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Noncommutative (nc) integrable systems

Remove assumption that dependent variables commute.
Still have Lax representation.
Construct nc hierarchy.

Results are valid for range of cases: matrix versions,
quaternion versions, Moyal star product.

Integrability is preserved. Can often find exact solutions.
Find solutions from Darboux transformations.

Solutions expressed as quasideterminants which are the
natural replacement for determinants entries in a matrix do
not commute.



ncmKP hierarchy

— Gelfand and Dickii 1976, Oevel and Rogers 1993
e Define pseudo-differential operator

T =0+ W+ widy' + wody? 4+ wady® + - -+,

e wand ws(s =1,2,...) don’t necessarily commute and
depend on x and tg(qg = 1,2,...), and J} denotes the nth

partial derivative operator %.

¢ As in standard, commutative Sato theory, we define the
ncmKP hierarchy as

th:[P21(Tq)/ T]/ q:1,2,...

e P.; (Z,- w,-é’;'() = Y i1 W;d\, denotes projections of powers of
the operator T onto the differential part.



ncmKP equation

— Wang and Wadati 2004, Dimakis and Miiller-Hoissen 2006
e We set t, = y and t3 = —4t. From the ncmKP hierarchy:
Wy = Wyx + 2W1x + 2WWy + 2[W, 4],
Wiy = Wixx + 2Woy + 2W1 Wy + 2WWix + 2[wW, We],
Wi = Wxxx + 3Wixx + 3Wax + 6WW1x + 3wy Wy + 3wy wy

+ 3Wwyx + 3W2 + 3w2wy + 3[w?, wy] + 3[w, wy].
e Eliminating w, to get:

1
_EWt - 2WXXX - 3W1XX - 6WW‘|X - 3W1y - 6WXW‘| - GWWXX

—6w? — 6W2wy — 6[w?, wq] = 0.

o Simplify via wy = =% (wy + w? — W).



ncmKP equation

This gives the ncmKP equation

0= —4w; + Wyxx — 6wwyw + 3W,, + 3[wy, W],

—3[wxx, W] — 3[W, W2],

0= Wy —wy + [w, W].
This could also be obtained from the Lax pair:

L =92 4+ 2wdy — 9y,

M = 493 + 12wd? + 6(wy + w2 + W)y + 40;.
(2) is satisfied identically by change of variables

w = —ff 1 (# —(log f)x), W = —f,f'(# —(logf)y).

f = f(x,y,t) is invertible. It is not assumed that f and its
derivatives commute.

(1)
(@)



quasideterminants
— Gelfand and Retakh 1991
— Gelfand, Gelfand, Retakh and Wilson 2005

e An nx n matrix Z over a ring R (honcommutative, in
general) has n? quaS|determ|nants written as |Z];;.

cl
]

e 1 <i,j<nandassume Z7 is invertible
e Then |Z|; exists and

|Z|,j—ZU—f] U C_. -.



quasideterminants

e For example, if n = 2, there are 4 quasideterminants.

a b
-LetZ:[C d

1Z]11
IZl12
IZ]21

|Zl22

], then
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—a-bd'c
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—c-db'a
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—d-ca'b
22



quasideterminants

e |t is more convenient to use another notation for
quasideterminants by boxing the leading element z;.

e For example, if n = 2:

¢ Note that the leading element can also be a matrix:

Anxn Bn><l

m><l menA an/
men Dm><I mn




Darboux transformations

Let 6 = O(x, y, t) be an eigenfunction for L and M, i.e.
L[] = 0 and M[6] = 0.

It is not assumed that 6 and its derivatives commute.
Consider another pair of operators: L= GgLGé1 ,

M = GoMG;,".

Gy is an invertible differential operator (Gy[0] = 0).
[L,M] = Ge[L, M|G;' = 0if [L,M] = 0. So L, M are
compatible.

For quasideterminant solutions, we take

Go = ((07)x) 19x07" =1-0(0x)"9x.



Darboux transformations

Let i # O be another eigenfunction for L, M i.e.
L[y] =0 = M[y].

L[Go[y]] = GoL G, [Goly]] = GolL[¢]] = Go[0] = 0.
Similar for M.

So i = Gg[y] is an eigenfunction for L, M.
Quasideterminant structure is evident from

o [v]|

Ox ‘,Z/x

66[1/’] == 6(QX)_11/’X =



Darboux transformations

e LetB;,i=1,...,nbe a particular set of eigenfunctions and
introduce the notation © = (64,65, ...,0).

* To iterate the Darboux transformation, let 0y; = 61 and
Y1) = ¢ be a general eigenfunction of L) = L.

e Then l,b[g] = 69[1][¢1[1]] and 6[2] gb[2]|¢,_)@2 are

eigenfunctions for Ly = Gem L[1]Ge)m

e In general, for n > 1 we define the nth Darboux
transformation of i by

Yinr1] = o) = O (Opnp) ™ Yo

where Q[k] = l,b[k]hp_)gk.



Darboux transformations
04
]
92 ) ()
0; 05

Yg) = Gop [zl = -+ = 651) @%” o® |,
2 2
6 oy y@

7

Y = ¢ — 01(01x) ' =

o (k) denotes kth x-derivative. After n iterations we have
©

o1 y(n-1)
om

Call this a quasiwronskian

Pint1) =

e Proof is by induction.



