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Enfant
j’ai vécu drolement
le fou rire tous les jours
le fou rire vraiment
et puis une tristesse tellement triste
quelquefois les deux en méme temps
Alors je me croyais désespéré
Tout simplement je n’avais pas d’espoir
je n’avais rien d’autre que d’étre vivant
j’étais intact
j’étais content
et j’étais triste
mais jamais je ne faisais semblant
Je connaissais le geste pour rester vivant
Secouer la téte
pour dire non
secouer la téte
pour ne pas laisser entrer les idées des gens
Secouer la téte pour dire non
et sourire pour dire ous
oui auz choses et aur étres
auz étres et aur choses da regarder da caresser
a aimer
a prendre ou a laisser
J’étais comme j’étais
sans mentalité
Et quand j’avais besoin d’idées
pour me tenir compagnie
je les appelais
Et elle venaient
et je disais oui a celle qui me plaisent
les autres je les jetais
Maintenant j’ai grandi
les idées aussi
mais ce sont toujours de grandes idées
de belles idées

d’idéales idées

Jacques Prévert
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Introduction

Quantum entanglement is a concept commonly used with reference to the
existence of certain correlations in a quantum system that have no classical
interpretation. This concept was first introduced by Schrédinger in 1935 in
a paper in which he underlined the typical quantum nature of entanglement.
Indeed, he wrote: “Mazimal knowledge of a total (quantum) system does not
nesessarily include total knowledge of all its parts, not even when these are
fully separated from each other and at the moment are not influencing each
other at all.”

From a mathematical viewpoint, entanglement can be considered as a
consequence of the linearity of standard quantum formalism based on Hilbert
space, but it has an essential role in quantum mechanics and it is a very

useful resource in Quantum Information .

As matter of fact, the physical notion of information is profoundly trans-
formed by the transition from classical mechanics to quantum mechanics.
In fact, some core concept of quantum mechanics relevant to quantum in-
formation are, first of all, quantum entanglement, and then the Schmidt de-
composition, the density operator formalism for the rapresentation of pure
and mixed states, the partial trace and consequently the reduced density

matrix of a compound system and the von Neumann entropy.

The potential usefulness of this property has been demonstrated in a
variety of applications, such as quantum teleportation, quantum key distri-
bution, quantum cryptography, and it is a useful resource to accelerate some
quantum processes as, for example, the factorization in Shor’s algorithm or
to enhance the mutual information of memory channels.

The quantum information community devoted a lot of efforts to analyze
entanglement theoretically and experimentally in order to realize a quantum
computer. For example, in 1998, Chuang, at the University of Berkeley,

realized the first prototype of a quantum computer with two qubits, the fol-



2 Introduction

lowing year he used three qubits for the construction of a quantum computer
and subsequently, in 2000, the IBM group built a five qubits quantum com-
puter. Recently, the researchers of Hahn—Meitner—Institut are working on
the realization of molecular quantum computers whose quantum bits could
be formed by fullerenes with a single nitrogen or phosphorus atom trapped
inside.

For this reason, we have considered opportune to learn some notions and
mathematical instruments of quantum computational chemistry in order to
investigate the properties of some molecules and the interaction among them.
Once we have learnt and implemented the most important computational
instruments and theories to analyze many-body sisyems, we have applied
the achieved goals to the study of entanglement in molecules.

A relatively new theory for many—body systems is the so—called Density
Functional Theory (DFT). This give us an extremely useful approach for
the description of the ground state properties in molecules and the success
of this theory is due to its simplicity and its low computational cost.

The main idea of the DF'T is to describe an interacting system of fermions
via its density and not via its many-body wave function. For an N—electrons
system this means to deal with the only three degrees of freedom of the elec-
tronic density rather than with the 3N degrees of freedom of the electronic
wave function.

While DFT in principle gives an exact description of ground state prop-
erties, in the application we must employ some approximations for the so—
called exchange-correlation (XC) potential. The XC potential describes the
effects of the Pauli principle and of the Coulomb potential beyond a pure
electrostatic interaction of the electrons.

DFT became an exact theory only in 1964, when the two fundamental
theorems of Hohenberg and Kohn have been published.

The Hohenberg—Kohn theorems state that the total ground state energy
of an electron system can be written as a functional of the electronic density,
and this energy is at minimum if the density is an exact density for the
ground state.

Since our aim has been the description of both ground state and excited
state in molecules, we have extended our study to systems which evolve in
time, refering to the so—called Time Dependent Density Functional Theory
(TD-DFT). As DFT can be viewed as an alternative formulation to solve

stationary Schrodinger equation, TD-DFT can be considered as an alter-
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native formulation of time-dependent quantum mechanics. In the scheme
of TD-DFT the Hohenberg-Kohn theorems are replaced by the Runge—
Gross theorem that states that for a many—body system evolving from a
fixed initial state there is a one—to—one correspondence between the exter-
nal time—dependent potential and the electron density.

For all our studies about optical properties of substituted thiophene, in-
vestigation of polarizability of poliacethilene chain and investigation of ex-
change energy density in organic molecules, we have used the Kohn-Sham
scheme. The idea of Kohn and Sham was to introduce an auxiliary non-
interacting reference system such that its ground state electron density is
exactly the same as that one of the interacting system.

In this scheme we have been able to approximate independently the
exchange energy (E,) and the correlation energy (E.). The simplest ap-
proximation for the exchange is the Local Density Approzimation (LDA)
that assumes that the density of an inhomogeneus electron system can be
locally described by the density of an homogeneus electron gas. Moreover,
we have used the well-known Generalized Gradient Approzimation (GGA)
that introduces nonlocal functionals and in this approximation appear not
only the dependence by the density p but also by Vp. For the correlation en-
ergy the current approximation is the one introduced by Lee Yang and Parr,
known as LYP functional, that depends on p, Vp and V?p. For our aims, we
have implemented, with fortran code in the TURBOMOLE programm, the
Colle-Salvetti (CS) functional that obtain the correlation energy starting
from the exact Hartree-Fock density matrix; in this way, unlike the LYP
functional, we have been able to obtain the kinetic energy directly by the
Kohn-Sham orbitals. The results achieved in this way are satisfactory.

All this theoretical framework is described in the first Chapter of this
PhD Thesis. Indeed, in the second Chapter we describe the application of
these computational and theoretical tools for the ivestigation of the influence
of methyl or phenil substitution in S—position of dioxygenated ter—thiophene
and diphenyl-thiophene on the optical properties. TD-DFT well reproduces
the shifts of excitation energies for different thiophene derivatives. We find
that different substituents modify the inter-ring torsional angle which in
turn strongly influences the excitation energies. The steric contribution
to the excitation energies have been separated from the total substituent
effects.

