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Fermions

Many-Fermion systems require a wavefunction that is antisymmetric under exchange
of particles.

From a strictly mathematical point of view, the search of an antisymmetric ground

state corresponds to the search of an excited state of the Hamiltonian. In fact, the
absolute ground state of the Hamiltonian is always a nodeless function. A heuristic

argument justifying this statement, is based on the form of the Green’s function:
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This expression is strictly positive definite at all imaginary times. Therefore any point
in configuration space can be propagated to any point of the domain of the
Hamiltonian. Therefore the ground state can be zero only on the boundaries of this
domain (where eventually one can have infinite absorption)



Fermions

The difficulty in projecting out the component of a generic wavefunction along the
ground state is known as SIGN PROBLEM. The name comes from the fact that a naive
way of looking at it is simply to observe that a wavefunction changing sign in space
cannot be sampled, because it is not a probability density.

This way of looking at the sign problem is too simple-minded. Let us assume that we
have an approximation of the ground state of the many-Fermion system. The
minimum condition required is that it has a component in the same subspace as the
exact solution (i.e. it has the correct symmetry requirements).

Formally, we can stabilize the right component in the imaginary time propagation
simply by changing the reference eigenvalue.

W(R,T) = "TOW(R) = e F e W(R) + ¢ W (R)+ Y e e W (R)

n=0



Fermions

The exponentially growing component along the symmetric ground state does not
change the expectation of the Hamiltonian, if we use as a function to project from an
antisymmetric function ¥ A;
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The denominator yelds a finite value, because of the symmetry of the functions:
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The same holds for the numerator, considering that

HY! ~ EXW* 1+ components along excited states



Fermions

The previous expression might give the idea that imaginary time projection works as
well also for excited states (the change in sign is not a problem by itself!)

However, in a Diffusion Monte Carlo calculation the estimate of the eigenvalue is
always approximate when we take a finite number of samples. The standard
deviation of the answer depends on the variance of the HY A (in MC sense):
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Fermions

We are left with a contradictory statement: the energy converges to the exact

eigenvalue with an exponentially growing statistical error. In other words, the signal
to noise ratio decays exponentially.
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Fermions

Another way of looking at the sign problem is that of considering the evolution of
signed walkers

Let us consider the ground state of a many-Fermion system. We can always separate
the positive and the negative parts of the wavefunction as follows:

¥, (R) =W (R) - ¥ (R)

where both ¥ * and ¥ - are positive definite, and therefore good candidates for
being densities of walkers. We can imagine to sample separately the two parts of
the wavefunction using two different sets of walkers R™ and R". These walkers will
contribute to estimates with different signs:
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Fermions

However, the imaginary time evolution will drive both populations to the same
distribution, proportional to the absolute ground state of the Hamiltonian.
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The consequence is that all estimates have an exponentially increasing noise (the

denominator in the quotient previously defined annihilates exponentially, and the
signal to noise ratio decays as well)

Antisymmetry is not a local property of the solution. Therefore the stability of the
antisymmetric solution cannot be achieved by modifying the local behavior of the
propagator (e.g. by importance sampling). One needs to break an overall “plus-minus”
symmetry of the Hamiltonian.




Fixed node approximation

The success of the Diffusion Monte Carlo method is due to the fact that an
approximate version exist, proposed originally by J. Anderson, that allows for
computing with decent accuracy properties of many-Fermion systems of physical

interest. This approximation is called FIXED-NODE.

From a formal point of view, the FN approximation starts from a trial solution of the
Hamiltonian to be studied. The Hamiltonain is then redifined as follows:

I:I=I§IO+VFN

where
0if WX(R)>0

Viy(R) =
o {oo if WA(R)<0
The fixed-node potential changes the
boundary conditions of the preblem, imposing
an infinte absorption rate in correspondence

of the nodes of ¥ A,

The function must vanish
linearly at the boundar




Fixed node approximation

Obyviously, at this point we are not solving any more the original problem, but a
different problem. How are the solutions related to each other?

The equation that is solved by the DMC becomes:

(Hy + S )(R) = E py x(R)
xR (R) =0

Under certain conditions E; is an upper bound for the eigenvalue E 2. The following
argument might be made general for any set of symmetries 4 defining the subspace
of the Hilbert space we are interested in. However, we will limit ourselves to the
case of the group of permutations of particles, considereing therefore only the case
of an antisymmetric state.