Darboux transformations

e The transformed operator

L=(6"))"ox07" Lo (67")x

Go G’

preserves the structure of w.
e The coefficient

W= —ff1 = —(=0(0x)"F)x(-6(0x) )~

satisfies the ncmKP equation.
e fcanbe expressed as the quasideterminant

?:—Q(QX)‘W:‘GQ @ f
X



Darboux transformations

Let f = fiy). For the nth Darboux transformation of f we
have

o [0
finy1) = o g
o 1

An analogous transformation can be made on .
Let g = 1. This gives w = —(g7")xg = 97" gx.
From L we get

W=§""0x = (96x07") 7 (g6x0 7 )x,



Darboux transformations
e g can be expressed as the quasideterminant
6 1
~ -1 _

e Let g = gjy;- For the nth Darboux transformation of g we
have

© 1

o 0

Iny11=-9| : -
o1 o

o) @



binary Darboux transformations

— Matveev and Salle 1991, Oevel and Schief 1993
e Consider the formal adjoint operator Gg.
Typically working with matrices. Formal adjoint is the linear
operation (ad)t = (-1)d.a".
For operators, (G1Gz)" = G} GI.
L=GolG;'so Lt =G} LG}, ie. Lt = GIL'G! .
So Gp induces and adjomt Darboux transformation from
Lt Mt to LY, Mt



binary Darboux transformations

Construction
— — Gy - _
LM T m<—Tm

0 0
bt < Tt pt % Tt
L'M <~— L' M —=L"M
¢ i(0),i(0)

Binary Darboux transformation

GQ@ = 651 Go

—

L,M LM

o Must determine 6.
o From ker G, we get i(6).



binary Darboux transformations

Introduce Q = 951 (¢p'0x).

G1[i(6)] = 0 is satisfied by i(6) = (6%")x.

Then i(6) = (6" )x = G [x]. S0 6 = 6Q".

Now GG,(PX = G; Gop=1- 99_18;1 ¢)+ax.

Then we define the binary Darboux transformation by

Vint1) = 1) = O Appn, Opa) ™ by, Vi),
-1
Otnr1] = O — P 2P1mp, )T APpy, Opm)’

O = Ynlly—0,: Pln] = Prnllp—pn-



binary Darboux transformations
LetP = (p1,...,pn). Forn>1

Q(P,©) Q(P,kb)‘

lzb[n+1] = ‘ )

Q(p,0)" Q(¢,0)"
¢[n+1]:‘ P :

Proof is by induction. We call these quasigrammians.
The effect of L = Gg,¢xLGg‘¢X is that

After n Darboux transformations
QP,0) PT

©

f.

fing1) =



matrix mKP equation

— Goncharenko and Veselov 2001
e For the trivial vacuum f = 1 (giving w = W = 0), we get

QP,e) P’

F:’ e .

e The equations L[0] = M[0] = 0 and L*[p] = M'[p] =0
have nontrivial solutions

0—A ek(x+ky—4k2t)

p=B g~ a(x+ay-4¢°t)

e A and B are d x m matrices. k,q € R.



matrix mKP equation

n = d = 2 gives a two soliton solution. Change of
polarization and phase.

Here A; = r;jP;, where r; is a scalar, and P; is a projection
matrix, i.e. sz = P;. Take B=1.

We assume that the P; are the rank-1 projection matrices

T
Pj _J= T] where (Uj/ Vj) # 0.
(Uj’ VJ) Uj |

u;, v; are d-vectors. Further,

Q- A kl_eKi+Oj

R
T ki - q "

Ki = ki(x + kiy — 4k2t), Qi = —qi(x + qiy — 4qPt).



matrix mKP equation
e Expanding F we get

_Ki+Q; -1 I Q
o 2]

i—qj o%2 Ie
Ie%
=TI- [L1 9_01 Lge_Q2] Ieoz
=I-L4-Lo.
e Therefore
k1 ry eK1+Q1 ) Ki+Q kzeK1+Q1
Li[1+ ———Py|=ef"TYA - =LA,
1( k—qi " ki—ge 2T
k2r26K2+02 ) Kot O ki eket+Q2
LI+ == Py =efetepA, - — | A,.
2( ke-q ° ° k-qr ¢



matrix mKP equation

e Using
(I-aP)'=1+aP(1-a)”’

for a scalar a # 1 we have

(k2 —q1)
h

ky —
Lo = 29 (4 - g1 - pran) A

Ly = ((ky = g2)hoI — p2Ag)As,

o hj = e~ (KQ) 1 (kf(l——réh)

e h=hiha(ki — q2)(ke — Q1) — akikaryre.

—(uvi)(uiyy) P
&= GG andi=1,2.
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Conclusions/Further work

Quasideterminants are the natural structure to use to
describe solutions of iterated Darboux transformations.
The quasideterminant solutions hold for any case:

¢ reduction to scalar case under commutative limit

o allows for explicit nc examples.
Solutions can be directly verified using properties of
quasideterminants. This is sometimes easier than in the
commutative case.

What about other nc integrable systems? Harry Dym,
reciprocal links expressed as quasideterminants? nc
Painleve analysis?