Once we have determined these succesfully results in the analysis of
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molecular properties, we have focalized our attention on the study of the
possibility to use some molecules in a quantum computing scheme. In par-
ticular, after we have described in the third Chapter, the difference between
pure and mixed state, separable and entangled state, after we have shown the
Einstein—Podolsky—Rosen paradox and the Bell inequality as consequences
of entanglement and after we have discussed the relation among a compound
physical system and its subsystems by means of the notion of partial trace,
in the fourth Chapter, we have made a measurement of the degree of electron
entanglement in some molecular systems.

Such a measurement is made using a density matrix in the spacial co-
ordinates and computing the von Neumann entropy. Such an approach is
based on an analogous of the Schmidt decompostion for state vectors of two
fermionic particles: through an unitary transformation the antisymmetric
wave function is expressed into a basis of Slater determinants with a mini-
mum number of nonvanishing terms. This number, known as Slater rank, is
a criterion to identify whether a system is entangled or not, which involves
the evaluation of the von Neumann entropy of one particle reduced density
matrix. After a first analysis of simple bipartite systems, we have investi-
gated the relation between electron entanglement and correlation effects in
some complex molecules.

The starting point has been the so—called Collin’s conjecture, that is,
the correlation energy in molecular systems is proportional to their entropy.
This conjecture was confirmed by numerical evidence by Ramirez et al. and
taken up by Huang and Kais who interpreted the degree of entanglement
as an evaluation of correlation energy. Entanglement is in fact a physical
observable directly measured by the von Neumann entropy of the system.
This concept is used in order to give a physical meaning to the electron
correlation energy, which is not directly observable since it is defined as
the difference between the total energy of a given molecular system, with
respect to the one obtained with the Hartree-Fock approximation method.
The Hartree-Fock method, in fact, is typically used to solve Schrédinger
equation for a multi—electron atom or molecule described in the fixed—nuclei
approximation (Born-Oppenheimer approximation) by the electronic molec-
ular Hamiltonian and the calculation of the error due to this approximation
is a major problem in many-body theory and a vast amount of work has
been done on this subject.

We have made a measurement of electron entanglement in two different
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examples of bipartite systems, as Hydrogen molecule and the dimer of ethy-
lene, where each hydrogen atom or each ethylene molecule, respectively, has
been considered a qubit. Using the Klein’s inequality for a bipartite system,
we define the interaction electron entanglement in order to study the degree
of entanglement between the two molecules of the dimer then, we compare
it with the interaction electron correlation. In this scheme, we have choosen
the von Neumann entropy of the density matrix to make an estimate of
the degree of entanglement. Then, we have changed the relative orientation
and the distance between the molecules, in order to get the configuration
corresponding to maximum entanglement. In this way, the system can be
considered bipartite and each molecule can be seen as a qubit for an appli-
cation to quantum computing.

In the last Chapter of this PhD Thesis, we have described some impor-
tant considerations dealt with parastatistics, or intermediate statistics inter-
polating between Bose-Einstein statistics and Fermi-Dirac one, interferom-
etry and entanglement. By means of the Hong—-Ou—Mandel interferometry
it is possible to estimate whether the input states particles are entangled or
factorizable.

According to the statistics of the input particles (fermions or bosons)
it is possible to introduce a coincidence parameter defined as C = HET’”
where w is expressed in terms of the spectral amplitude of the two particles
and of the delay due to the different path of the particles. The presence
of the double sign is due to the different statistics of the particles: if the
input particles are bosons the only possible output configuration is the so—
called bunching configuration (it corresponds to the sign — in the coincidence
parameter); instead, if the input particles are fermions in output there is the
antibunching configuration (that corresponds to the sign + in the coincidence
parameter). Since it has been demonstrated that for separable input states
W = Wgep > 0, by means of the study of the parameter C' it is possible
to obtain some information about the input state. In fact, in the bosonic
case, if C' > 1/2, then the input state is certainly entangled; instead, in the
fermionic case the input state is certainly entangled if C' < 1/2. We have
analyzed other statistics, the intermediate ones (such as the quon statistics),
in order to interpolate the bunching configuration with the antibunching one,

from fermionic statistics to bosonic statistics with continuity.
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Chapter 1

Theory and some
implementations for

molecular systems

1.1 Many—body problem

To describe completely the quantum mechanical behaviour of electrons in
solids it is strictly necessary to calculate the many-electron wave function for
the system. In principle this may be obtained from the time—independent
Schrodinger equation, but in practice the potential experienced by each elec-
tron is dictated by the behaviour of all the other electrons in the solid. For
an N-electron system, in the Born-Oppenheimer nonrelativistic approxi-

mation, the time-independent Schrédinger equation is
HU = BV (1.1)

where FE is the electronic energy, ¥ = ¥(x1,Xa,- - ,X,) is the wave function,

and H is the Hamiltonian operator:

N 1 N Ny
o — 2 ) -
H‘Z(_iv") +Zv(“)+2r,~j (1.2)
i=1 i=1 i<j
in which v(r;) = =), 5—‘; is the “external ” potential acting on electron i

due to nuclei of charges Z,.
Of course, the influence of nearby electrons will be much stronger than
that of far-away electrons since the interaction is electrostatic in nature, but

the fact remains that the motion of any one electron is strongly coupled to

7
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the motion of the other electrons in the system. However, a rigorous solution
is possible only for a very few special cases (e. g. simple potential wells,
hydrogen atom, simple harmonic oscillator). One of the earliest attempts to
solve the problem was made by Hartree [1]. He simplified the problem by
making an assumption about the form of the many-electron wave function,
namely that it was just the product of a set of single-electron wave functions.
In a uniform system these wave functions would take the form of simple plane
waves. Having made this assumption it was possible to proceed using the
variational principle.

This principle is a very powerful concept in mathematics. In the form
most commonly applied to theoretical physics it states that if a given system
may be described by a set of unknown parameters then the set of parameter
values which most correctly describes the ground state of the system (i.e. the
state in which the system exists when not perturbed by outside influences)

is just that set of values which minimises the total energy.

1.1.1 Variational principle for the ground state

By using the variational method Hartree found the Hamiltonian equation
of the many-electron system. In fact, for an N-electron system there are N
equations; one for each of the N single-electron wave functions which made
up the many-electron product wave function. These equations turned out
to look very much like the time-independent Schrédinger equation, except
the potential (the Hartree potential) was no longer coupled to the individ-
ual motions of all the other electrons, but instead depended simply upon
the time-averaged electron distribution of the system. This important fact
meant that it was possible to treat each electron separately as a single-
particle. Consequently the Hartree approximation allows us to calculate
approximate single-particle wave functions for the electrons in crystals, and
hence calculate other related properties. Unfortunately, the Hartree approx-
imation does not provide us with particularly good results.

