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Part One: Theory



Suggested books

M. Fukugita, T. Yanagida:
Physics of Neutrinos (Springer)

neugg?fog’ggz:éz C. Giunti, C.W. Kim:
Fundamentals of Neutrino Physics and Astrophysics (Oxford)

Neutrinos in Particle
Physics, Astronomy
and Cosmology

y W

Z. Xing, S. Zhou:
Neutrinos in Particle Physics, Astronomy and (Springer)




A lot of reviews...

Among them:

A. Strumia, F. Vissani, “Neutrino masses and mixings and...”, (hep-ph/0606054)

M. C. Gonzalez-Garcia, Y. Nir, “Neutrino masses and mixing: evidence and
implications”, Rev. Mod. Phys.75 (2003) p. 345

Dedicated sites

The Neutrino Unbound (by C. Giunti) http://www.nu.to.infn.it
The Neutrino Oscillation Industry http://www.hep.anl.gov/ndk/hypertext/




Some reminders: Dirac equation

Fermions are described by a four component spinor field W. The free field is described

by the Dirac equation
(v P, — M) =0

were P, is the quadri-momentum operator and the gamma'’s fulfill the anti-
commutation properties

{vk, Y1} = 29k

Weil representation for the gamma matrices:

0 [ 0 —O0;y .
70_(1 O)?WZ_<O_Z O )7(7’_17273)

with | 2x2 identity matrix and o, Pauli matrices. We define also

I 0
V5 = 0Ly 23 = v

which anticommutes with all the gamma’s



Let us define the chiral projector operators

1—v (0 0 1+ (10
Po=—%"={0o 1) =73 =10 o

(notice that P P,=P:P =0 and P.+P,=1) and the chiral components

Urr=PLrV WV = VYR —WVp+ Vg

YL

with 1 2-components spinor fields. For massles fermions from Dirac equation we see
that the two components evolve independently

o - P¢R,L — :’PWR,L

i.e. the two components are also eigenstates of helicity with eigenvalues +1/2.

‘PL . LEF ‘PR : @



For massive fermions the two chiral components are combinations of the helicity

eigenstates ¢,
E+ P E— P

°F °F
_ |E—|P] ¢E+W\
Yr = _\/ o T 2B -

Notice that chirality is Lorentz invariant while helicity is not (unless m=0). For
ultrarelativistic fermions, i.e. E2>M we have

m

Y, >~ ¢ —%¢+

Chiral components carry out a small component of “wrong” helicity.



Dirac spinor: Left and Right components are independent

7a\ 7a\Y

lI’L: i ® O(m/E) > f

7o)

> ® O(m/E) LEFT

N

“Left —Right” oscillations (with very small amplitude m/E) are possible



Discrete symmetries

1) Parity:
Pw(xa t) — w(_xa t)

from Dirac equation is easy to show that P=y°. Notice that PP =P.P: P changes Left
handed into right handed states and vice versa.

2) Time reversal

Ty(x,t) = Y™ (x, —t)

T=iyly3
3) Charge conjugation: changes the charge(s) of the particle
k k
(Y (Pr —edy) = M) = 0= (7" (P +edy) = M)y© =0
With a little of algebra it can be shown that
¢ = Oy =iy 0yT i =1pT4°

negative energy states (“holes”) for the field 1 are positive energy states for 1°. Notice
that charge conjugation reverses chirality: € is indeed a “Right” fermion.




Majorana spinors

Majorana spinors are spinors which are invariant under the charge conjugation
symmetry: x=x°¢. It can be shown that there are two kinds of Majorana spinors

VR = YR + VR

’L.O'ij%

—10917 .
XL = 2VL = Y + V7
V1,

Notice that despite the “L” and “R” superscript, Majorana states have not definite
chirality since the two Weyl components are not independent (L and R refers to what
component of the spinor we choose as the independent one).

XR =



Mass term lagrangian

Dirac mass Lagrangian:

Ly = MPvypp = MP (ripp + ribr)

where P=1 +; is a usual Weil field with independent chiral components. The Dirac
mass term mixes Left and Right states.

Majorana mass Lagrangian:

Lyr = M Xrxr + Mg XrXR
= M%@DZTﬁL + M%@D%lﬁfg + h.c.

Majorana mass terms mix particle and antiparticle states. This mass term is forbidden
for charged fermions since violates charge by two units.

We will see that neutrinos can be Majorana fermions. Also other non standard
(hypothetical) particles can be Majorana particles, e.g. SUSY gauginos.



There is not a clear distinction between Majorana particles and antiparticles. However,
for E2>M we can distinguish the “particle” from the “antiparticle” by its helicity

VL = ¢ =

"q) . LEFT ® O(m/E) N >

N
! m><//\

wc. @/f > ® O(m/E) o

Notice that for Dirac fermions the ¢, states are different from particles to antiparticles
while for Majorana fermions are the same. “Particle-antiparticle” oscillations (with
small amplitude m/E) are possible.



