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? Fermi gas radial distribution function

? Diagrammatic expansion for Fermi systems

? FHNC equations for the radial distribution function

? Calculation of the ground state energy

? The CBF effective interaction. Shear viscosity of the Fermi hard sphere
fluid
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Ditribution function of the free Fermi gas

. Consider (dxi denotes ri integration and sum over discrete degrees of
freedom)

gFG(r12) == N(N −1)

ρ2

∫
dx3 . . .dxN |Φ0(x1, . . . ,xN )|2∫
dx1 . . .dxN |Φ0(x1, . . . ,xN )|2

. Exploiting the properties of determinants the above equation can be
rewritten (recall: |ki|, |kj| < kF )

ρ2gFG(r12) =∑
i,j
φ†

i (r1)φ†
j (r2)[φi(r1)φj(r2)−φj(r1)φi(r2)]

= ν2

(2π)6

[(
4πk3

F

3

)2

− 1

ν

∣∣∣∣∫|k|<kF

d3k eik·r12

∣∣∣∣2
]
= ρ2

[
1− 1

ν
`2(kF r12)

]

`(x) = 3

x3 [sinx−x cosx]
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gFG(r) in symmetric nuclear matter at equilibrium density
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Diagrammatic representation of gFG

gFG(r12) = 1− 1

ν
`2(kF r12) = +

11 11 2 2

? Diagrammatic rules

. statistical correlations between particles 1 and 2, corresponding to

− 1

ν

∫
|k|<kF

d3k eik·r12 =− 1

ν
`(kF r12)

are represented by oriented solid lines
. oriented lines form loops that do not touch one another
. each loop contributes a factor −ν
. in the cluster expansion of g(r) the statistical correlation lines can be

superimposed to dynamical correlation lines

? only connected and irreducible diagrams contribute
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Effect of statistical correlation

? As an exmple, consider the term of order ρ in the expansion of the
radial distribution function. In the case of Fermi statistics∫

d3r3 h(r13)h(r32) ⇒
∫

d3r3 h(r13)h(r32)∆(1,2,3)

∆(1,2,3) =
∫

dx4 . . .dxN |Φ0(1, . . . ,N)|2

= 1− 1

ν
`2(kF r12)− 1

ν
`2(kF r13)−−1

ν
`2(kF r32)

− 1

ν2`(kF r12)`(kF r23)`(kF r32)− 1

ν2`(kF r13)`(kF r32)`(kF r21)

? Antisymmetrization of the grond state leads to the appearance of five
additional contributions.
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Diagrams contributing to g1(r)

? The diagrams can be classified according to the pattern of statistical
correlation lines reaching the external points

Omar Benhar (INFN, Roma) Scuola Raimondo Anni, 5th course 7 / 31



Classification of nodal diagrams

? In Fermi systems nodal diagrams N(r12) can be classified in four
different classes

. Ndd(r12) nodal diagrams having no statistical correlation lines reaching
the external points

. Nde(r12) Nde(r21) nodal diagrams in which either of the external points
belongs to a binary exchange loop involving one internal point

. Nee(r12) nodal diagrams in which both external points belong to a
binary exchange loops, involving internal points

. Ncc(r12) nodal diagrams in which both external points belong to a
circular exchange loop involving internal points
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Parallel connection of nodal diagrams

. Define:
F(r12) = f 2(r12)eNdd(r12)

. Composite diagrams can be generated through parallel connections of
the nodal diagrams Nxy(r12) according to

Xdd(r12) = F(r12)−Ndd(r12)−1

Xde(r12) = F(r12)Nde −Nde(r12)

Xee(r12) = F(r12)[Nee(r12)+N2
de(r12)−νN2

cc(r12)

+ 2`(kF r12)Ncc(r12)− 1

ν
`2(kF r12)] (1)

Xcc(r12) = F(r12)[Ncc(r12)− 1

ν
`(kF r12)]− 1

ν
`(kF r12)−Ncc(r12)
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FHNC equations (Fantoni & Rosati, AD 1975)

. Define:
Wxy(r12) = Xxy(r12)+Nxy(r12)

