Introduction

Consider an observable R(E) and an integral transform &(o):
&(0) = | dE K(o,E) R(E)
with some kernel K(o,E)

Often it is easier to calculate #(o) than R(E). Then the observable
R(E) can be obtained via inversion of the integral transform.

In order to make the inversion sufficiently stable the kernel K(o,E)
should resemble a kind of energy filter (Lorentzians,
Gaussians, ...); best choice would be a 5-function.

For the LIT we consider Lorentzians: K(o,E) = [(E-c.)* + o7]*
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Inclusive response functions have the following form

1{n|®[0)" 8(w = Ey + Eo)

where we have set for g=const: R(w,q) > R(w)

|0), In) and E,, E are eigen states and
corresponding eigen energies of Hamiltonian H and

O is transition operator inducing the reaction
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main point of the LIT :

Schrodinger-like equation with a source

—

(H—Ey—wy+il)¥ =8

The solution is unique and has bound state like
asymptotic behavior

> onecan apply bound state methods
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LIT - Example

deuteron photodisintegration in unretarded dipole approximation

A

: . . 147

unretarded dipole approximation >0 = ), , = bz
i=1 i 2

Z,T : 3" components of position and isospin coordinates of i-th nucleon

’
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NN interaction: Argonne V14 potential
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LIT Gy(oo) from inversion with various M__
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La)

X conventional

30 /
@ [MeV] @ [MeV]

X

GY(m) from inversion with various Mma = 25

and result from conventional calculation with explicit
np continuum wave functions
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LIT method and
resonances

The LIT: a method with a controlled resolution
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Gy(3P1) shows two corresponding resonances: low-energy resonance very pronounced

with small width I'=270 KeV, the other one is much weaker and has a larger width
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Complete inversion with set ) defined previously using in

addition as new first basis function x;‘es

-=- 2MeV
— 0.5 MeV

R N 20 fm

Im

3 3. 40 60 30

® [MeV]

Scuola Raimondo Anni - 2013

® [MeV]

100

120 140




Up to now direct numerical solutions of Schrodinger equation for
bound state and LIT equation for ¥

For A > 2 it is more convenient to use expansions in complete
sets using expansions in HH or HO functions

Reformulation of the LIT

LIT(c, c)_-/Im{@ 0" (0, + E,~H +1i0)1 0 |¥,) }

R(E =o0,) = Im{llm <T |0 (6, + E,-H +ic)!0|¥, )}

c, >0
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New example:

deuteron photodisintegration with the
LIT method using expansion technigues

First we use the JISP-6 NN potential which is defined on an HO basis:
<n'|V|n> up n=n'=4 (n=0,1,2,...; HO quantum number, Q = 40 MeV)

Also deuteron wave function and ¥ are expanded on HO basis

Note: radial parts contain Laguerre polynomials up to order N
times Gaussians

Alternatively exponential fall-off exp(-r/b) instead of Gaussians
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This leads to the following LITs with Laguerre polynomials up to order N with

exponential fall-off (b=0.5 fm):

s0
L JLL G, = 0.1 MeV ———
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Laguerre polynomials up to order N (exponential fall-off)
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Laguerre polynomials up to order N (exponential fall-off)

LIT [arbitrary units
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Laguerre polynomials up to order N (exponential fall-off)
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LIT approach is a method with a controlled resolution!
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Lanczos response

Since the Lorentzian function is a representation of the 3-function one
could think of calculating R(w) as the limit of L(w,0,,0) for o -—>0.

The extrapolation would give

R(0) = 21 d(w—el)
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Lanczos response

Since the Lorentzian function is a representation of the 3-function one
could think of calculating R(w) as the limit of L(w,0,,0) for o -—>0.

The extrapolation would give
\ \
RW) = 2 1 &S(w—¢ )
vV Vv \Y,
Lanczos response: é-function is replaced by Lorentzian with small ¢

R(W) = Zir'v L(oo,e\'j',cl)
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Lanczos response

Since the Lorentzian function is a representation of the 3-function one
could think of calculating R(w) as the limit of L(w,0,,0) for o -—>0.