Dirac States
(4 independent components)

L R L R

Lo Loe
YL YR VR YT

| C |

Majorana States
(2 indpendent components)

booe
H helicity €0 X X 5 rHhelicity
[




Standard Model neutrino interactions

Fermion-Gauge fields interaction Lagrangian in the Standard Model

Lint = Locc + Lnc + Ly

Loo = g [Jg@ W) 4 ch) : W(+)] Charge current
V2

LNC’ — J JNC’ 7 Neutral t
cos Oy eutral curren

Ly =edJev - A Electromagnetic



Charge current interactions
(lepton sector)

IS = (T il + o pvivy)

S
Vf lf lf Vf
f=euT
W W=

Only left-handed fields are involved in the interactions. No flavor changing interactions allowed




Neutral current interactions
(lepton sector)

+ — 1% 1% 7
Jj(wg = E (orvi(9t — gavs)vs + (g — 9ans)lf]
f

Vf,lf Vf,lf

__
1/2+2$|n28 -1/2

1/2



Fermion masses

In the SM fermions get mass from Yukawa and SSB

_ ot
1
(for simplicity we consider here only leptons). Here |; are the right handed SU(2)
singlets and f is the Higgs doublet field. After SSB the Higgs field evolves a VeV

¢:(vﬁ@)

The Yukawa coupling thus becomes a (Dirac) mass term for charged leptons. Without
loss of generality we can choose the matrix y as diagonal. With this choice the charged
leptons become massive

Ly = ZM}Z_L,flR,f/ + h.c. with M]le — yffv/\@
f

Ly

-v

. 1y



Neutrino masses

From oscillations (see later) we have now evidence that neutrinos are massive. How
neutrinos can get mass in the SM? In principle we can add right handed singlets v; in
and write down a Yukawa Lagrangian similar to those for charged fermions

— A . Ox*
/}/ — Z y‘/ff/EquVR,f/ —I— h.C. ¢ = ’é02¢* = ( _¢¢+* )
I

(the last transformation is necessary to make L', singlet of hypercharge). After SSB we
can get a (Dirac) mass Lagrangian for neutrinos

LM,I/ — ZM}{f’ﬂL,fVR,f’ + h.c.

Mg =y pv/V2

However there is a problem...



Neutrinos masses are unnaturally small!

Q=-1/3 d 3 b
Q=+2/3 u c t

Charged leptons e i T

T Neutrinos

L o1l w by wle wolelwnllnlelunlolonlelunlelooleloolelooleloolelon oloy oley wlin ol o]
i 10 1001 10 1001 10 1001 10 1001 10 100 1

meV eV keV MeV GeV TeV

this means that the «y’»’s must be order of magnitude smaller than the «y»’s. This poses a
problem of naturalness. However, forget this for the moment. We come back on it later.




Consider these unitary transformations on the flavor basis (i.e. on the “f” indices)
1%
VL,R%O VL. R ZL,R%OZJL’R

It is straightforward to show that NC and EM currents are invariant under independent
transformations of the neutrino and lepton fields (exercise).

Conversely, the CC current is in general no longer invariant under independent
transformations of the fields. For example:

((;27/ ZVL fYile,y + h.c. = Z [OV Ol]ff’ UL fYiln g + hec.
fr

With these transformations CC interactions are no longer diagonal unless 0'=0V.

We can choose O'as the matrix that diagonalizes the charged lepton mass matrix
O'"M'O' = ML = diag{m.,m,, m.}

With this choice the charged leptons are also mass eigenstates (i.e. they have definite
masses). However, under this transformation in general the neutrinos mass matrix is not

diagonal

v = O MY O + diag



Let OY the matrix thad diagonalizes MY, we can write

MY — (OZTO”)MZ’/)(O”TOZ) = U - diag{mqy, m2, m3}

The matrix U is defined as “mixing matrix” and connect the neutrino mass
eigenstates to the flavor (interaction) eigenstates. In fact if we define

Ve v
S m

v, | =U1 vy

Uy 2%

we have that the neutrino mass Lagrangian is diagonal in the mass basis
_ —m._ M
Ly, = E mqv, v, + h.c.
a

while the CC interactions are still diagonal in the flavor basis

€

Lec = (e, vp, 0.7 | 0 | W + hee.
V2 :



Technical note: from the point of view of QFT the mass fields v™ are the real physical fields
(they describe asymptotic states) while flavor eigenstates are not. In this case the CC
interactions are no longer diagonal

&
Loc = i(ﬂ{n, Uy, ﬂén)UT’yi i W,L-(—i_) + h.c.
V2 :
a

T

W-I—

However, the flavor eigenstates are a convenient convention.



Flavor violating processes?

With neutrino mixing family lepton number é\

is no longer conserved

Flavor violating processes are in principle 4
allowed at 1-loop, for example E s > > > €
U,ua Va U*

L —> ey o

however, the calculation gives 4 g\g\
E v - > » €

R— F(ILL — 6’7 B Z a U“a Va Ue*a
- T(u— ebevy,) 327r — M Uea M2 &
2 Y
2 W
=52 %107 | N Ur Ve (1oas )
8 ; pa leV Z
Iu > > >* > é
36 order of magnitude lower than the present a Upa Va U, a

limits! Nevertheless, the previous proces could
be enhanced by other non-standard processes.



How many neutrinos?

