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Fermions 

Many-Fermion systems require a wavefunction that is antisymmetric under exchange 
of particles. 
From a strictly mathematical point of view,  the search of an antisymmetric  ground 
state corresponds to the search of an excited state of the Hamiltonian. In fact, the 
absolute ground state of the Hamiltonian is always a nodeless function. A heuristic 
argument justifying this statement, is based on the form of the Green’s function: 
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This expression is strictly positive definite at all imaginary times. Therefore any point 
in configuration space can be propagated to any point of the domain of the 
Hamiltonian. Therefore the ground state can be zero  only on the boundaries of this 
domain (where eventually one can have infinite absorption) 



Fermions 

The difficulty in projecting out the component of a generic wavefunction along the 
ground state is known as SIGN PROBLEM. The name comes from the fact that a naïve 
way of looking at it is simply to observe that a wavefunction changing sign in space 
cannot be sampled, because it is not a probability density. 

This way of looking at the sign problem is too simple-minded. Let us assume that we 
have an approximation of the ground state of the many-Fermion system. The 
minimum condition required is that it has a component in the same subspace as the 
exact solution (i.e. it has the correct symmetry requirements). 

Formally, we can stabilize the right component in the imaginary time propagation 
simply by changing the reference eigenvalue. 
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Fermions 

The exponentially growing component along the symmetric ground state does not 
change the expectation of the Hamiltonian, if we use as a function to project from an 
antisymmetric functionΨT

A: 
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The denominator yelds a finite value, because of the symmetry of the functions: 
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The same holds for the numerator, considering that 
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Fermions 

The previous expression might give the idea that imaginary time projection works as 
well also for excited states (the change in sign is not a problem by itself!) 

However, in a Diffusion Monte Carlo calculation the estimate of the eigenvalue is 
always approximate when we take a finite number of samples. The standard 
deviation of the answer depends on the variance of the HΨT

A  (in MC sense): 
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Let us consider the expectation of the square of HΨT
A   
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Fermions 

We are left with a contradictory statement: the energy converges to the exact 
eigenvalue with an exponentially growing statistical error. In other words, the signal 
to noise ratio decays exponentially. 

Evolution of the mean value 
of energy in a DM C 

calculation with free nodes 
for 14 3He particles. Note that 

the error bars rapidly 
increase with imaginary time.  
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Fermions 

Another way of looking at the sign problem is that of considering the evolution of 
signed walkers 

Let us consider the ground state of a many-Fermion system. We can always separate 
the positive and the negative parts of the wavefunction as follows: 

where both Ψ+ and Ψ- are positive definite, and therefore good candidates for 
being densities of walkers. We can imagine to sample separately the two parts of 
the wavefunction using two different sets of walkers R+ and R-. These walkers will 
contribute to estimates with different signs: 
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Fermions 

However, the imaginary time evolution will drive both populations to the same 
distribution, proportional to the absolute ground state of the Hamiltonian. 

Antisymmetry is not a local property of the solution. Therefore the stability of the 
antisymmetric solution cannot be achieved by modifying the local behavior of the 

propagator (e.g. by importance sampling). One needs to break an overall “plus-minus” 
symmetry of the Hamiltonian.  

The consequence is that all estimates have an exponentially increasing noise (the 
denominator in the quotient previously defined annihilates exponentially, and the 
signal to noise ratio decays as well) 



Fixed node approximation 
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Fixed node approximation 
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Fixed node approximation 



Fixed node approximation 
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δFN (R) ≠ 0  iff   χ(R) = 0  or Pχ(R) = 0
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Fixed node approximation 

If an acceptance-
rejection scheme is 
implemented, then 

the move can simply 
be rejected 



Complex wavefunctions 
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Complex wavefunctions 
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Complex wavefunctions 
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Complex wavefunctions 
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Complex wavefunctions 



Nuclear Hamiltonians 

As an example consider the potential AV8. The operators are: 
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( p )(i, j)

p=1

X

∑
i< j
∑

The nucleon nucleon interaction poses a particular challenge for the implementation 
of DMC techniques. The main reason is the fact that the intreaction depends on the 
relative spin/isospin of the nucleons, and in general it is non local.  
A class of realistic two-body local potential is the so-called Argonne VX (AVX). Such 
potentials have the form: 
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Variational Monte Carlo 

Wave function with operatorial Jastrow 2 body and 3 body correlations 
should be used to impose correct cusp conditions in each channel, i.e. to 
ensure that: 
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If this condition is satisfied, fluctuations in the local energy will be small 
and the calculation very rapidly converging. However, for a realistic 
nuclear Hamiltonian this implies that the wavefunction itself has an 
operatorial form: 
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VMC and Nuclear Hamiltonians 

€ 

A!
Z!(A − Z)!

4A The huge number of 
states limits present 
calculations to A≤14 



Auxiliary Fields 

The use of auxiliary fields and constrained paths is originally due to S. Zhang 
for condensed matter problems (S.Zhang, J. Carlson, and J.Gubernatis, 
PRL74, 3653 (1995), Phys. Rev. B55. 7464 (1997)) 
Application to the Nuclear Hamiltonian is due to S.Fantoni and K.E. Schmidt 
(K.E. Schmidt and S. Fantoni, Phys. Lett. 445, 99 (1999)) 



Auxiliary Fields 
For simplicity, let us consider a system made of neutrons only (no isospin). 
the n-n interaction can be re-written in a matrix form 

Because the matrix is symmetric, eigenvalues and eigenvectors are real. 



Auxiliary Fields 

Let us now define a new set of operators from the linear combinations of the 
original operators that diagonalize the interaction: 

The spin dependent part of the interaction can now be expressed as 



Auxiliary Fields 
We can apply the Hubbard-Stratonovich transformation to the Green’s 
function for the spin-dependent part of the potential: 

Commutators neglected! 
(Trotter-Suzuki again…) 

The xn are auxiliary variables to be sampled. The effect of the On is a 
rotation matrix to be applied to the spinorial components of each particle. 



Auxiliary fields 



AN EXAMPLE: COMPUTATION OF PIRING GAP IN 
NEUTRON AND NUCLEAR MATTER 



Nuclear Hamiltonian 
The interaction between N nucleons can be written in terms of an 
Hamiltonian of the form: 

where i and j label the nucleons, rij is the distance between the 
nucleons and the O(p) are operators including spin, isospin, and 
spin-orbit operators. M is the maximum number of operators 
(M=18 for the Argonne v18 potential). 



Nuclear Hamiltonian 

The interaction used in this study is AV8’ cut to 
the first six operators. 

where 



Nuclear matter  

The functions φJ  in the Jastrow factor are taken as the 
scalar components of the FHNC/SOC correlation operator 
which minimizes the energy per particle of SNM at 
saturation density  r0=0.16 fm-1. The antisymmetric 
product A is a Slater determinant of plane waves. 

Wave Function 



Nuclear matter 

Simulations 



1S0 gap in neutron matter 

AFDMC should allow for an accurate estimate of the gap in superfluid 
neutron matter. 

where the BCS part is a Pfaffian of orbitals of the form  

Coefficients from CBF calculations 



Gap in neutron matter 

The gap is estimated by the even-odd energy difference at 
fixed density: 

• For our calculations we used N=12-18 and N=62-68. The gap 
slightly decreases by increasing the number of particles.  

• The parameters in the pair wavefunctions have been taken by CBF 
calculatons. 



Gap in Neutron Matter 

Gandolfi S., Illarionov A., Fantoni S., P.F., Schmidt K., PRL 101, 132501 (2008) 



Pair correlation functions 



Gap in asymmetric matter 