The extrapolation would give
\ \
RW) = 2 1 &S(w—¢ )
vV Vv \Y,
Lanczos response: é-function is replaced by Lorentzian with small ¢

R(W) = Zir'v L(oo,e\'j',cl)

Deuteron photodisintegration:

Consider all three transitions °P_, °P ,°P_—°F,

now expansion of radial LIT part in HO functions
NN potential: JISP6
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O (o) from inversion and Lanczos response
Y “trueﬂ

GI:]. MeV

W [MeV]
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Gy(oa) from inversion and Lanczos response

“true”

[=0.5MeV

HQO basis:
fixed NH 022400

o [MeV]
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Conclusion

Strength for a given discrete state of energy E is not the
actual strength for this energy, but can only be
Interpreted correctly within an integral transform
approach.

The correct distribution of strength is obtained via the
inversion of the integral transform.
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LIT application for inclusive electron scattering
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LIT application for inclusive electron scattering

e 0t resonance of 4He
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LIT application for inclusive electron scattering

e 0t resonance of 4He

e Longitudinal response function R (w,q) for A = 3 and 4
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LIT application for inclusive electron scattering

e 0+ resonance of 4He
e Longitudinal response function R (w,q) for A = 3 and 4

e Transverse response function R_(w,q) for A = 3

% A degrees of freedom

% Quasi-elastic response at higher g (q=500-700 MeV/c)
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O™ resonance in longitudinal response
function R in *He(e,e')

S. Bacca, N. Barnea, WL, G. Orlandini, PRL 110, 042503 (2013)
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Ot Resonance in the
“He compound system

Resonance at E; = -8.2 MeV, i.e. above

the 3H-p threshold. Strong evidence in
electron scattering off 4He

e Bikeotenn ar el & Dlyeegr=-nogey siade Jm " e

['=270x70 keV

G. Kobschall et al., NPA 405, 648 (1983)
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Results of our LIT calculation
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o, = 0.001 MeV
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The present precision of the calculation does not
allow to resolve the shape of the resonance,
therefore the width cannot be determined.
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The present precision of the calculation does not
allow to resolve the shape of the resonance,
therefore the width cannot be determined.

However, the strength of the resonance can be
determined!
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The present precision of the calculation does not
allow to resolve the shape of the resonance,
therefore the width cannot be determined.

However, the strength of the resonance can be
determined!

Of course not by taking the strength to the discretized
state, but by rearranging the inversion in a suitable way:
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The present precision of the calculation does not
allow to resolve the shape of the resonance,
therefore the width cannot be determined.

However, the strength of the resonance can be
determined!

Of course not by taking the strength to the discretized
state, but by rearranging the inversion in a suitable way:

Reduce strength to the state up to the point that
the inversion does not show any resonant structure at the

resonance energy Eg:

LIT(6,,6) - LIT(c,,0,) - f, / [(E 2 +62] = UT(o,,0,f,)

with resonance strength f,
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Inversion results with
different f; values
AV18+UIX, g=300 MeV/c
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Comparison to experimental results

0 Koebschall et al.
A Frosch et al.

x  Walcher
—- Hiyama ef al.
—_— AVI1B4+UIX

= NN(N'LO) +
3NF(N’L.G)

LIT/EIHH Calculation for AV18+UIX and Idaho-N3LO+N2LO

Dotted: AV8' + central 3NF (Hiyama et al.)

Scuola Raimondo Anni - 2013



(e,e') Longitudinal Response

/||

iy
—

o s _

7;‘_’, 15 q=200 MeV/c o
SURPRISE: 10

= 5

e
AT LOW q

(b)
q=100 MeV/c

0
0
3
6
4
o)
0

Calculation via EIHH
with force model:
AV18 + UIX

3

>
X
1.’1’“|£i
'
]
m hl
=
=
'S
e

® [MeV]
S.Bacca et al.., PRL 102, 162501
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Dependence on different 3-nucleon forces

—=- AVI13
— AV IS+UIX
= AV I18+TM’

30 33
o [MeV]

S.Bacca et al., PRC 80, 064001
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3-Body inclusive electrodisintegration
Role of 3-Nucleon force