10

ALEPH
DELPHI
L3
OPAL

| ¢ average measurements, J
error bars increased
by factor 10

| [y

86 88 90 92 94
Vs=E_ [GeV]

cm

From the measure of the ete—Z°
resonance at LEP is possible to fit the
the “hidden width” (that is, all the
decays in hidden particles, such as

neutrinos)
S

Oete——270 X (3 — MZ)2 I S2F2Z/MZ

FZ > NI/FI/D
'y =167.1 MeV

N, = 2.9841 £ 0.0083

No more than 3 “active” neutrinos with
mass lower than M,/2.

Limits on other weak particles coupled
with the Z boson.



...however, the LEP measure in principle does not forbid the existence of one or more
singlet fermions (that we can conveniently call them “sterile” neutrinos). They would not
couple to any SM gauge and do not contribute to triangular anomalies. They could
manifest their existence through the mixing with active neutrinos.

[ve N (o
™m
™m
T m
Vs.1 Vy
™m
VS,Q V5

The interest for sterile neutrinos have raised recently for some anomalies in the data.
However, the existence of these extra states is still a matter of debate.

For the sake of simplicity in the following we consider only three generations of active
neutrinos.



The mixing matrix

Any unitary NxN matrix can be parameterized by the product of a diagonal phase matrix
and N(N-1)/2 block matrices containing rotations and phases (Murnagham, 1962)

with

cos 0, ..+« sinf e

—sin @, el ... cos 0,1

Oup € 10, 7/2) g, dap € [0, 27)



Apparently, there are N(N+1)/ independent phases. If we look at the structure of
interactions, we see that under the gauge transformations

m . ™m .
v, — exp(iag)v,”, Iy — exp(iBy)ly
the NC and the EM terms are invariant, while the CC term changes as
9

V2

Notice the Lagrangian is no longer invariant under global gauge transformations of each
family: the family lepton number is violated! However, the Lagrangian is invariant under
the global transformation

Loo — Uafei(a“_ﬁf)ﬂﬁa’yilL’fWi(_i_) + h.c.

v, — exp(iN)v)", ly — exp(iA)ly

This means that the total lepton number is conserved (this will be no longer true when
we will consider Majorana mass terms).

We can use the previous relation to remove 2N-1 unphysical phases (because the
previous relation is invariant under the change a,~> o +A and 3=~ p+A). We remain thus
with only N(N+1)/2-(2N-1)=(N-1)(N-2)/2 physical phases.

For N=2 the matrix U is completely real. For N=3 there is only 1 physical phase.



Without loss of generality we can choose

1 0 0

Usz(Ba3) = | O co3  So3

0 —s23 cC23

C13 O 813€i5CP
Z/{lg((glg, 5) = 0 | 1 0
—s13¢¢P 0 C13

ci2  S12 0
U2(012) = | —s12 c12 O
0 0O 1

with the shorthand ¢;; = cos 0,5, s;; = sin6;;

C12C13 512C13 s13€e” "OCF
_ .0 Xo)
U = | —s12C23 — C12513523€*°¢F C12C23 — S12513523€'°°Y 13823
iS5 is
512823 — €12513C23€ °°F  —(C12893 — S128513C23€ °CF C13C23

Pontecorvo—Maki—Nakagawa—Sakata matrix (PMNS matrix)



III

“Geometrical” meaning of U

Mixing angles seen as “Euler” rotations

Notice that if 6,,=0

* v, linear combination of v, ,
* vslinear combination of v,

We will see that 0,5 is small but
non-vanishing.




Neutrino masses

From neutrino oscillations we will see that neutrino masses are organized in a
“doublet” (conventionally v, and v;) and a “lone state” (v;). The absolute scale of mass as

well the hierarchy of masses are unknown.

Normal Hierarchy (NH) Inverted Hierarchy (IH)
v, l
V3 . Y. 6m2

—— T

1 1
diag{m?2} = M? + diag {—§5m2, —|—§5m2, j:AmQ}

Neutrino oscillations are sensitive only to the differences of the mass?.



Nuclear [ decay and neutrino mass

The most sensitive way to measure the neutrino masses is to measure the recoil spectrum

of the electron of the nuclear beta decay. 2
m

U 1%

o e Ya
(A,Z)%(A,Z%—l)%—e + v, Z | \
A 6

The recoil spectrum can be calculated through the Fermi theory and gives

dl’ G
dT. 273

(;0829 IM|*F(Z,T.) Z\Uea\zEGpe aPa©(Q — T, —

where Q is the energy available in the process, GF is the Fermi constant, 0, the Cabibbo
angle, ‘M the matrix element, F the Fermi function (which accounts for the EM interaction
between the electron and the nucleus), p,, E. (T.) the momentum and total (kinetic)
energy of the electron, and p,, E, the same for the a-th mass eigenstate. We have summed
incoherently on all final states. The step ® function ensures that the neutrino state v, is
produced if its total energy is larger than its mass.