When a system is in the state ¥, which may or may not satisfy Eq. (1.1),
the average of many measurements of the energy is given by the formula

(U|H|T)

E[v] = W (1.3)

where
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(U|H|T) = /\I!*fI\Ifdx (1.4)

and the square brackets denote that ¥ determines F, i. e., E is a
functional of ¥. Since, furthermore, each particular measurement of the

energy gives one of the eigenvalues of H , we immediately have
E[¥] > Ej. (1.5)

The energy computed from a guessed ¥ is an upper bound to the true
ground-state energy Ejp. Full minimization of the functional E[¥] with
respect to all allowed N—electron wave functions will give the true ground
state U and energy E[¥] = Ey; that is,

Ey = min E[]. (1.6)

Formal proof of the minimum-energy principle of Eq. (1.5) goes as

follows. Expand V¥ in terms of the normalized eigenstates of H , Wy

U= Cpy (1.7)
k
then the energy becomes
>k |Ck* By
EV]|==— —— 1.8

where E} is the energy for the k—th eigenstate of H. Note that the orthog-
onality of the U) has been used. Because Ey < F; < Ey < ..., E[¥] is
always greater than or equal to Ey, and it reaches its minimum FEj if and
only if ¥ = Cy¥,.

Every eigenstate ¥ is an extremum of the functional E[¥]. In other
words, one may replace the Schrodinger equation Eq. (1.1) with the varia-
tional principle

JE[Y] =0 (1.9)

when Eq. (1.9) is satisfied, so is Eq. (1.1), and vice versa. In order to obtain
normalized V it is useful the method of Lagrange multipliers. Extremization
of (U|H|¥) subject to the constraint (¥|T) = 1 is equivalent to making
stationary the quantity [(\I'|I/1\T|‘I') — E(U|¥)] without constraint, with F the

Lagrange multiplier. This gives

S[(U|H|T) — E(T|T)] = 0. (1.10)
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Eq. (1.10) is essentially equivalent to Eq. (1.1), so one must solve this
equation for ¥ as a function of E, then adjust £ until normalization is
achieved. Solutions of Eq. (1.10) with forms of ¥ restricted to approximate
forms U of a given type will give well-defined best approximations ¥, and
Ej to the correct ¥y and Ey. By Eq. (1.5), E > Ey, and so convergence
of the energy, from above, is assured as one uses more and more flexible
U. It is important to note that for a system of N electrons and given
nuclear potential v(r) defines a procedure for going from N and v(r) to the
ground-state wave function ¥ and hence through Eq. (1.3) to the ground-
state energy E[N,v] and other properties of interest, in other words E is a

functional of N and v(r).

1.1.2 The Hartree—Fock approximation

The most obvious reason for the failure of the Hartree approach lies in the
initial assumption of a product wave function. The Pauli exclusion principle
states that it is not possible for two fermions to exist at the same point in
space with the same set of quantum numbers. This principle is manifest as
an effective repulsion between any pair of identical fermions possessing the
same set of quantum numbers. Mathematically, the Pauli exclusion principle
can be accounted for by ensuring that the wave function of a set of identical
fermions is antisymmetric under exchange of any pair of particles. That is
to say that the process of swapping any one of the fermions for any other of
the fermions should leave the wave function unaltered except for a change
of sign. Any wave function possessing that property will tend to zero as any
pair of fermions with the same quantum numbers approach each other. The
Hartree product wave function is symmetric rather than antisymmetric, so
the Hartree approach effectively ignores the Pauli exclusion principle.

The Hartree-Fock approach is an improvement over the Hartree the-
ory in that the many-electron wave function is specially constructed out of
single-electron wave functions in such a way as to be antisymmetric. The
wave function has to be much more complicated than the Hartree product
wave function, but it can be written in a compact way as a so-called Slater
determinant.

Suppose that V¥ is approximated as an antisymmetrized product of N
orthonormal spin orbitals ;(x), each a product of a spatial orbital ¢ (r) and

a spin function o(s) = a(s) or B(s), that represent spin—up or spin-down,
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respectively, the Slater determinant is

Pi(x1)  to(x1) - Pw(x)

P1(x2)  to(x2) - Pn(x2)

Uyp = (1.11)

2

P1(xN)  Po(xn) - PN (XN)

It was shown that a Slater determinant, a determinant of one-particle
orbitals first used by Heisenberg and Dirac in 1926, satisfies the antisymmet-
ric property of the exact solution and hence is a suitable ansatz for applying
the variational principle. The original Hartree method can then be viewed

as an approximation to the Hartree-Fock method by neglecting exchange.

The method

The Hartree—Fock approximation is the method whereby the orthonormal
orbitals 9; are found that minimize Eq. (1.3) for the determinantal form of
.

The normalization integral (Vg r|¥) is equal to 1, and the energy ex-

pectation value is

N N
Enr = <\I]HF|ﬁ‘\I}HF> = ZHZ + % Z (Jij — Kij) (1.12)
i=1 irj
where
* 1 2
Hr=/¢xﬂ[—§v-+wxﬂ¢x@dx (1.13)

Jij ://’lpi(xl)’lﬁ;(xl)é?ﬂ;(XQMPj(XQ)XmdXQ Coulomb integr(zls, |
1.14

K;j = //¢;(x1)¢j(x1):EQ/Ji(xQ)zp;(xQ)dxlde Ezchange integrals.
(1.15)
These integrals are all real, and J;; > K;; > 0. The J;; are the so—called
Coulomb integrals and the K;; are called exchange integrals.

By minimization of Eq. (1.12), under the orthonormalization conditions

[ iy = 3 (116



12 Theory and some implementations for molecular systems

one obtains the Hartree-Fock differential equations
R N
Fapi(x) = eijih;(x) (1.17)
j=1

where F is the Fock operator defined as
~ 1_, N
F:—EV +v+g (1.18)

in which the Coulomb-exchange operator g is given by

G=7—F. (1.19)
Here v
~ 1
) =Y / (%2 (k2) —— £ (31 )l (1.20)
k=1 rio
and v
—~ 1
A f) = / W (k)b (x2) —— £ (1 )y (1.21)
k=1 rio

with f(x1) an arbitrary function.

The matrix € in Eq. (1.17) is an Hermitian matrix whose entries are the
Lagrangian multipliers; the orbital energies are given multiplying Eq. (1.17)
by 9* and integrating:

N
€ = € = (il Flopi) = H; + > (Jij — Kij), (1.22)
=1

summing over the index 7 and comparing with Eq. (1.12), one finds

N N
1
=1 2,j=1
Vee

where the symbol V. represents the total electron—electron repulsion energy.

For the total molecular energy including nuclear-nuclear repulsion, one has

N
Whr = Z € — Vee + Vnna (1'24)
=1

where Wy is the electronic energy E plus the nucleus—nucleus repulsion
energy. Solution of Eq. (1.17) must proceed iteratively, since the orbitals
1; that solve the problem appear in the operator F. Consequently, the

Hartree-Fock method is a nonlinear “self-consistent—field” method.
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The Hartree-Fock approximation consists of two methods: one for de-
scribing system with an even number of electrons, the restricted Hartree-
Fock method (RHF) and the other one for describing open shell system with
a odd number of electrons (RHF).