Fixed node approximation

The conditions for having an upper bound are the following:

v’ The trial wavefunction must be real;

v' An operator A exists such that it transforms the wavefunction maintaining H
invariant (this is obviously true for permutations of particles in presence of local
interactions);

v’ [H,A]=0, and A is an hermitean projector (true for permutations);

v’ The trial wavefunction must belong to a one-dimensional representation of the
symmetry group considered. This is true for the ground state of the Hamiltonian, both
symmetric and antisymmetric;

v H must not have other delta terms;



Fixed node approximation

If the Hamiltonian is invariant under the group of permutations, and the wavefunction
transforms like a real one-dimensional representation of the group of permutations,
the nodal surface does not change. Therefore:

8,y (R) =0 iff x(R)=0 or Py(R)=0
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Equality holds only if the nodal surface of the trial function is exact.
On the other hand, the fixed-node eigenvalue has to be lower than the variational
estimate of the energy on the antisymmetric trial function. We have therefore:
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Fixed node approximation

The implementation of the fixed node in a DMC code is extremely easy.
It is sufficient to kill walkers trespassing the nodal surface.

Q SR If an acceptance-
rejection scheme is
implemented, then

. the move can simply
be rejected



Complex wavefunctions

The situation is much less satisfactory when we have to do with complex
wavefunctions. Hamiltonians not invariant under time reversal do not admit real
eigenfunctions. Sometimes (e.g. in the case of minimal electromagnetic coupling) it is
possible to solve the problem for the sum or difference of the wavefunction and

the complex conjugate. However, in general this is not possible.

In this case we cannot use the fixed node approximation! An easy workaround is
represented by the fixed-phase approximation. A simple way of introducing it is the
following. Let us consider the expectation of the Hamiltonian:
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Complex wavefunctions

We can always write the wavefunctions as modulus times the phase:
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Substituting we obtain:
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The fixed-phase approximation consists of assuming:

$(R,T) = ¢ (R)

This means that the density of walkers to be sampled is the product of the muduli of
the importance function and of the projected wavefunction.



Complex wavefunctions

The fixed phase approximation corresponds to taking in the Green’s function the real
part of the local kinetic energy, rather than the complex expression.
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Complex wavefunctions

The fixed phase is not the only approximation that can be used in the case of

complex wavefunctions.

An alternative that is often used is the so-called “constrained path” approximation. In
this case the walkers are constrained to the region in which the trial wavefunction has

positive real part.

At the same time the drift term must be redifined as
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Complex wavefunctions

® For the fixed phase approximation it is possible to prove an upper bound property
only in the case of local spin-isospin independent interactions. When the interaction is
operatorial, as in the case of many nucleon systems, the upper bound property is not
guaranteed.

® The constrained path approximation cannot be proved to be an upper bound in
any case.

® There is in principle no way to understand a priori which approximation is more
accurate. In nuclear physics, often the constrained path is used, bud in recent
calculations we found that the fixed-phase gives lower energies.

® For Hamiltonians in which the wavefunction can be taken real (e.g. two dimensional
quantum dots immersed in a perpendicular magnetic field), the comparison between
fixed-phase, constrained path and fixed node shows that using complex
wavefunctions usually leads to higher estimates of the energy.



Nuclear Hamiltonians

The nucleon nucleon interaction poses a particular challenge for the implementation
of DMC techniques. The main reason is the fact that the intreaction depends on the
relative spin/isospin of the nucleons, and in general it is non local.

A class of realistic two-body local potential is the so-called Argonne VX (AVYX). Such
potentials have the form:

V(ij) = EEV ()0 (i, )

i<j p=1

As an example consider the potential AV8. The operators are:
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Variational Monte Carlo

Wave function with operatorial Jastrow 2 body and 3 body correlations
should be used to impose correct cusp conditions in each channel, i.e. to

ensure that:

Hy (R)
Yr(R)
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If this condition is satisfied, fluctuations in the local energy will be small
and the calculation very rapidly converging. However, for a realistic
nuclear Hamiltonian this implies that the wavefunction itself has an

operatorial form:
Mean field

function made
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VMC and Nuclear Hamiltonians

The standard VMC technique is easy to apply only if the interaction is
purely central, or whenever the wavefunction can be written as a product of
eigenfunctions of S,.