LONGITUDINAL
RESPONSE

3 "He |
=250 MeV/c
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V. Efros, W.L., G. Orlandini A ‘ *
E. Tomusiak

PRCG69, 044001 (2004)
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Transverse response function R (w,q)
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Transverse response function R (w,q)

Subnuclear degrees of freedom can become important
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Transverse response function R (w,q)

Subnuclear degrees of freedom can become important

= Meson exchange currents (MEC)

MEC with LIT method: S. Della Monaca, V.D. Efros, A. Khugaev,
WL, G. Orlandini, E.L. Tomusiak, L. Yuan, PRC 77, 044007 (2008)
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Transverse response function R (w,q)

Subnuclear degrees of freedom can become important

= Meson exchange currents (MEC)

MEC with LIT method: S. Della Monaca, V.D. Efros, A. Khugaev,
WL, G. Orlandini, E.L. Tomusiak, L. Yuan, PRC 77, 044007 (2008)

® A isobar currents (A-IC)

A-IC with LIT method: L. Yuan, V.D. Efros, WL, E.L. Tomusiak,
PRC 81, 064001 (2010)
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NR: dashed
N R + M EC . d Otted ._ q=0.882 fm_{lH;} _ q=2.47 fm
Rel.+MEC: full zsf '

e

10 15
®  [MeV] ®  [MeV] ®.  [MeV]

q=174 MeV/c q = 324 MeV/c q = 487 MeV/c

(V.D. Efros, WL, G. Orlandini, E.L. Tomusiak,
Few-Body Syst. 47, 157 (2010))
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A degrees of freedom
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Schrodinger equation with A degrees of freedom
Y=Y¥ +V¥
\ A

(T.+V,—BY¥Y = -V

NN,NA ‘PA

M+ T, +V ~E)W = -V

NA,NN N

Y (V. ) and V

NN,NA NI NVAWNIN (VNA)

NNN and NNA spaces (A=3), om =M — M_

transition (diagonal) potentials between
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Schrodinger equation with A degrees of freedom

Y=V +V¥
N A
(T|\I + VNN —E) o= - VNN,NA ¥  coupled channel calculation
(dm + T +V, - =) ¥ o= - VNA,NN ¥ solve egs. simultaneously

V (V_) and V

NN,NA NN NVAWNIN (VNA)

NNN and NNA spaces (A=3), om =M — M_

transition (diagonal) potentials between
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Schrodinger equation with A degrees of freedom

Y=Y +¥
N A
(TN + VNI\| —E) Y o= - VNN,NA W' Impulse approximation
(dm + TA -+ VNA — E) o= - VNA’NN ¥ Solve formally for ¥
= H
JAY
VNN,NA (Vi) and VNA’NN (V\,) transition (diagonal) potentials between

NNN and NNA spaces (A=3), om =M - M_
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Schrodinger equation with A degrees of freedom

Y=v¥ +V¥
N A
(TN T VNN -E) LPN - = VNN,NA \PA
(om + T +V, - =) Y= - VNA’NN .
=H
A
VNN,NA (V) and VNA’NN (V,,) transition (diagonal) potentials between

NNN and NNA spaces (A=3), om =M — M_

Y = —(H-E*V, W

A NA,NN N
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Schrodinger equation with A degrees of freedom

Y=v¥ +V¥
N A
(TN T VNN -E) \IIN - = VNN,NA \PA (*)
(om + T +V, - =) ¥ o= - VNA’NI\| ¥
=H
A
VNN'NA (Vi) and VNA,NN (V,,) transition (diagonal) potentials between

NNN and NNA spaces (A=3), om =M — M_

_ -1 ion |
o= = (HA — E) VNA,NN ¥ Insert formal solution in (*)

(T, +V, V. . (H-EFV

NN,NA A NA, NN
realistic

NN

-BE)¥Y =0

\

~
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Schrodinger equation with A degrees of freedom