. The integral equations for the Nxy(r12) are

Ndd(r12) = ρ
∫

d3r3{[Xdd(r13)+Xde(r13)]Wdd(r32)+Xdd(r13)Wde(r32)}

Nde(r12) = ρ
∫

d3r3{[Xdd(r13)+Xde(r13)]Wdd(r32)+Xdd(r13)Wee(r32)}

Nee(r12) = ρ
∫

d3r3{Xed(r13)Wee(r32)+ [Xdd(r13)+xee(r13)Wde(r32)}

Ncc(r12) = ρ
∫

d3r3{Xcc(r13)[Wcc(r32)− 1

ν
`(kF r32)]
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FHNC results: g(r) of the fermion hard sphere liquid

g(r) = 1+Wdd(r)+2Wde(r)+Wee(r)
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Calculation of the ground state energy

. Use the variational principle to determine the shape of the correlation
function and the ground state energy

Ψ0 = F Φ0 =ΠN
j>i=1f (rij)Φ0

f (r) =
{

0 r < a
d
r

sin[k0(r−a)]
sin[k0(d−a)] r > a

min
d

〈0|F H F |0〉
〈0|F2|0〉 ≥ E0

. k0 determined in such a way as to have(
df

dr

)
r=d

= 0
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Kinetic energy

. Ambiguity involved in the calculation of the kinetic energy

〈Φ0|F
(∑N

i=1−
∇2

i
2m

)
F |Φ0〉

〈Φ0|F2|Φ0〉

. From

〈Φ0F ∇2
i FΦ0〉 = 〈Φ0[F2(∇2

iΦ0)+F(∇2
i F)Φ0 +2F(∇∇∇F) · (∇∇∇Φ0)]〉

integrating by parts we obtain

〈Φ0F2(∇2
iΦ0)〉−〈Φ0(∇∇∇F)2Φ0〉−〈(∇∇∇Φ0)F · (∇F)Φ0〉+〈Φ0(∇∇∇Φ0) ·F(∇F)〉

. Note that, as the FHNC calculation of the expectation value does not
include all diagrams, the above expressions do not yield the same
result. The small (typically less than few percent) difference between
the two results provides an estimate of the accuracy of the calculation
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Minimization of the ground state expectation value 〈H〉
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Shape of the correlation function at kF = 0.5 fm−1

i
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Comparison between FHNC and perturbation theory

? The requirement that the FNHC results provide an upper bound to the
ground state energy ia always fulfilled
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To the equation of state and beyond

? The formalism of correlated basis functions (CBF) and the FHNC
equations provides a viable computational scheme to obtain the
ground state energy per particle, thus allowing to determine the EOS

e(ρ) = E

N
⇒ ε(ρ) = ρe , P(ρ) = ρ2

(
∂e

∂ρ

)
⇒ P = P(ε)

? The P(ε) relation is needed to obtain M and R of non rotating stars
from the solution of the Tolmann-Oppenheimer-Volkoff equations
(see Ignazio Bombaci’s lectures)

? Can the theoretical approach used to compute the EOS be exploited to
consistently obtain other properties of astrphysical interest?
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Transport properties of neutron matter

? Abrikosov & Khalatnikov (AK) formalism (AD 1957). Starting point:
Boltzman equation

∂n

∂t
+ ∂n

∂r

∂εp

∂p
− ∂n

∂p

∂εp

∂r
= I(n)

n = n0 +δn , n0 = {1+exp[β(ε−µ)]}−1

? The collision integral I(n) depends on the probability of the scattering
process 1+2 −→ 1′+2′

? Consider shear viscosity as an example. Using Landau theory of Fermi
liquids AK obtain the approximate (although rather accurate) result

ηAK = 1

5
ρm∗v2

Fτ
2

π2(1−λη)
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? quasiparticle lifetime and angle-averaged scattering probability 〈W 〉

τT 2 = 8π4

m∗3

1

〈W 〉 〈W 〉 =
∫

dΩ

2π

W (θ,φ)

cosθ/2

λη = 〈W (1−3sin4θ/2sin2φ)〉
〈W 〉

? exact solution by Brooker & Sykes (AD 1968)

η= ηAK C(λη)