For realistic potentials the presence of quadratic spin and isospin operators
imposes that a MULTICOMPONENT WAVEFUNCTION is used

A' 4 A The huge number of

<— states limits present
4 '(A - Z)' calculations to A<14



Auxiliary Fields

The use of auxiliary fields and constrained paths is originally due to S. Zhang
for condensed matter problems (S.Zhang, J. Carlson, and J.Gubernatis,

PRL74, 3653 (1995), Phys. Rev. B8S5. 7464 (1997))
Application to the Nuclear Hamiltonian is due to S.Fantoni and K.E. Schmidt

(K.E. Schmidt and S. Fantoni, Phys. Lett. 445, 99 (1999))

The method consists of using the Hubbard-Siratonevieh
transformation in order to reduce the spin operators
appeadring in the Green’s function from quadratic to linear



Auxiliary Fields

For simplicity, let us consider a system made of neutrons only (no isospin).
the n-n interaction can be re-written in a matrix form

V=V_+V V+EG Ay i G

where the 3Nx3N matrix A is a combination of the various v(p) appearing in
the interaction. A is real and symmetric, and it can be diagonalized:

2 0/ B \IIJB - kn\"la

Because the matrix is symmetric, eigenvalues and eigenvectors are real.



Auxiliary Fields
I

Let us now define a new set of operators from the linear combinations of the
original operators that diagonalize the interaction:

The spin dependent part of the interaction can now be expressed as




Auxiliary Fields
N

We can apply the Hubbard-Stratonovich transformation to the Green’s
function for the spin-dependent part of the potential:

Commutators neglected!
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The x,, are auxiliary variables to be sampled. The effect of the O, is a
rotation matrix to be applied to the spinorial components of each particle.



Auxiliary fields

Additional remarks

can be treated in a similar way (with
some extra care)

. . with the
previously discussed difficulty of dealing with wave
functions which are complex.



AN EXAMPLE: COMPUTATION OF PIRING GAP IN
NEUTRON AND NUCLEAR MATTER

. as been long known. Attractive
components of the NN force induce a pairing among
nucleons. A few outcomes of it are the even-odd staggering
of binding energies or anomalies on the momentum of
inertia.

* More recently superfluidity of bulk nuclear matter has
been recognized to play a role in the



Nuclear Hamiltonian

The interaction between N nucleons can be written in terms of an
Hamiltonian of the form:

N p2 M
H=%"4 N 3, (1)07 (0, ))+V,
i=1 2mi i<j p=I1

where j and j label the nucleons, r; is the distance between the
nucleons and the OP) are operators including spin, isospin, and
spin-orbit operators. M is the maximum number of operators
(M=18 for the Argonne v,4 potential).



Nuclear Hamiltonian
L

The interaction used in this study is AV cut to
the first six operators.

0" =(1,6. 6,5, )®(T.'T;)

where

S;=3(r, 6,)(r,"6,)-0,"6,

EVEN AT LOW DENSITIES THE DETAIL OF THE
INTERACTION STILL HAS IMPORTANT EFFECTS
(see Gezerlis, Carlson 2008)




Nuclear matter

Wave Function

The many-nucleon wave function is written as the product
of a and an

Y(X..Xy;0,..0,,;T,..T\) = nqu(r;j)A(rl...rN;cl...GN;Tl...TN)
i<J

The functions ¢, in the Jastrow factor are taken as the

scalar components of the FHNC/SOC correlation operator

which minimizes the energy per particle of SNM at

saturation density ry;=0.16 fm1. The antisymmetric

product A is a Slater determinant of plane waves.



Nuclear matter

Simulations

Most simulations are performed in a The
number of nucleons must be chosen in order to fill a shell
of momenta in 3d. The smalles usable number is 28
nucleons (14 p and 14 n). The density was changed
varying the size of the simulation box.

Particular attention must be paid to

oAt the higher densities we performed a summation over
the first shell of periodic replicas of the simulation cell.

e Some checks against simulations with a larger number
of nucleons (N=76,108) were performed at the extrema
of the density interval considered.



'S, gap in neutron matter

AFDMC should allow for an accurate estimate of the gap in superfluid
neutron matter.

INGREDIENT NEEDED: A “SUPERFLUID” WAVEFUNCTION.

Nodes and phase in the superfluid are better described by a
Jastrow-BCS wavefunction

‘PT (R) =

Hf](rij):|¢BCS(R9S)

i<j

where the BCS part is a Pfaffian of orbitals of the form
(125,5) = 3 ™ x(5,.5,)
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Coefficients from CBF calculations



Gap in neutron matter

The gap is estimated by the even-odd energy difference at
fixed density:

A(N) = E(N) - %[E(N +1)—E(N-1)]

*For our calculations we used N=12-18 and N=62-68. The gap
slightly decreases by increasing the number of particles.

*The parameters in the pair wavefunctions have been taken by CBF
calculatons.



Gap in Neutron Matter
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Pair correlation functions
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Gap in asymmetric matter

® 2 protons k=0.2 fm ' + N neutrons k.=0.6 fm !

= only neutrons, k,=0.6 fm’’
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