For practical reasons it is convenient not to measure directly the recoil spectrum but the
“normalized” quantity (Kurie function)

K(Te) —

dr /dT,

G2
23

¢ cos2 6, IMPPF(Z,T.)Ecpe

For massless neutrinos the Kurie function is linear: K( ) Q T
For massive neutrinos we have

K(T.) = |(Q —T¢) Z |Uea|2\/(Q —Te)* —mg

1/2

1/2

In general the measure is made fitting the spectrum for value of T, not too close to the Q
value (were the decay rate tends to zero). For this reason we can expand the square root

2 2 |1 1 mg |
_ 2 1 m% |
B R T e

~ (Q - T/ (Q - T0)? — m3



with
2 2 2 2,92 9 92 9 2 92
myg = E NUeal“m;, = ci3(ciam] + s79m3) 4 s13ms3
a

This is the same expression that we can obtain if only one generation of neutrinos is
considered.

constant
offset

Unfortunately the measure is complicated by: 1) excitations of the parent nuclei in the
lattice 2) detector resolution and bias uncertainty .



Tritium B decay: the lowest Q-value known in nature

°H —° He+e™ + 1. (Q=1857keV, T}y =12.32y)

ITEP my

T in complex molecule

magn. spectrometer (Tret'yakov) 17-40 eV experimental results
Los Alamos 100 i
gaseous T, - source <93eV 50
magn. spectrometer (Tret'yakov) N;‘
Tokio S O -==[4—F 7% - =
<131eV & | 4 S —{

T - source £

) t ter (Tret'yak 50
magn. spectrometer (Tret'yakov) - A Y Livermore
Livermore 100 L A Los Alamos
gaseous T, - source <7.0eV i ® Mainz
magn. spectrometer (Tret'yakov) 150 L ® Tokio
Zirich i ® Troitsk
T, - source impl. on carrier <11.7eV -200 | ¢ 'I;?nt'sl;(step)
magn. spectrometer (Tret'yakov) A zunic
Troitsk (1994-today) y > 0 |__electrostatic

- ) ' spectrometers

gaseous T, - source <2.2eV 300 magnetic I
electrostat. spectrometer | | spectrometers '
Mainz (1994-today) B350 Lt ldei it
frozen T, - source <23eV 1986 1988 1990 1992 1994 1996 1998 2000

electrostat. spectrometer \ J year




Neutrino oscillations

Heuristic derivation: Let us consider a neutrino moving as a plane wave in the “x”
direction. The equation of motion can be expressed in form of Klein Gordon equation

(02— 92 — (M"?) v(a, 1) = 0

Let us suppose that the neutrino has a definite energy and is ultra-relativistic (i.e. its
energy is much greater than its mass). Ansatz:

v(z) =Wy (r)exp(il - (x — 1))

that is, the neutrino wavefunction is written as the product of a plane “carrier” wave
moving (almost) at the speed of light and a “modulating” wave, function of the distance.
Inserting in the equation of motion we have

1
W () ~ E(M”)Q\IJ,,

where we have supposed that the modulating wave varies very slowly respect to the
carrier wave, i.e. ¥, K E,, (we will verify this a posteriori).



The previous equation is a Shrodinger-like equation describing the evolution of the flavor
content of the neutrino. In the flavor basis the equation become

1 Ve
iU (z) = ﬁ(Jdmg{mg}(fr v, = | g,
| ¥r

which has solution

2

U (x) = exp (—iUdiag{mz}UT x) L W(0) = Udiag {e—i@%w } Ut w(0)

2k

that is
m2
Vi(x) =Y UasUspe 22701 (0)

Taking the square modulus we have the probability that a neutrino with an initial flavor f’
is observed with a flavor f at a given distance x from the source

m?2

Pvy = vpz) = ZUan;f,e_Zﬁx
a




Remark: the previous derivation is only heuristic because flavor eigenstates are not
physical fields. Nevertheless the result is (almost) correct. A correct derivation must take

in account QFT. The process can be regarded as a sigle process in which we sum
coherently on all the amplitudes of the processes in which the mass eigenstates are seen

as propagators

f/ gU;;’a eip-x gUfa f 2
E V2 P — Mg + 0 V2
a Va
W+
W-

the calculation is much more complicated but the result is the same to those obtained
with the simple derivation, apart small corrections negligible for all practical purposes.



With a little algebra, using the unitarity of U we obtain (exercise)

. oy .o [(Am2
Plvp = vex) =0pp — 423%[UfanbUf,an/b] sin o
a<b

. [ AmZx
+2  S[UsaUj Ui o U] sin ( ol )
a<b

2 2 2
where Amab = my —m,

Notice that oscillations are sensitive only to the difference of the square masses of the
mass eigenstates. Oscillations are thus insenstitive to absolute neutrino masses.

For the sake of simplicity let us consider only two generations. In this case (exercise)

1 — sin? 20 sin’ (Am2 x) if f = f

Pvy = vex) =
(Vs %) sin? 26 sin” (—x) if f"£f



The oscillation wavelength is (exercise)

ArE E eV2
A= —— ~ 247
Am? X MeV MeV Am2

sugg.:use hc ~ 197 MeV - fm

Notice that the de Broglie wavelength (i.e., the “carrier” wavelength) of the neutrino is
given by
2T

A=
E

the ratio between the two wavelengths is

N 2FE?

X Am?