1.1.3 Restricted Hartree—Fock (RHF) method

The RHF approximation is a useful method to describe an open shell system,
indeed for a system with an even number of electrons, the N orbitals 1; are
taken to comprise N/2 orbitals of form ¢ (r)a(s) and N/2 orbitals of form
¢r(r)B(s). In this case, the energy formula is

N/2 N/2
Egr =2 Hp+ Y (2Ju—Kn), (1.25)
k=1 K
where )
= [ 6itn) | -39+ 0(0)| pu(e)an (1.26)

1
Jkl://|¢k(r1)|2£|¢l(r2)|2dx1dx2 Coulomb integrals (1.27)

1 .
Ky = //¢Z(r1)¢l(x1)E(ﬁk(rg)qﬁf(rg)drldrg Exchange integrals
(1.28)
while Eq. (1.17), Eq. (1.20) and Eq. (1.21) are respectively replaced by

R N/2
For(r) =Y endi(r), (1.29)
=1
~ N/2 )
e =23 / b2) P () (1.30)
and
~ N/2 .
M) =3 / B0 (02) f(£2) ——degp (1), (1.31)
m—1 rio

The determinantal wave function Eq. (1.11) for this “closed shell” case is

pr(ri)a(s1)  ¢i(r1)B(s1) -+ dny2(r1)B(s1)
p1(ra)a(s2)  ¢a(r2)B(s2) -+ dnya(ra)B(s2)

Uyp = . (1.32)

2

$1(rn)a(sy)  ¢o(rn)B(sn) -+ én(rn)B(sn)
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A unitary transformation of the occupied orbitals 1, to another set of or-
bitals 7,, leaves the wave function unchanged and the operators 3'\, k and F
of Eq. (1.29) through Eq. (1.31) are also invariant with respect to such a
transformation.

That is, if one lets

M =Y Unkthi (1.33)
k
where U is a unitary matrix,
viu=1 (1.34)
then Eq. (1.29) becomes
N/2
P = €hun, (1.35)
n=1
where
€ = UeUT. (1.36)

Since the matrix € is hermitain, one may choose the matrix U to diagonalize
it. The corresponding orbitals A, called the canonical Hartree-Fock orbitals,

satisfy the canonical Hartree-Fock equations,
FAm(r) = €\ Am(r). (1.37)

Eq. (1.37) is considerably more convenient for calculation then Eq. (1.29).
Furthermore, the orbitals that are solutions of Eq. (1.37) are uniquely ap-
propriate for describing removal of electrons from the system in question.
The Koopmans theorem [2] establishes that if one assumes no reorganiza-
tion on ionization, the best (lowest—energy) single-determinant description
for the ion is the determinant built from the canonical Hartree-Fock orbitals
of Eq. (1.37). One then finds, approximately,

er = —1In, (1.38)
where I,,, is the ‘onization energy associated with the removal of an electron
from the orbital A\,,. The main problem is that this equation ignores both

reorganization and errors in the Hartree-Fock description (called correlation

energy).
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1.1.4 Unrestricted Hartree-Fock (UHF) method

When the number of electrons is not even, the standard Hartree-Fock scheme
is what is called the unrestricted open-shell Hartree-Fock (UHF) method [5].
Spatial parts of spin orbitals with « spin are allowed to be different from
spatial parts of spin orbitals with S spin, even within a single “pair” of
electrons. Noting that orthogonality between all a-spin spin orbitals and
all B-spin spin orbitals is still preserved, we see that the only problem in
implementation is the complication associated with handling all N orbitals
in the Hartree-Fock equations. The mathematical apparatus is Eq. (1.17)
to Eq. (1.21). The UHF method then gives no energy lowering over the
restricted HF method. But there are important cases in which energy low-
ering is found. For example, the UHF description of bond breaking in Hs
gives the proper dissociation products, while the RHF description of Ho
gives unrealistic ones.

Many physical properties of most molecules in their ground states are
well accounted for by use of Hartree-Fock wave functions.

In actual implementations of Hartree-Fock theory (and also in calcula-
tions of wave functions to an accuracy higher than those of Hartree-Fock),
one usually employs some set of fixed, one-electron basis functions, in terms
of which orbitals are expanded and many-electrons wave functions are ex-
pressed. This transforms the mathematical problem into one (or more) ma-
trix eigenvalue problem(s) of high dimension, in which the matrix elements
are calculated from arrays of integrals evaluated for the basis functions. If we
call the basis functions x,(r), one can see from Eq. (1.2) what the necessary
integrals will be:

(i) overlap integrals,
S = [ X, (1.39)
(ii) kinetic energy integrals,
To = [ X0)(5V)xr)dr, (1.40)

(iii) electron-nucleus attraction integrals,

(Alpg) = / X (D) xg (1), (1.41)

A

and
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(iv) electron-electron repulsion integrals,

walrs) = [ [ 2600 o). (142

In the HF approach the two-electron integrals (pg|rs) dominate the com-
putational effort. Moreover, the HF is an approximation, as it does not
account for dynamic correlation due to the rigid form of single determi-
nant wave function. To solve the HF equations, the assumption has to be
made that electrons interact with the averaged potential coming from other
electrons, while in fact, the interactions between electrons are pairwise. In
reality, electrons correlate their movements trying to avoid each other, so
there is least amount of electrostatic repulsion. To account for dynamic cor-
relation, one has to go to correlated methods, which use multideterminant
wave functions, while HF method is quite successful for geometries but it

fails to describe bond breaking or forming.

1.2 Electron density

Since inception of quantum mechanics by Heisenberg, Born, and Jordan
in 1925, and Schrodinger in 1926, there were basically two competing ap-
proaches to find the energy of a system of electrons. One was rooted in
statisticial mechanics and the fundamental variable was the total electron
density p(r), i.e., the number of electrons per unit volume at a given point
in space (e.g., in cartesian coordinates: r = (z,y,2)). In this approach,
electrons were treated as particles forming a special gas, called electron gas.
The special case, the uniform electron gas, corresponds to p(r) = const.
Another approach was to derive the many particle wave function

U(ry,re,---ry,t) (where r; denotes the coordinates of the 1st electron,
ro the 2nd electron, and so on, and ¢ is time) and solve the stationary

Schrodinger equation for the system:
ﬁ\I/k(I'l,I'Q,---I‘N) :Ek\I/k(I'l,I’Q,---I'N) (143)

(where H is the hamiltonian, i.e., the operator of the total energy for the
system), and calculate the set of possible eigenfunctions ¥y, and correspond-
ing eigenvalues Ej. The eigenfunctions have to be physically acceptable, and

for finite systems:

1. they should be continuous functions,
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2. they should be at least doubly differentiable,
3. its square should be integrable,
4. they should vanish at infinity (for finite systems).