Yy=v +V¥
N A
(TN * VNN - E) \IIN = VNN,NA \PA (*)
(dm + TA + VNA —E) ‘PA = — VNA,NN ‘PN
=H,
VNN’NA (Vi) and VNA’NN (V) transition (diagonal) potentials between
NNN and NNA spaces (A=3), om =M — M_
_ 1
‘PA - (HA - E) VNA,NN \PN (1A)
_1 _
(TN * VNN N VNN,NA(HA - E) VNA,NN -E) LIJN =0 (%)
~ VreaIiStiC Step 1: solve (**) with realistic VNN +3NF

Step 2: solve ¥, in IA
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LIT equation with A degrees of freedom

=9 +J
N A
(TN + VNN -0) LPN = = VNN,NA LPA - ONN lPo,N + ONA \IIO,A
(m + T + VNA —0) ‘PA = — VNA,NN ‘PN + OAN \PO,N +OAA \PO,A
=H
A
VI\“\“\IA (VNN) and V

NANN (VNA) transition (diagonal) potentials between
NNN and NNA spaces (A=3), om = M, — M

Scuola Raimondo Anni - 2013



LIT equation with A degrees of freedom

F=9 +F
N A
(TN T VNN ~0) LPN - VNN,NA LPA & ONN LPo,N T ONA \PO,A
(dm + T + VNA — 0) ‘PA = — VNA,NN ‘PN + OAN ‘PO’N +OAA ‘PO’A
= A
VI\“\“\IA (V) and VNA,NN (V) transition (diagonal) potentials between

NNN and NNA spaces (A=3), om =M — M_

We take into account electromagnetic

operators with the A (A-IC) represented
by the following graphs
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LIT equation with A degrees of freedom

F=9y +7¢
\ A

(T, +V,-00% =-v ¥ +0 ¥ +0 ¥

N NN, NA

-V ‘P+O\P+O‘P

A NA,NN

Bm+T +V - o) ¥
H

V (V. ) and V

NN,NA NN NVAWNIN

NNN and NNA spaces (A=3), oM =M — M_

(V,,) transition (diagonal) potentials between

realistic

(T+V  -0) ¥ =

\

(H -0) (OAN \PO,N T OAA ‘PO,A)

NN NA

T ONN \PO,N T ONA \PO,A
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*He (e,e') Response Functions in the
Quasielastic Region

The gquasielastic region is dominated by the one-body parts of p
and |, but relativistic contributions become increasingly important
with growing momentum transfer q

Our aim: non-rel. calculation + rel. corrections
with realistic nuclear forces
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R (®,q) at various q

q=250 MeV/e Potential: BonnRA +TM'

one-body current: dashed
one+two-body current: full

(S. Della Monaca et al.,
PRC 77, 044007 (2008))

Bad agreement between
theory and experiment

® [MeV] | because of non considered
relativistic effects
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R (®,q) at various q

® [MeV]

q=250 MeV/c

Scuola Raimondo Anni - 2013

Potential: BonnRA +TM'

one-body current: dashed
one+two-body current: full

Quasi-elastic kinematics (g=500 MeV/c),
Kinetic energy of outgoing nucleon:

non-rel. : T = g?/2m = 133 MeV
rel.: T= (m2+qg2)¥2 - m = 125 MeV

Bad agreement between
theory and experiment
because of non considered
relativistic effects



We already considered this problem for R, and studied
R, in various reference frames:

Laboratory:
Breit:

P;=0

Pr =-0/2
Anti-Lab: P;=-0
Active Nucleon Breit: Py = -Aq/2
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calculation in various frames:

Laboratory: P, =0
Breit: P =-q/2
Anti-Lab: P;=-q
Active Nucleon Breit: P, = -Aqg/2

Potential: AV18+UIX

Result in LAB frame

Rilw.q) = dfr)* M1

V. Efros, W.L., G. Orlandini, E. Tomusiak
PRC 72 (2005) 011002(R)

-

| g=500 MeV/c ;

| g=B600 MeV/c

>
@
=
@

o
-
—
o0

a =

=700 Me\/c

2

100 150 200 250 300 350
®,_, (MeV)

Exp: Marchand 1985, Dow 1988, Carlson 2002
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Assume quasi-elastic kinematics:

whole energy and momentum transfer taken by the knocked out
nucleon (residual two-body system is in its lowest energy state)

