
, then

|Z |11 =

∣∣∣∣∣ a b
c d

∣∣∣∣∣
11

= a − bd−1c

|Z |12 =

∣∣∣∣∣ a b
c d

∣∣∣∣∣
12

= b − ac−1d

|Z |21 =

∣∣∣∣∣ a b
c d

∣∣∣∣∣
21

= c − db−1a

|Z |22 =

∣∣∣∣∣ a b
c d

∣∣∣∣∣
22

= d − ca−1b



quasideterminants

• It is more convenient to use another notation for
quasideterminants by boxing the leading element zij .

• For example, if n = 2:

|Z |11 =

∣∣∣∣∣ a b
c d

∣∣∣∣∣ = a − bd−1c,

|Z |12 =

∣∣∣∣∣∣ a b
c d

∣∣∣∣∣∣ = b − ac−1d,

. . .

• Note that the leading element can also be a matrix:∣∣∣∣∣∣An×n Bn×l

Cm×n Dm×l

∣∣∣∣∣∣ = Dm×l − Cm×nA−1
n×nBn×l .



Darboux transformations

• Let θ = θ(x , y , t) be an eigenfunction for L and M, i.e.
L [θ] = 0 and M[θ] = 0.

• It is not assumed that θ and its derivatives commute.
• Consider another pair of operators: L̃ = GθLG−1

θ ,
M̃ = GθMG−1

θ .
• Gθ is an invertible differential operator (Gθ[0] = 0).

• [L̃ , M̃] = Gθ[L ,M]G−1
θ = 0 if [L ,M] = 0. So L̃ , M̃ are

compatible.
• For quasideterminant solutions, we take

Gθ = ((θ−1)x)−1∂xθ
−1 = 1 − θ(θx)−1∂x .



Darboux transformations

• Let ψ , θ be another eigenfunction for L ,M i.e.
L [ψ] = 0 = M[ψ].

• L̃ [Gθ[ψ]] = GθLG−1
θ [Gθ[ψ]] = Gθ[L [ψ]] = Gθ[0] = 0.

Similar for M̃.
• So ψ̃ = Gθ[ψ] is an eigenfunction for L̃ , M̃.
• Quasideterminant structure is evident from

Gθ[ψ] = ψ − θ(θx)−1ψx =

∣∣∣∣∣∣ θ ψ

θx ψx

∣∣∣∣∣∣ .



Darboux transformations

• Let θi , i = 1, . . . ,n be a particular set of eigenfunctions and
introduce the notation Θ = (θ1, θ2, . . . , θn).

• To iterate the Darboux transformation, let θ[1] = θ1 and
ψ[1] = ψ be a general eigenfunction of L[1] = L .

• Then ψ[2] := Gθ[1]
[ψ[1]] and θ[2] = ψ[2]|ψ→θ2 are

eigenfunctions for L[2] = Gθ[1]
L[1]G−1

θ[1]
.

• In general, for n ≥ 1 we define the nth Darboux
transformation of ψ by

ψ[n+1] = ψ[n] − θ[n](θ[n]x)−1ψ[n]x ,

where θ[k ] = ψ[k ]|ψ→θk .



Darboux transformations

ψ[2] = ψ − θ1(θ1x)−1ψx =

∣∣∣∣∣∣∣ θ1 ψ

θ(1)

1 ψ(1)

∣∣∣∣∣∣∣ ,
ψ[3] = Gθ[2]

[ψ[2]] = · · · =

∣∣∣∣∣∣∣∣∣∣
θ1 θ2 ψ

θ(1)

1 θ(1)

2 ψ(1)

θ(2)

1 θ(2)

2 ψ(2)

∣∣∣∣∣∣∣∣∣∣ ,
• (k) denotes k th x-derivative. After n iterations we have

ψ[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣
Θ ψ
...

...
Θ(n−1) ψ(n−1)

Θ(n) ψ(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. Call this a quasiwronskian

• Proof is by induction.



Darboux transformations
• The transformed operator

L̃ = ((θ−1)x)−1∂xθ
−1︸               ︷︷               ︸

Gθ

L θ∂−1
x (θ−1)x︸        ︷︷        ︸

G−1
θ

preserves the structure of w.
• The coefficient

w̃ = −f̃x f̃−1 = −(−θ(θx)−1f)x(−θ(θx)−1f)−1

satisfies the ncmKP equation.
• f̃ can be expressed as the quasideterminant

f̃ = −θ(θx)−1f =

∣∣∣∣∣∣ θ 0
θx 1

∣∣∣∣∣∣ f .



Darboux transformations

• Let f = f[1]. For the nth Darboux transformation of f we
have

f[n+1] =

∣∣∣∣∣∣∣∣∣∣∣∣
Θ 0
...

...
Θ(n−1) 0
Θ(n) 1

∣∣∣∣∣∣∣∣∣∣∣∣ f .
• An analogous transformation can be made on f−1.
• Let g = f−1. This gives w = −(g−1)xg = g−1gx .

• From L̃ we get

w̃ = g̃−1g̃x = (gθxθ
−1)−1(gθxθ

−1)x ,



Darboux transformations

• g̃ can be expressed as the quasideterminant

g̃ = gθxθ
−1 = −g

∣∣∣∣∣∣ θ 1
θx 0

∣∣∣∣∣∣ .
• Let g = g[1]. For the nth Darboux transformation of g we

have

g[n+1] = −g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ 1
Θ(1) 0
...

...
Θ(n−1) 0
Θ(n) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.



binary Darboux transformations

– Matveev and Salle 1991, Oevel and Schief 1993
• Consider the formal adjoint operator G†θ.
• Typically working with matrices. Formal adjoint is the linear

operation (a∂i
x)† = (−1)∂i

xa†.
• For operators, (G1G2)† = G†2G†1.