We will see from phenomenology that the value of the Am?‘s are <103 eV? while in almost
the process of interest the neutrino energy is always EMeV. This means that the previos
ratio is always greater than 10%°! This fully justifies the previous assumption that the
amplitude of the wave varies very slowly respect to the wavelength of the plane wave.




CP violations in oscillations

Under CP transformations we “reverse” the diagram of the oscillation process

\g?i a gij/ﬁa !
T(vy — vy) Z o 2/
P -
T gUys, 9Us., £
(7 — 1) = N - Ve,
p U,



This is equivalent to interchange U with its conjugate in the oscillation formula

, Am=, T
2 (Ul U aUps) sin | =2
a<b

invariant

changes sign

+2

Since in general the two probabilities are different (unless U is real): CP violations in
neutrino oscillations.




The same result can be obtained exchanging the initial and the final flavors in the
oscillation formula (T violations)

P(Ef — ﬂf/;il?) = P(Vf/ — Vf;ili)

while interchanging neutrinos with antineutrinos and initial and final flavors the oscillation
probability is invariant (CPT invariance)

P(ﬂf/ — Df;x) = P(Vf — Vf/;a?)
the differences between the two probabilities is

AP = P(Df — Df/;ll’;) — P(Vf — Vf/;a?)

A Am?2 Am?2
= 16J;eff £ Sin 2727137 sin % sin %

where the “Jarlskog invariant” J is given by

1
J = g sin 2912 sin 2913 sin 2(923 COS 913 sin 5C’P



Observe CP violation is hard! To observe CP violations we need

1) 3,20,

2) f#f’ (appearance experiment)

3) all mixing angles non zero

4) all Am? non zero

5) (almost) single energy experiment and accurate energy resolution of the detector
in order to avoid smearing in the (linear) “sin” terms over a broad energy
spectrum

The smallness of 8,5 and the fact that there is one mass scale dominance (Am?,; K Am?2,,)
make the measure of CP violations a big challenge for the future.



Neutrino oscillations in matter

Neutrinos travelling in matter receive contributions from coherent forward scattering on
electrons and quarks. The propagation equation (in flavor basis) is modified as follows

iU (z) = Udlag{m2}UT+V o

2k

where the potential matrix V contains the interactions with the matter background. For
standard interactions (no FCNC currents) the matrix V is the sum of two diagonal matrices
V=VNC+VCC containing Neutral Current and Charge Current interactions with matter

r v, » " .
Vo = diag< 70 70 A -
\.
(Ve )Ve N
Voo = diagd W o0 0
______ e e }




Matter effects can eventually be used also to probe non standard FCNC and FDNC
interactions. Here we consider only standard interactions.

V¢ matrix is diagonal (up to very small 1-loop corrections) and can be removed by a
overall phase redefinition

U — exp(—iVNeo)V

The only nonzero CC component can be calculated by averaging the interaction Lagrangian
on the electron background. For low energy neutrinos (EKM,,2/m_~10%eV) we can
neglect the W propagator, so the effective Lagrangian is

e |
Loc = —72@72(1 — ) We - Ueyi(1 = 7°)€)pir

= G—\/g@vi(l —)e)okr - Teri(1 = 7" )ve

where we have performed a Fierz transformation. The average over the non relativistic
unpolarized electron background gives

LCC(ZU) — _\/iGFNe(Qj)[De,L’VOVe,L]

where N, is the number density of electrons.



From this Lagrangian we obtain the equation of motion of neutrinos

1 — 15}
ik oy, — M — ﬂGFNe(x)%T” v =0

Reasoning as in the case of free neutrinos we obtain the evolution equation

d o 1
Z%V(SIS‘)— 2EUd1ag{ma}U + diag{Ve(z),0,0} | v(x)

with  V.(z) = V2GpNe(z)

This is called Mikheyev-Smirnov-Wolfenstein (MSW) equation

For antineutrinos V, reverses the sign.

Ne
Exercise: prove that |/, — 7.63 X 10_146V :

mol - cm—3

Despite the “smallness” of the potential, the matter effect is a “cumulative” effect that can
modify deeply the dynamics of flavor oscillations for neutrinos moving into matter.



Neutrino potential in the more general case (from T. Kuo and J. Pantaleone, Rev. Mod.
Phys. 61 (1989) p. 937)

TABLE II. Potentials induced for a neutrino traveling through background matter. The upper sign
refers to neutrinos, the lower sign to antineutrinos. N, is the number density of fermion f in the back-
ground matter. For nonrelativistic background electrons, (E,)—3 TMe.