Effective two-body problem
Treat kinematics relativistically correct

Take the correct relativistic relative momentum k__, and

rel

calculate the corresponding non-relativistic relative energy
Enr = (krel)zlzu

with reduced mass u of nucleon and residual system

use E__as internal excitation energy in your calculation
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| g=500 MeVi/c

[ g=600 MeVi/c

g=700 MeV/c

Quasielastic region: assume two-
body break-up and use the correct
relativistic relative momentum
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Transverse response function R_(q,®) of *He in the
guasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body
currents also meson exchange currents and A-isobar currents as well as
relativistic corrections for the one-body current
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Transverse response function R_(q,®) of *He in the
guasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body
currents also meson exchange currents and A-isobar currents as well as
relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame (P_=-Aq/2) and subsequent

transformation to laboratory system
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Transverse response function R_(q,®) of *He in the
guasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body
currents also meson exchange currents and A-isobar currents as well as
relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame (P_=-Aq/2) and subsequent

transformation to laboratory system

Calculation of bound state wave function and solution of LIT equation with
the help of expansions in correlated hyperspherical harmonics
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Transverse response function R_(q,®) of *He in the
guasi-elastic region

Nuclear current operator includes besides the usual non-relativistic one-body
currents also meson exchange currents and A-isobar currents as well as
relativistic corrections for the one-body current

Calculation in active nucleon Breit (ANB) frame (P_=-Aq/2) and subsequent

transformation to laboratory system

Calculation of bound state wave function and solution of LIT equation with
the help of expansions in correlated hyperspherical harmonics

Nuclear force model: Argonne v18 NN potential and Urbana 3NF
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Further calculation details

The current operator
+

(g,0,P.) = + ] +! + (0o/M)

T

for instance spin current
= exp(iq-r) i oxq/2M [G (1-9*/8M?) - G_ k*q*/8M?]

with k=1+2P_/Aq
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Further calculation details

The current operator

= (g,0,P.) = + ] +] + (0o/M)

for instance spin current
= exp(iq-r) i 6xq/2M [G (1-*/8M?) - G_ x*q*/8M?]

with k=1+2P_/Aq

Transformation from ANB frame to LAB frame

RTLAB((DLAB’qLAB) — RTANB((DANB,CIANB) ETANB/MT
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Results

* Comparison of

ANB and LAB calculation:
strong shift of peak

to lower energies!

(8.7, 16.7, 29.3 MeV at
=500, 600, 700 MeV/c)
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Results

£ S\ = 600 MeV/e
N

* Rel. contribution:
reduction of peak
height

(6.2%, 8.5%, 11.3 % at
=500, 600, 700 MeV/c)
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Results =
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q,,,= 600 MeV/c
* MEC:

small increase of

>
«F]
=
f)
—,
H
o

peak height
(3.2%, 2.7%, 2.2% at

q=500, 600, 700 MeV/c) q,,,= 700 MeV/c
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A-1C contribution

= O

Dotted: without A
Dashed with A

R [10"MeV ]
P B O 00 OO
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Effect of two-
fragment model

H
-

= O oo

Dashed: with A (as before)

Solid: same but with two-
fragment model

2
0
8
6
4
2

Experimental data:
Bates, Saclay,
world data (J. Carlson et al.)

PACO RS TN (VISR | . Yuan et al., PLB 706, 90 (2011)
® [MeV]

O=MNwWwhkihnovnd O
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Deltuva et al. (PRC70, 034004,2004):
Calculation of R of 3He with CDBonn and CDBonn+A:

no A effects in peak region!
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Partial compensation
of A-IC and 3NF

Dotted: no A and no 3NF
Dashed: no A but with 3NF
Solid: with A and with 3NF

2
0
6
4
2

o)} GC:'

q,np=700 MeV/c No A effect in peak region
In a CC calculation!

50 100 150 200 250 300 350
®. [MeV]

mnt
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Only Isospin
channel T=3/2

Dotted: no A and no 3NF
Dashed: no A but with 3NF
Solid: with A and with 3NF

A-IC contribution larger
than 3NF effect in peak
region!