• L̃ = GθLG−1
θ so L̃† = G†θ

−1L†G†θ, i.e. L† = G†θL̃†G†θ
−1.

• So Gθ induces and adjoint Darboux transformation from
L̃†, M̃† to L†,M†.

L ,M
Gθ // L̃ , M̃

L†,M† L̃†, M̃†
G†θoo



binary Darboux transformations
Construction

L ,M
Gθ // L̃ , M̃ L̂ , M̂

Gθ̂oo

θ θ̂

L†,M† L̃†, M̃†
G†
θ̂ //

G†θoo L̂†, M̂†

φ i(θ), i(θ̂)

Binary Darboux transformation

L ,M
Gθ,φ=G−1

θ̂
Gθ

// L̂ , M̂

• Must determine θ̂.
• From ker G†θ we get i(θ).



binary Darboux transformations

• Introduce Ω = ∂−1
x (φ†θx).

• G†θ[i(θ)] = 0 is satisfied by i(θ) = (θ†
−1

)x .

• Then i(θ̂) = (θ̂†
−1

)x = G†θ
−1

[φx ]. So θ̂ = θΩ−1.

• Now Gθ,φx = G−1
θ̂

Gθ = 1 − θΩ−1∂−1
x φ†∂x .

• Then we define the binary Darboux transformation by

ψ[n+1] = ψ[n] − θ[n]Ω(ρ[n], θ[n])
−1Ω(ρ[n], ψ[n]),

φ[n+1] = φ[n] − ρ[n]Ω(ρ[n], θ[n])
†
−1

Ω(φ[n], θ[n])
†

• θ[n] = ψ[n]|ψ→θn , ρ[n] = φ[n]|φ→ρn .



binary Darboux transformations
• Let P = (ρ1, . . . , ρn). For n ≥ 1

ψ[n+1] =

∣∣∣∣∣∣Ω(P,Θ) Ω(P, ψ)

Θ ψ

∣∣∣∣∣∣
φ[n+1] =

∣∣∣∣∣∣Ω(P,Θ)† Ω(φ,Θ)†

P φ

∣∣∣∣∣∣ .
• Proof is by induction. We call these quasigrammians.
• The effect of L̂ = Gθ,φx LG−1

θ,φx
is that

f̂ =

∣∣∣∣∣∣Ω ρ†

θ 1

∣∣∣∣∣∣ f .
• After n Darboux transformations

f[n+1] =

∣∣∣∣∣∣Ω(P,Θ) PT

Θ I

∣∣∣∣∣∣ f .



matrix mKP equation

– Goncharenko and Veselov 2001
• For the trivial vacuum f = 1 (giving w = W = 0), we get

F =

∣∣∣∣∣∣Ω(P,Θ) PT

Θ I

∣∣∣∣∣∣ .
• The equations L [θ] = M[θ] = 0 and L†[ρ] = M†[ρ] = 0

have nontrivial solutions

θ = A ek(x+ky−4k2t),

ρ = B e−q(x+qy−4q2t).

• A and B are d ×m matrices. k ,q ∈ R.



matrix mKP equation

• n = d = 2 gives a two soliton solution. Change of
polarization and phase.

• Here Aj = rjPj , where rj is a scalar, and Pj is a projection
matrix, i.e. P2

j = Pj . Take B = I.

• We assume that the Pj are the rank-1 projection matrices

Pj =
uj ⊗ vj

(uj , vj)
=

ujvT
j

uT
j vj

where (uj , vj) , 0.

• uj , vj are d-vectors. Further,

Ω = Aj
kieKi+Qj

ki − qj
+ δi,jI.

• Ki = ki(x + kiy − 4k 2
i t), Qi = −qi(x + qiy − 4q2

i t).



matrix mKP equation

• Expanding F we get

F = I −
[
A1eK1 A2eK2

] [
Aj

kie
Ki+Qj

ki−qj
+ δi,jI

]−1

2×2

[
IeQ1

IeQ2

]
= I −

[
L1e−Q1 L2e−Q2

] [IeQ1

IeQ2

]
= I − L1 − L2.

• Therefore

L1

(
I+

k1r1eK1+Q1

k1 − q1
P1

)
= eK1+Q1A1 −

k2eK1+Q1

k1 − q2
L2A1,

L2

(
I+

k2r2eK2+Q2

k2 − q2
P2

)
= eK2+Q2A2 −

k1eK2+Q2

k2 − q1
L1A2.



matrix mKP equation

• Using

(I − aP)−1 = I+ aP(1 − a)−1

for a scalar a , 1 we have

L1 =
(k2 − q1)

h
((k1 − q2)h2I − p2A2)A1,

L2 =
(k1 − q2)

h
((k2 − q1)h1I − p1A1)A2.

• hi = e−(Ki+Qi) + ki ri
(ki−qi)

.

• h = h1h2(k1 − q2)(k2 − q1) − αk1k2r1r2.

• α =
(uj ,vi)(ui ,vj)

(ui ,vi)(uj ,vj)
and i = 1,2.



Plot of w = −FxF−1 at t = 0



Conclusions/Further work

• Quasideterminants are the natural structure to use to
describe solutions of iterated Darboux transformations.

• The quasideterminant solutions hold for any case:
• reduction to scalar case under commutative limit
• allows for explicit nc examples.

• Solutions can be directly verified using properties of
quasideterminants. This is sometimes easier than in the
commutative case.

• What about other nc integrable systems? Harry Dym,
reciprocal links expressed as quasideterminants? nc
Painleve analysis?