Once we know the wave function U for a given state of our system, we can
calculate the expectation value for any quantity for which we can write down
the operator. The wave function itself, does not correspond to any physical

quantity, but its square represents the probability density. In other words:

|T(ry,re, - ry)|[2dridry - - - dry (1.44)

or
U*(ry,re, - rN)¥(ry,re, - - ry)dridre - - - dry (1.45)

or
|T) (] dV (1.46)

represents the probability that electron 1 is in the volume element dr; around
point rq, electron 2 is in the volume element of the size dr, around point
ro, and so on. If ¥ describes the system containing only a single electron,
the |¥(r)|?dr simply represents the probability of finding an electron in the
volume element of a size dr centered around point r. If you use cartesian
coordinates, then dr = dzxdydz and the volume element would be a brick
(rectangular parallelipiped) with dimensions dz x dy x dz whose vertex closes
to the origin of coordinate system is located at (z,y, z). Now, if we integrate
the function ¥ over all the space for all the variables (i.e., sum up the
probabilities in all the elements dr;), we should get a probability of finding
our electrons anywhere in the Universe, i.e., 1. This is why it is a good idea
to normalize function ¥. If it is not normalized, it can easily be done by

multiplying it by a normalization constant:

Normalization constant
.

7~ ~

1
\Pnormalized = \/< \I’unnormalized- (1 47)

lIlunnormalized|\IImmormalized)

Since square of ¥ represents the probability density of finding electrons, one
may suspect, that it should be easy to calculate the total electron density

from it. And actually it is:

p(r) = N (T|5(r —1,)| ) (1.48)
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where N is the total number of electrons, and §(r — r’) is the Dirac delta
function. In cartesian coordinates, it simply amounts to integrating over all
electron positions vectors r; but one. Which one, is not important, since
electrons are indistinguishable, and a proper wave function has to reflect
this:

o(r1) :N//---/|\If(r1,r2,---rN,)|2dr2dr3---drN. (1.49)
—_—
N e’ N-—1
N-—1

It is interesting to note, that for the wave function which describes the

system containing only a single electron:
p(r) = ()T (r) = [Y(r)* = [T) (T | (1.50)

i.e., logically, the electron density and the probability density of finding the

single electron are the same thing.

1.3 Density Functional Theory (DFT)

For many years, the use of electron density as a fundamental description of
the system was based on intuition rather than hard proof that this can be
done. The success of density functional theory (DFT) is due to its simplicity
and low computational cost. Electron density is more attractive (depends
only on z, vy, z, and eventually, there may be two densities for spin polarized
systems, one for spin up electrons p4(r) and one for spin down electrons
p,(r), as opposed to many particle wave function which depends on all
coordinates of all particles, i.e., for N electrons, it depends on 3N variables
(or 4N if you count in spin). The fact that the ground state properties are
functionals of the electron density p(r) was proved by Hohenberg and Kohn
(1964) and it provides the basic framework for modern Density Functional
methods.

More specifically, according to the theorem proved by them, the total
ground state energy of an electron system can be written as a functional of
the electronic density, and this energy is at minimum if the density is an
exact density for the ground state. The theorem of HK is an existence proof
of such a functional, but there is no prescription how to construct it. If we
knew the form of this functional accurately, and if it was not complicated,
quantum chemistry would be a done deal. Unfortunately we do not know

the exact form of energy functional. It is necessary to use approximations
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regarding parts of the functional dealing with kinetic energy and exchange
and correlation energies of the system of electrons.

In other words, while DFT in principle gives an exact description of
ground state properties, practical applications of DFT are based on approx-
imations for the so—called exchanged—correlation potential. The exchange—
correlation (XC) potential beyond a pure electrostatic interaction of the
electrons. In practice many approximations of the XC potential are em-

ployed.

1.3.1 Density operators

Let us define, with the Dirac notation, the density operator

’/)/\NE |\I'N)<\IJN|, (151)

or equivalently in the coordinate representation we can define the density

matrix

!

YN (xllx; Xy, X1Xg xN> =Uy (xllx; . xN) Uy (x1x2 - XN) -
(1.52)
The quantity

Uy (x1x2-xn) Uy (X1X2+ - XN) (1.53)

is the probability distribution associated with a solution of the Schrédinger
equation, indeed 4y in Eq. (1.51) is a more general quantity in that the vari-
ables in the first factor are primed. The two sets of independent quantities
xllx'2 e x'N and x3xg2---xN can be thought of as two sets of indices that
give Eq. (1.51) a numerical value, in contrast with the single set x3x2 - - - XN
that sufficies for Eq. (1.53). If we set x; = x;, for all i we get the probability
distribution for a system with coordinates (x3x2 - XN).

It is easy to verify that yy is a projection operator and is Hermitian.

The following property is also verified:
Tr(n) = 1, (1.54)

indeed, the trace operator is defined as the sum of diagonal element of the
matrix representing A. Moreover, it is important to note that the expecta-

tion value of a general N—particle operator A is obtained from

(A\) :/dX1/dX2---/de‘If(xle---xN)*A\\Il (x1%x2---xXpn), (1.55)
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which for multiplicative operators becomes

(21\) :/dx1/dx2---/dezzl\'y(xlx2---xN,x1x2---xN), (1.56)

and involves only the function 7y (x1X2 - - - Xy, X1X2 - - - X ), which is the di-
agonal element of the matrix y; in fact the expectation value of the operator
A can be written as in the following:

(A) =Tx (v 4) =T (A) (1.57)
Once the density operator is known, via Eq. (1.57), all the properties of
the system can be calculated. In this sense the density operator carries
the same informations as the N—electron wave function. Indeed the density
operator 7 is defined in the same space as the vector |¥y). It is worth to
note, however, that while the wave function is defined up to an arbitrary
phase factor, the density operator is unique.

An operator description of a quantum state becomes necessary when the
state cannot be represented by a linear superposition of eigenstates of a
particular Hamiltonian H N, or equivalently, by a vector in the Hilbert space
. This occurs when one treats a subspace of a compound system, as
for example an individual electron in a many—electron system. For such a
system one does not have a complete Hamiltonian containing only its own
degrees of freedom, thereby precluding the wave—function description. A
state is said to be pure if it is described by a wave function, mized if it
cannot be described by a wave function.

A system in a mixed state can be characterized by a probability dis-
tribution over all the accessible pure states. Let us generalize the density

operator of Eq. (1.51) to the ensamble density operator
L= pi|T:) (T, (1.58)
i

where p; are the probabilities of the system being found in the state |¥;),
and the sum is over the complete set of all accessible pure states and they

have the properties

>O.
{;—p'_’l (1.59)
iPi =1

For a system in a pure state, one p; is 1 and the rest are zero; T of Eq. (1.58)
then reduces to 7 of Eq. (1.51).