Neutrino Background
flavor flavor Potential V
‘ ) ~ 8‘/§GF v
Vv, e +Gr(4sin 6W+l)(Ne-—NE)/\/2-—~——~———-—((E )N +(E,)N,)
W
ViV, e +Gr(4sin*0y —1)(N,—N,)/V2
Ve,V“,VT n iGF(N" ,,)/‘/2
Ver ViV p 20 )N, —N.)/V2
_ 8V2GrE
+2V2Gp(NL—NL)— —= L
Ve F( v v ) 3M% v )
VsV, v, +V2G(NL—NL)

1

very interesting for neutrino dense medium, such as supernova core



For constant matter density we can define the mass eigenstates in matter

" = (U™)Ty
where UM is the unitary matrix that diagonalizes the hamiltonian in the propagation
equation
2

M2
(U™THU™ = (U™)T [UJZW—EUT + V] U™ = diag{ a }

the M, are the “effective” masses in matter. After this we can easily calculate the

oscillation probability in matter in the usual way

2
2

M2
Plvy = vpx) = Z afUgpre 28"
a




For two generations the diagonalization is straightforward
[m o ( cosf,, sinb,, >
—sinf,, cosf,,
S$26
V(2EV/6m?2 — c29)? + 52,

with sin 26,,, =

Notice the existence of the critical condition 2 F'}/ = 5m2026
When this condition is fulfilled the matter mixing angle becomes maximal (0,,=mr/4): this
condition is called “resonant condition”: oscillations in matter become maximal

independently to the value of the vacuum mixing angle 0.

For density varying matter N (x) the MSW equation is non trivial. In fact the matrix UM is in
turn function of x and makes the equation for the states v™ non diagonal.

d 1 d
. M2 . m ™m m
Z_dxy —2Ed1ag{ “1 —qU de U

In general the last term in the Hamiltonian is non diagonal



Density (gm/cm?)

For varying density the MSW equation must be solved in general by numerical integration
(except for very special profiles N (x)). However, we have two practical situations

1) Slowly varying potentials (such as
into Sun or in Supernovae)
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2) Slabs of potentials with (almost)
constant density (such as inside the
Earth)
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In the second case we can write the total propagation operator as the product of the
propagation operators for each i-th slab.

T=Tn TorTo

Each T, is calculated considering a constant (average) density in the slab. The deviation
from constancy is taken in account with perturbative methods.

The first case is more tricky. The idea is based on the fact that the term U™'dU™/dx is
always small except near resonance point(s). Far from resonance points the Hamiltonian
for mass eigenstates in matter is almost diagonal (adiabatic approximation), while in the
resonance point there is a nonzero probability of “jumping” between mass eigenstates.

This can be better seen in 2 generation case

. d Z{ Em , v
(o )= 5ot (1)
with  K™(2) = \/ (keap — V(@) + k2535, k = 6m?/2E

ksae
I
O = 2k2.

/
V (x) - 0,,” is maximum when k_, is minimum (resonance)



If we neglect 6’ the hamiltonian is diagonal and the propagation of v, is trivial
Suppose for example that an electron neutrino is produced in the center of the Sun.

Tl/{” —vyt Tyg” —vyt
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kCyg
>
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Averaging on the (fast) oscillating terms we get the oscillation probability

1 1
Plv. = ve) = 5 + 5~ s cos 20p" cos 20, Py = |T,m_,m 2



The average on the oscillating terms can be done for all practical cases (when integration
in energy, time and production zone must be done). In some special regimes this

approximation can drop and corrections to the previous formula are needed (“quasi-
vacuum” oscillations). The discussion of these cases is beyond our purposes.

The “jumping probability” can be calculated with the semiclassical theory. A sketch of the
calculation is the following:

1. Continue analytically the equation in the complex field

2. “Turn away” from the branch point z, defined by k,(z,)=0. Since we are “far” from the
resonance point the solution on the curve C is still “adiabatic”. However z, is a branch
point and thus k_(z) evolved on C has opposite sign respect to those evolved on the
real axis: this means that at the end the final mass state has opposite eigenvalue and

thus is “switched” ) f b (2)d
m = Z m(z)dz . m
vy (x4) =€ 2 e v1(z-)
3. Deform the curve C to the curve C'. The final result is

P; =exp (—2%/ dz\/[kCQQ —V(2)]? + kzsge)

r




The previous integral can be calculated only if an analytic form for V(z)ocN_(z) is known.
The result is
T
Py =exp —§’YF(9)

where the adiabaticity parameter vy is given by

B om? s5, (| dlog N,
7= 2F C20 dx

T=T,

which depends on the the gradient of N, at the resonant point, ad F(0) depends on the
profile of N(x). In practice the profile N (x) comes from simulations and is thus tabulated.
However, in most cases N (x) is not far from an exponential profile. In this case

F(0) =1 —tan’¥

Previous formulae reproduce with high accuracy numerical solutions but are extremely
handy and physically transparent. Corrections for the previous formulae are known, but

are beyond our purposes.

For solar neutrinos with the actual parameters (large 0) the adiabatic approximation is
good enough (P,=0). Jumping probability nowadays have practical interest essentially for

supernovae.



Back to v masses: The see-saw

As anticipated, the usual standard model Higgs mechanism cannot naturally explain why
m,<O(eV). Extensions of the Standard Model are invoked for account the smallness of
neutrino masses. Among other possible mechanisms, the most reliable is the so called see-

saw model. In this model new massive d.o.f. are included.
The simplest example of see-saw (called type | see saw) is to include three new heavy right

handed neutrinos with a Majorana mass term (since RH neutrinos are singlets, an explicit
mass term does not break symmetry)

_ _ . 1
Ly = ELY¢ZR + ELY/¢VR + §D%mRVR + h.c.