C(λη) = 1−λη
4

∞∑
k=0

4k+3

(k+1)(2k+1)[(k+1)(2k+1)−λη]

−2 <λη < 1 , 0.750 < C(λη) < 0.925

? Similar expressions can be obtained for the other transport coefficients
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Calculations of transport coefficients

? Calculation of the transport coefficients within the AK approach
requires
. The quasiparticle spectrum εp, needed to calculate the effective mass

from
1

m?
= 1

p

dεp

dp

. The scattering probability, related to the scattering cross section in the
nuclear medium through

dσ

dΩ
= m?2

16π2 W (θ,φ) ,

? Strategy: use the CBF formalism to obtain an effective interaction,
derived from the bare potentials, allowing for a consistent calculation
of all relevant quantities.
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The CBF effective interaction

? The effective interaction is defined through

〈H〉 = 〈0|T +V |0〉
〈0|0〉 = 〈0FG|T +Veff|0FG〉

? At two-body cluster level (recall: 〈0FG|F V F |0FG〉 = 0)

Veff =
∑
j>i

veff(rij)

veff(rij) = f (rij)

{
− 1

m
[∇2f (rij]− 2

m
[∇f (rij)] ·∇

}
≈− 1

m
f (r12)∇2f (rij)

? Correlation range determined requiring that the FHNC energy be
reproduced in the two-body cluster approximation
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Effective interaction range
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Shape of the CBF effective interaction at kF = 0.5 fm−1
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Density dependence of the shear viscosity coefficient
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Extension to neutron star matter

? NN interactions have a complex operatorial structure

? Many-nucleon forces are known to be important (in fact critical at
large density)

? Correlation functions reflect the operatorial structure of the NN
interaction, implying that [fij, fjk] 6= 0

? Cluster diagrams classification and FHNC equations become much
more complicated. Further approximations needed. Comparison with
Monte Carlo simulations suggest that the extended FHNC scheme
provides accurate results.

? The CBF based effective interaction approach appears to be a viable
option to circumvent some of the above difficulties. In adition, it
allows for a unified description of structure and dynamics of neutron
star matter based on “realistic” NN potential.
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FHNC energy per particle of symmetric nuclear matter

-20

-10

 0

 10

 20

 30

 40

 0  0.1  0.2  0.3  0.4  0.5

En
er

gy
 p

er
 n

uc
le

on
 (

M
eV

)

ρ (fm-3)

(b)FHNC: v6’+v12(ρ)

FHNC: v6’+V123

FHNC: v6’ 

AFDMC: v6’+v12(ρ)

AFDMC: v6’

i
Omar Benhar (INFN, Roma) Scuola Raimondo Anni, 5th course 26 / 31



In medium NN cross section

? The matrix elements of G and Veff can be used to obtain the in medium
neutron neutron cross section

? Total neutron-neutron x-section. Argonne v′6 potential

? The effects of the three-nucleon force can be included in the CBF
effective interaction, through a density-dependent two-nucleon
interaction
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Shear viscosity of β-stable npe matter

? Required inputs [proton (and electron) fraction, effective masses &
scattering rates] obtained from the CBF effective interaction

? Increasing the electron fraction leads to a significant modification of
the balance between the different contributions to the viscosity.

? consistency is a critical issue
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Shear viscosity & thermal conductivity of neutron matter

? Results obtained using the Argonne v′6 potential

? Medium effects are large. The model dependence is not critical,
although it can be clearly seen in the case of viscosity at supranuclear
density.
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Emissivity due to bremsstrahlung of ν− ν̄ pairs

? In Born approximation, the emission rate of the process

n(p1)

n(p3) n(p4)

n(p2)

ν ν
−

(A)

is driven by the trace

H ii = 16
1

ω2

∑
MSMS′

∣∣〈1MS′ |[Si,veff (q)
] |1MS〉

∣∣2 .

where S denotes the total spin
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One Pion Exchange (OPEP) vs CBF effective interaction

? Nuclear dynamics beyond OPEP: factor ∼ 4÷5 (Reddy et al, AD 2001)

? Screening due to neutron-neutron correlations: factor ∼ 6÷7
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