The ensemble density operator has the following properties:
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1. By construction T is normalized: in an arbitrary complete basis | Fx)
Tr (T) = 30 nlful @ (il i)
ik
=Y il Y 1 fr) (i W)
i k
= pi(Ti[T) =D pi=1. (1.60)
i i

2. f is Hermitian:

elTlf) = D pil sl W) (il o)

= Zmﬂle‘l’i)(‘l’i\fk)}*

= (AT fx)" (1.61)

3. It is positive semidefinite

elTIk) = D pil(Ful )l > 0. (1.62)

The p; are the eigenvalues of T.

4. For a system to be in a pure state, it is necessary and sufficient for the

density operator to be idempotent:
Y-y = [ONUONT] = [T) (V| =75 (1.63)
The ensemble density operator in general lacks this property:

T-T =Y plu)(w| #T (1.64)

5. For a mixed state, the expectation value for the observable Ais given

by a generalization of Eq. (1.57)
(&) = Tr (PA) = Y pulwil A|w) (1.65)
i

6. The time-dependent Schrodinger equation can be written in terms of
pure-state density operators y (or , more generally, in terms of the

ensemble density operators T').

m%mm — H(Ty) (1.66)
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Moreover 5 5 5
5w = (1) ) (Bl + 1) 2
H H
= Fn)Wn] = [Yw) (N . (1.67)
So that
Z'712:7\N = [ﬁ /’}\’N] (1.68)
at 7 7
and by the linearity of Eq. (1.58)
L 05 55
i1 = [HF] . (1.69)

For a stationary state, T is independent of time and [ﬁ , f] =0.

Most operators in quantum mechanics are one or two—particle operators and
can be calculated from the so—called reduced density matrices, that depend

on less than 2N variables.

Reduced Density Matrices

The basic operators describing an electronic system are either one—electron
operators or two—electron operators. Expressions like “one-particle opera-
tor” and “two particle operator” refer to the number of particles involved
in the definition of the operator (one for a potential energy, two in the case
of an interaction, etc. ), not to the total number of particles present in
the system. It is important to remark that when one calculates expectation
values only one or two variables are involved in the integration; thus we can
integrate over the remaining N — 2 variables and simplify the problem. This
idea gives rise to the concept of reduced density matrix [6].

In general, the density matriz of order p is defined as

! ! i
Yp (X1X2 XN, X X o XN) =

N 1o ’
= (p) /’)’N (xlx2---xpxP+1---XN,XIXZ-.-prp+1-.-XN) dXpi1* XN-
(1.70)

In particular, the single-particle density matrix is defined as

m(x1,%x7) =

:N/dXQ/dX3/dX4---/de'y (X1X2X3X4---XN,XIIXQX3X4---XN) =
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= N/dx2 /dX3/dX4 .- -/delI! (X1XoX3Xy4 - - XN) \I/*(X’1X2X3X4 S XN )-
(1.71)
The reduced two-particle density matrix is given by

! !

Y2 (X1X2, X1Xg) =

W/dx;;/dm/dx;vy (X1X2X3X4---XN,X’1X’2X3X4 . --xN),
(1.72)
where N(N — 1)/2 is a convenient normalization factor. This density ma-
trix determines the expectation value of the particle-particle interaction, of
static correlation and response functions and some related quantities.
The structure of reduced density matrices in quite simple: all coordinates
that v does not depend upon are set equal in ¥ and ¥*, and integrated over.

The reduced density matrices v, and 7 have the following properties:

1. they are Hermitian

Y1 (x1, %) = 7 (x1,%1) (1.73)
Yo (X1X3, X1 %5) = 7} (X1X2, X X)); (1.74)
2. they are positive semidefinite
7 (x1,%x1) >0 (1.75)
Yo (X1X2, X1X2) > 0; (1.76)

3. because of antisymmetry, they change sign on exchange of two primed

or unprimed particles indices

Yo (X1X3, X %X5) = —Y2(XoX1, X1 X5) = =72 (X1X2, XpX; ) = Y2 (XaX1, Xo%; );
(1.77)
4. 7 normalizes to the total number of electrons (N):
Tr'yl(xl,xll) = /71(x1,x1)dx1 =N (1.78)
and -y normalizes to the number of electrons pair:
Tr'yz(xlxz,xllx;) = //'yg(x1x2,x1x2)dx1dx2 = w (1.79)

the reduces density matrices y; and <2, admit eigenfunctions and eigenval-
ues. The eigenfunctions of y; are called natural spin orbitals and the relative
eigenvalues are called occupation numbers. The eigenfunction of y, are called

natural germinals.
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Spinless Density Matrices

Many operators of interest in the electronic problem do not depend on the
spin variables. This makes useful to sum over the spin variables and work
with spinless density matrices [7].

The first and the second—order spinless density matrices are

pr(ry,r) =Y m(risy,rysy), (1.80)
51

p1(rire, T ry) = Z Y2(r151T82, T} 51T 83). (1.81)
51,82

The diagonal element of the first—order spinless density matrix is just the

electron density.

1.4 The Hohenberg—Kohn (HK)Theorems

In 1964, Hohenberg and Kohn showed that the many—electron wave function
was a too complicated entity to deal with as the fundamental variable in a
variational approach. They chose instead to use the electron density as
their fundamental variable. That is, they considered the ground state of the
system to be defined by that electron density distribution which minimises
the total energy. Furthermore, they showed that all other ground state
properties of the system (e.g. lattice constant, cohesive energy, etc) are
functionals of the ground state electron density. That is, that once the
ground state electron density is known all other ground state properties
follow (in principle, at least). The field of rigorous density functional theory
was born in 1964 with the publication of the Hohenberg and Kohn paper
(1964). They proved the following:

I. Every observable of a stationary quantum mechanical system (includ-
ing energy), can be calculated, in principle ezxactly, from the ground-
state density alone, i.e., every observable can be written as a functional

of the ground-state density.

II. The ground state density can be calculated, in principle exactly, using

the variational method involving only density,

The original theorems refer to the time independent (stationary) ground
state, but are being extended to excited states and time-dependent poten-

tials (see section 1.7).



1.4 The Hohenberg—-Kohn (HK)Theorems 25

These theorems were derived in the following way. Within a Born-
Oppenheimer approximation, the ground state of the system of electrons
is a result of positions of nuclei. If we rewrite the Hamiltonian in Eq. (1.2)
in the following explicit form:

Hy =T, + Uee + Vear (1.82)
In this hamiltonian, the kinetic energy of electrons (7,) and the electron-
electron interaction (Ue.) “adjust” themselves to the external (i.e., coming
from nuclei) potential Vigt. Once the Vg is in place, everything else is,
including electron density, which simply adjusts itself to give the lowest
possible total energy of the system. The external potential Veat is the only
variable term in this equation, and everything else depends indirectly on it.

Hohenberg and Kohn established and underlined an important point:
Vegt is uniquely determined from the knowledge of electron density p(r). In
other words, there is a precise mapping from p(r) to Vope and, actually, the
mapping is accurate within a constant, which would not change anything,
since Schrodinger equations with I:Iel and H, el +const yields exactly the same
eigenfunctions, i.e., states (it is easy to prove based on the linear property
of the hamiltonian), and the energies will be simply elevated by the value
of this const. Note that all energies are known only within some constant,
which establishes the frame of reference.