In this case Y and Y’ can be of the same order of magnitude. After SSB neutrinos acquire
both a Dirac and a Majorana mass term

LM,,/ = MplVLVR + §mRE§{VR + h.c.
mp =Y'v/vV?2

Let us consider one generation for the moment...



The previous mass Lagrangian can be rewritten as

_1 0 mp NR
LM_§(NR’NL)< mp Mg ) ( Nt >

where we have defined the Majorana fields

C
NL,R — VL R + VL .R

We now can suppose that m; is of the order of the SM scale, while m; is generated by new
physics beyond SM. In general m, is protected by SM symmetries while m, is not (because
the RH states are singlet of the SM). We can thus suppose that mg;>m,.

Diagonalizing the mass matrix we have two Majorana mass eigenstates

2
. m T
V}JSZ N _m—DNR with mass —D << mD
R mpg
mp
N&ZNR—Fm—NL with mass mer
R

For three generation neutrinos the neutrino mass matrix for v’ is M p - ]\41;31 - Mp



Summarizing:

1. Neutrinos evolve a Majorana mass (or equivalently, they are Majorana particles).

2. The state v/  is is almost “left handed” (mostly active). Its mass is suppressed by
higher scale mg. It can be identified with the ordinary neutrino.

3. The state N’; is almost “right handed” (mostly sterile). Its mass is of the order of the
GUT scale. It cannot be observed due to its very high mass and very weak coupling
with the SM sector, however can play a role in leptogenesis.

The see saw mechanism yield a simple and natural explanation for the smallness of the
neutrino masses .




Kind of see saw

_ _ A 1
e Typelseesaw Ly = ErYolp + ErY ovp + ipjc:ngVR + h.c.

(¢) (¢)

C
1% 1%
il e R
Y/ Y/T
* Type |l see-saw: in this case no new RH neutrinos are needed but a new SU(2) scalar

triplet ® takes the role of the massive d.o.f. The most general renormalizabe
Lagrangian is

_ 1 _
Ly = E Y olp + 5ELY”qn'agEg — N Maplioca®d + h.c.
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* Type lll see-saw: in this case no new RH neutrinos are needed but a new SU(2) fermion
triplet T takes the role of the massive d.o.f. The most general renormalizabe Lagrangian
is

_ _ 1 _
Ly = ELY ¢l + V2EL YT + 5Tr (TMrT?) + hec.

with T = ( T(;{_\@ _TJ(T/L\& )

@ ()

X

TO
YU:v/// Y///T

All these models (or combination of them) can be justified in the context of SUSY and/or
GUT theories.

v

VL



“Integrating away” the massive d.o.f. we obtain the most general dimension 5 (effective)
operator that can generate a Majorana neutrino mass (“Weimberg operator”)

M)y =
( Ugff EL,f¢'¢TEL,f’

—ZY'MZ'Y'T Typel
Ao 7Y I

2 - rm T
—%Y’”MT 1Yu/T T'ype 111

M,

=
<
i)

Q)

et

The matrix M, is suppressed by the scale of new physics (as expected). This again explains
the smallness of the neutrino masses. Moreover with a Majorana mass term, the total
lepton number is no longer conserved (AL=2).

The proof that neutrinos have a small Majorana mass is a strong indication of new Physics
beyond Standard Model!



Majorana mixing matrix

To cancel out non physical phases in the mixing matrix we have used the fact that with
Dirac fields the Lagrangian is invariant under the transformation

m - m :
v, — exp(iag)vy', Ly — exp(i8s)l;
This is no longer true with Majorana fields since the Majorana mass term

E MaVsVq + h.c.
a

This means that the angles o, are physical and can be measured (in principle). However, a
global phase can be neglected since all physical quantities always contain the modulus of a
given linear combination of the U.,’s. In conclusion, for Majorana neutrinos the Mixing
matrix can be written without loss of generality as

UM = UD(9237013791275C'P) ) F) I'= dlag{17 6ia276ia3}

where UP is the mixing matrix already introduced for Dirac neutrinos and without loss of
generality we have chosen a,,=0. The phases o, are called Majorana Phases. They cannot
be observed neither in neutrino oscillations nor in beta decay experiment.



Neutrinoless double beta decay
It is well known that some isotopes decay through a double beta process
(A, Z) — (A, Z +2) +2e~ + 27,
(A, Z) — (A, Z — 2) + 2e™ + 20,

because the single beta process is kinematically forbidden or (more rarely) suppressed
respect to the 23 process. Example: the decay 7®Ge in 7°As is forbidden because the mass
of 76As is higher (7®As is a 2* nuclei while 76Ge is 0%)

2+
0* vy
7GSe




Q25 keV]

23~ -decay Ty}, byl Ty} [2’_]_
46Ca — 46T} 990.4 +2.4 > 1.0 x 10'7 (90%)
48Cg — 48Tj® 4272+ 4 42733 x 10" > 1.5 x 10%! (90%)
0Zn — ™Ge 1000.9 + 3.4 > 4.8 x 101
Ge — T0Se  2039.006+0.050 (1.8+0.1) x 10?1 > 1.9 x 107 (90%)
80Ge — 80Kr 133.9+3.7
82Ge — 82Ky 2995.1 + 2.0 (8.3+1.2)x 10" > 2.7 x 102 (68%)
S6Kr — 568y 1255.6 + 2.4
M7Zr — %Mo 1144.1 £2.0 >1.1x 1017 (90%) > 1.9 x 10'% (90%)
9%Zr — OMo®*  3350.4+2.9 21153 x 107 > 1.0 x 10% (90%)