100 150 200 250 |
®.  [MeV]

mnt
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Only Isospin channel T=3/2

Dotted: no A and no 3NF
Dashed: no A but with 3NF
Solid: with A and with 3NF

Strong A-IC effect also beyond peak

= for this kinematics A-IC

are important in 3-body
breakup reactions

100 150 200 250
(Dint [MeV]
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Conclusions

® the LIT metod opens up the possibility to
carry out ab-initio calculations of reactions
into the A-body continuum for A > 2

= only bound states techniques are needed

® the LIT is a method with controlled resolution
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Conclusions

® the LIT metod opens up the possibility to
carry out ab-initio calculations of reactions
into the A-body continuum for A > 2

only bound states techniques are needed

® the LIT is a method with controlled resolution

We have discussed quite a few applications, there are still more
(Compton scattering, pion production, weak nuclear responses)
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HOW TO SPEED UP THE CONVERGENCE?

SOLUTION

Here comes the idea of EFFECTIVE INTERACTION

same idea as for No Core Shell Model.
there the many particle basis is HO
here the many particle basis is HH
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What is the main idea of an

whole Hilbert space

” and Q are projection operators

P+ Q=1

max
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What is the main idea of an

whole Hilbert space
” and Q are projection operators
+Q=1

.
Find a transformation  ====> such that

<Y P PlW>=<W|H|¥>

max
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What is the main idea of an

whole Hilbert space

P and Q are projection operators

P+Q=1

T
Find a transformation V ==--> such that
<Y| P PlWS>=<W]|H|WY>

max

formally this transformation exists (Bloch-Horowitz, Lee-Suzuki), however,
1) becomes an operator

2) T is written in function of Q
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What is the main idea of an

whole Hilbert space

P and Q are projection operators

P+Q=1

T
Find a transformation V ----> such that

<y | P PlW>=<Y |H|WY>

max

formally this transformation exists (Bloch-Horowitz, Lee-Suzuki), however,
1) becomes an A-body operator [A]

2) T is written in function of Q

Useless for practical purposes, the same as solving the full problem
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PRACTICALLY:
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PRACTICALLY:

>
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PRACTICALLY:

PRICE: | have to increase  (i.e. K )
up to convergence

GAIN: what is missing is less than before

>
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Where, in the full H, is the two-body H2 which | have to solve ?

=2+ (V- )+ (V- ) +.....

< we

NCSM
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convergence.:

B—a MTV effective
O MTV bare
——- asymptotic value
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TABLE I. Convergence of the HH expansion for the *He ground-
state energy (in MeV) and the *He ground-state energy for the “He

radius root-mean-square radius (in fm) with the bare nonlocal Idaho-
3L.O potential

K ax Bare Effective
(H ) V) (H) V)
2 —3.507 1.935 —17.773 1.620
4 —13.356 1.523 —22.188 1.533
6 —20.135 1.446 —24.228 1.496
8 —23.721 1.451 —25.445 1.498
10 —24.617 1.470 —25.363 1.506
12 —25.115 1.491 —25.439 1.515
14 —25.259 1.501 —25.398 1.516
16 —25.310 1.509 —25.390 1.518
18 —25.359 1.513 =25.385 1.518
20 —25.370 1.515 —25.381 1.518
—25.37(2) 1.515(4) —25.38(1) 1.518(1)

HH [20] —25.38 1.516

FY [20,21] —25.37 —

NCSM [22] —25.39(1) 1.515(2)
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K ax Bare Effective
(H ) V) (H) V)

2 —3.507 1.935 —17.773 1.620
4 —13.356 1.523 —22.188 1.533
6 —20.135 1.446 —24.228 1.496
8 —23.721 1.451 —25.445 1.498
10 —24.617 1.470 —25.363 1.506
12 —25.115 1.491 —25.439 1.515
14 —25.259 1.501 —25.398 1.516
16 —25.310 1.509 —25.390 1.518
18 —25.359 1.513 =25.385 1.518
20 —25.370 1.515 —25.381 1.518

—25.37(2) 1.515(4) —25.38(1) 1.518(1)
HH [20] —25.38 1.516
FY [20,21] —25.37 —
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6 -body JISP potential

. 2. (Color online) The ground-state energies of °He and °Li
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