This mapping is so important because the knowledge of density provides
total information about the system, and formally if we know the density,
we know everything there is to known. Since p(r) determines number of

electrons, N:
N = /p(r)dr (1.83)

and p determines the Veat, the knowledge of total density is as good, as
knowledge of ¥, i.e., the wave function describing the state of the system.

They proved it through a contradiction:
1. Assume that we have an exact ground state density p(r).

2. Assume that the ground state is nondegenerate (i.e., there is only one

wave function U for this ground state.

3. Assume that for the density p(r) there are two possible external po-
tentials: V,,; and Ve'mt, which obviously produce two different hamilto-

nians: H,; and H 1,, respectively. They obviously produce two different
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wave functions for the ground state: ¥ and ', respectively. In cor-
rispondence the energies are: Ey = (¥|H|¥) and Ej = (V'|H'|T').

4. Now, let us calculate the expectation value of energy for the ¥’ with

the hamiltonian H and use the variational theorem:

Ey

—f—
Ey < (V'|H|Y") = (V'|H'|U')+ (V'|H — H'|¥') =

A

= E(I) + /p(r)[vewt - Velmt]dr. (1.84)

5. Now let us calculate the expectation value of energy for the ¥ with

the hamiltonian H' and use the varational theorem:
E{ < (U|H'|¥) = (V|H|¥) + (V|H' — H|¥) =
——
Eo
By~ [ plo)l Vet — Vil (1.85)
6. By adding equations (1.84) and (1.85) by sides we obtain:
Ey + E(') < E(') + Ey (1.86)
and it leads to a contradiction.

Since now, we know that p(r) determines N and Veat, it also determines all
properties of the ground state, including the kinetic energy of electrons 7,
and energy of interaction among electrons Uy, i.e., the total ground state

energy is a functional of density with the following components

Elp] = Telp] + Vext[p] + Ueelp] (1.87)

Additionally, HK grouped together all functionals which are secondary

(i.e., which are responses) to the Vez[p]:

Elp] = Veut[p] + Fuklp] = /P(I‘)Vezt(r)dr + Frklp] (1.88)

The Fg g functional operates only on density and is universal, i.e., its form
does not depend on the particular system under consideration (note that N-
representable densities integrate to N, and the information about the number

of electrons can be easily obtained from the density itself).

Flp] = T[p] 4 Uee[p] (1.89)
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The second HK theorem provides variational principle in electron density
representation p(r) For a trial density p(r) such that p(r) > 0 and for which
[ pr)dr = N,

By < B[] (1.90)

where E[p] is the energy functional. In other words, if some density repre-
sents the correct number of electrons N, the total energy calculated from
this density cannot be lower than the true energy of the ground state.

As to the necessary conditions for this theorem, there is still some con-
troversy concerning the socalled representability of density. The N-repre-
sentability, i.e., the fact that the trial p has to sum up to N electrons is
easy to achieve by simple rescaling. It is automatically insured if p(r) can
be mapped to some wave function. Assuring that the trial density has also
Vest-representability (usually denoted in the literature as v-representability)
is not so easy. Levy (1982) and Lieb (1983) have shown, that there are
some “reasonable” trial densities, which are not the ground state densities
for any possible V,;; potential, i.e., they do not map to any external poten-
tial. Such densities do not correspond therefore to any ground state, and
their optimization will not lead to a ground state. Moreover, during en-
ergy minimization, we may take a wrong turn, and get stuck into some non
v-representable density and never be able to be converged to a physically
relevant ground state density. For an interesting discussion, see Hohenberg
et al. (1990). Assuming that we restrict ourselves only to trial densities
which are both N and v representable, the variational principle for density
is easly proven, since each trial density p defines a hamiltonian ﬁ ¢l- From
the hamiltonian we can derive the corresponding wave function ¥ for the
ground state represented by this hamiltonian. And according to the tradi-
tional variational principle, this wave function ¥ will not be a ground state

for the hamiltonian of the real system ﬁel:
p— Ha— ¥ (¥|H|T) = E[5] > Blpo] = Eo (1.91)

where py(r) is the true ground state density of the real system.
The condition of minimum for the energy functional: §E[p(r)] = 0 needs
to be constrained by the N-representability of density which is optimized!.

The Lagrange’s method of undetermined multipliers is a very convenient

Tt also needs to be constrained by v-representability, but we still do not know how to
express v-representability in a closed mathematical form. There exist, however, methods,

e.g., constrained search (Levy, 1982) and local-scaling transformation (Petkov et al, 1986)
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approach for the constrained minimization problems. In this method we
represent constraints in such a way that their value is exactly zero when
they are satisfied. In our case, the NN representability constraint can be

represented as:
constraint = /p(r)dr -N=0 (1.92)

These constraints are then multiplied by an undetermined constants and

added to a minimized function or functional.
Blpte)] ~ | [ ple)dr — (1.93)

where p is yet undetermined Lagrange multiplier. Now, we look for the
minimum of this expression by requiring that its differential is equal to zero

(a necessary condition of minimum).

§ {E[p(r)] iy [ / p(r)dr — N] } =0 (1.94)

Solving this differential equation will provide us with a prescription of finding

a minimum which satisfies the constraint. In our case it leads to:
JE[p(r)] — pd {/p(r)dr} =0 (1.95)

since i and N are constants. Using the definition of the differential of the

functional (see [8]):

F[f +6f] = F[f] = 0F 5f( )dz (1.96)

and the fact that differential and integral signs may be interchanged, we

dE[p(r)] 3 dr —
o) ) r)dr /(5p 0. (1.97)

Since integration runs over the same variable and has the same limits, we

obtain

can write both expressions under the same integral:

/ {% - u} 5p(x)dr = 0 (1.98)

which provides the condition for constrained minimisation and defines the
value of the Lagrange multiplier at minimum. It is also expressed here via
external potential from equation (1.88):

_Bp(™)] _ oy, k(o)
= (5p(r) = V:zzt( ) + (5,0(1') )

which assure v-representability during density optimization, though their algorithmic im-

(1.99)

plementation needs to be done.
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Density functional theory gives a firm definition of the chemical potential

i, and leads to several important general conclusions (Chapters 4 and 5 of

[8])-

1.5 Kohn—-Sham Method

Eq. (1.99) gives the expression to calculate the ground state electron den-
sity of a many—electron system. Unfortunately this equation is difficult to
handle, consequently one commonly employs a scheme suggested by Kohn
and Sham. They proposed the use of an auxiliary noninteracting system,
the Khon—-Sham system, whose ground state electron density is exactly the
same as that of the interacting system and they introduced an ezchange
term (Egc) in order to take care of electron correlation. The Hamiltonian

of the noninteracting reference system is

N 1 ) N
Ho=Y" ( - 5vl.) Y uilw). (1.100)