%Mo — *Ru 112+6 > 1.0 x 10
100Mo — 'Ry 3034 =6 6.8+23 x 10'® > 5.5 x 10?2 (90%)
104Ry — 1%4Pd 1300 + 4
110pq — 119Cq 2000 % 11 > 6.0 x 10'6 > 6.0 x 10'¢
14cq — 14gp 536.8 + 3.3 >90.2x10%(99%) > 2.0 x 10%° (90%)
16Cq — 1168y 2805.0+3.8 2.6107 x 101° > 7.0 x 10?2 (90%)
122G — 122 366.2 + 2.8 > 5.8 x 1013
124gp — 1247 2287.0%1.5 > 1.0 x 10%7 > 2.4 x 107 (95%)
128Te — 128Xe 867.2+1.0  (22+0.3)x 10* (G) > 8.6 x 10* (90%)
130T — 130Xe 252884+ 1.3 (7.9+1.0) x 10 (G) > 1.4 x 10%3(90%)
134Xe — 134Ba 830.1£ 3.0 > 1.1 x 10'¢ > 8.2 x 10'9 (68%)
136Xe — 1368, 2468 + 7 > 8.1 x 102 (90%) > 4.4 x 10 (90%)
1420 — 142Nd 14169+ 2.1 > 1.6 x 107 (90%) > 1.5 x 10'? (68%)
MENG — '46Sm 702429
148Nd — 48§y, 19288+ 1.9 > 3.0 x 108 (90%) > 3.0 x 10" (90%)
150Nd — 1508;m  3367.5+2.2 (6.8+0.8) x 10** > 1.2 x 10*! (90%)
154gm — 18G4 1251013 > 2.3 x 10'8(68%) > 2.3 x 108 (68%)
160G4 — 190Dy  1729.7+13 >1.9x 10" (90%) > 1.3 x 10%! (90%)
I0Er — 10Yh  653.6+1.7 > 32 x 1017 (68%) > 3.2 x 10'7 (68%)
176yh — 1THf  1086.7+ 1.9 > 1.6 x 10'7 (68%) > 1.6 x 10'7 (68%)

186\ — 186Qg 488.0 £ 1.7 > 5.9 x 1017 (90%) > 2.7 x 10%° (90%)

19205 — 192p¢ 413.5%3.0 > 9.8 x 10"

198py _, 198 g 1047+ 3 >3.2x10M

W04 g — 24P 4163+ 1.5

282Th — 232U 842.2 +2.5

238] — 8Py 11450+13  (2.0+06) x 10* (R)

a 3-.decay energetically allowed but enormously suppressed.

Table of 23~ decaying nuclei
(taken from the Giunti & Kim
book)



d > U

If neutrinos have Majorana masses, (lepton violating) double beta decay without neutrinos
(Ov2p) is also possible

(A, Z) = (A, Z +2) 4 2e~

> U
d Uea -

—>C
> Ve
a
U, ¢
d eq > U

This process is subleading to the main 2v2f3 process.



III

The Ov2[3 process can be observed as a small “peak” at the end of the spectrum of the two

electrons for the 2v2f3 process.

== Two Neutrino Spectrum

- Zero Neutrino Spectrum
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The decay amplitude for this process is proportional to the propagator describing the
internal neutrino line

Gy (g — 1) Z 0| T [Va,1(21)vg 1 (22)]]0)
: T _
Remembering that 1/, — _VaC

we obtain, after some straightforward calculations

. d4p Mg ip-(xo—mx 1_

2
mg

The typical momentum inside nuclei is
(%) ~ (|p|) ~ 1/R ~ O(10 — 100)MeV

which is of course much greater than the typical neutrino mass. This means that m_2 can
be neglected at the denominator and thus

d4p eip-(azg—:cl) 1 — 75
Gulzz —an) = =1 { 2 U / e P 2




The decay rate of the process is thus proportional to the term
_ U2
mﬁﬁ o eaa
a
2

] 9 Yicv 9 2i(as—8cp
= |c13(clomy + s7amee™?) + sTymase )

(notice that the Majorana phases now enter in a physical quantity). In fact the half life is
given by

2

(1Y) — @M E N
myg
where G% is the space factor and M% the nuclear matrix element . While the first is

relatively easy to calculate, the second is very difficult and constitutes the major source of
uncertainty of the measure.

Notice that the Ov2[3 decay may take contributions also (or mainly) by other non standard
interactions (for example leptoquark or SUSY particles). However, the mere existence of
0Ov2p is a proof of a Majorana neutrino mass



ov2p

“blackbox”

Ov2p

“blackbox”




Fundamental physics is not exclusively a
matter of high energy accelerator
experiments but can be probed also by low
energy nuclear processes!