It is described by the determinantal wave function

1
VNI

where the 1; are the lowest eigenstate of the eigenvalue equation

\Ifs = det[¢1¢2 te ’LﬁN] (1101)

[ - %Vz + Us(r)]¢i = €. (1.102)

The kinetic energy and the correlation density in the Kohn-Sham method

are

N
T, = 3l - 597) (1103

N
p=_|hil% (1.104)

while, in general, the same quantities for an interacting system are respec-

tively,
1
T =) nilyil — 5 V2Ii) (1.105)

pr) =) Znim(r, )% (1.106)
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where 1; and n; are natural spin orbitals and occupation numbers, respec-
tively. In Kohn-Sham method the universal functional (1.89) is usually

rewritten
Flp] = Ts[p] + J[p] + Exc[p] (1.107)

where J[p] is the self repulsion energy of an electron distribution p(r), and
E:w = T[p] - Ts[p] + Uee - J[p] (1'108)

is the exchange—correlaton energy. Using equations (1.107) and (1.108) the

energy functional (1.88) becomes

Elp] = Tlpl + J1p) + Buclil + [ ple)o(e)ar (1.109)

The energy expressed in terms of N Kohn—-Sham orbital is

il 1
Elp] = Z / ¢:(r)(—§v$)¢i(r)dr+J[p]+Eu[p]+ / p(r)v(r)dr. (1.110)

Applying the variational principle under the constraint

[ viw,rar =3 (L.111)
we found .
[_ §V2 +'Ueff(r)]¢z’ = ZEijTﬁj (1.112)
J
where v, s is the effective potential defined as
0J
Vesy = 0(r) + T[P?] + Vge(r) (1.113)

and vg.(r) is the ezchange—correlation potential

Vge(r) = 55)“”(“5]. (1.114)

Following the standard procedure used to solve the Hartree—Fock equations,
a diagonalization of the ¢;; matrix gives us the Kohn-Sham equation in

canonical form .
[— EV + Ueff(r)]wi = 9. (1.115)

In other words, within the Kohn—Sham system, the electrons obey a simple,
one-particle, Schrodinger equation with an effective external potential, v, .

As v,y is a functional of the electronic density, the solution of this equation



1.6 Approximations 31

has to be performed self-consistently as well as for the Hartree-Fock equa-
tions, with the only difference that ves; is local. It is usually decomposed
in the form represented in Eq. (1.113) where the first term is the exter-
nal potential (generally the Coulomb interaction between the electrons and
nuclei), whereas the second includes the classical part of electron—electron
interaction and the third one (unknown) takes into account all the many
body effects.

1.6 Approximations

Kohn—Sham theory is, in principle, exact but, in order to make DFT prac-
tical it needs some approximations for the unknown exchange-correlation
potential that includes all the non-Coulomb electron—electron interactions.
This approximation involves constructing an expression for the unknown
E;c|p] functional, which contains all many—body aspects of the problem. It is
with this type of approximations that the present section is concerned, there-
fore I deal with local functional (as Local Density Approzimation (LDA)),
semilocal (or Gradient Dependent functionals (GGA)) and nonlocal or hy-
brid functional (as Colle-Salvetti).

1.6.1 Local Density Approximation (LDA)

Historically (and in many applications also practically) the most important
type of approximation is the local-density approximation (LDA). To un-
derstand the concept of an LDA recall first how the noninteracting kinetic
energy Ts[p] is treated in the Thomas-Fermi approximation [3], [4]. In a
homogeneous system one knows that, per volume (the change from chapital

T to a lower—case t is commonly used to indicated quantities per volume)

om 3h2
thom(p) = ~(37) /38 (L116)

where p = const. In an inhomogeneous system, with p = p(r), one approxi-

mates locally

2
14 (1) % £ () = (322037 () (1.117)

and obtains the full kinetic energy by integration over all space

3h?

TEPA] = [ o p(e) = s [ @),
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For the kinetic energy the approximation T[p] ~ TFP4[p] is much inferior
to the exact treatment of T in terms of orbitals, offered by the Kohn-Sham
equations, but the LDA concept turned out to be highly useful for another
component of the total energy (1.110), the exchange-correlation energy Fy..
At this point it is useful to separate the exchange and correlation potential
part €4, in

Ezc = Eg + E¢- (1.119)

The exchange part has been calculated within the Thomas Fermi model [3],
[9], [10] and [11] to be

3/3\3 1
—_ (= 3. 1.120
e=—5(5)% (1.120)
For the correlation part €. the situation is more complicated since 8hom is

not known exactly: the determination of the correlation energy of a homo-
geneous interacting electron system (an electron liquid) is already a difficult
many-body problem on its own! Early approximate expressions for o™
were based on applying perturbation theory (e.g. the random phase approx-
imation) to this problem [12], [13]. These approximations became outdated
with the advent of highly precise Quantum Monte Carlo (QMC) calculations
for the electron liquid, by Ceperley and Alder [14].

1.6.2 Semilocal functionals: Generalized—Gradient Approx-
imations (GGA)

In the LDA one exploits knowledge of the density at point r. Any real sys-
tem is spatially inhomogeneous, i. e., it has a spatially varying densityp(r),
and it would clearly be useful to also include information on the rate of this
variation in the functional. The simplest improvement that can be done
to LDA is to correct for the inhomogeneities of the atomic and molecular
electron density. This can be done by adding to the LD A potential correc-
tions depending on the local density gradient of electron density. Such a

functional, of the general form
EGGA[p) = ELDA 4 /d3r 7 (p0), Vo(r)), (1.121)

is known as Generalized—Gradient Approzimation (GGA). Different GGAs
differ in the choice of the function f(p, Vp). Note that this makes different
GGA much more different from each other than the different parametriza-

tions of the LDA: essentially there is only one correct expression for e,.(p),
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and the various parametrizations of the LDA [12], [13], [15], [16], [17] are
merely different ways of writing it. On the other hand, depending on the
method of construction employed for obtaining f(p, Vp) one can get very
different GGA. In particular, GGA used in quantum chemistry typically pro-
ceed by fitting parameters to test sets of selected molecules. On the other
hand, GGA used in physics tend to emphasize exact constraints. In fact,
an espansion of Eq. (1.121) retains both even and odd terms, while the ex-
change energy must be even in the electron density. Thus, the lowest order
gradient correction to the LD A exchange—correlation energy is determined

by symmetry considerations and dimensional analysis

Vp(r)?
GGA _ pLDA p
EGGA — gL —/3/ p(r)4/3dr, (1.122)
where (8 is a constant. This equation presents a divergence asymptoti-
cally. Anyway it is possible to find many other corrections of the form
f (p(r), (Vp(r))2) that have the right asympotic behaviour. Among these,

one of the most used is the Becke-ezchange functional [18]:

2

EB — pLPA _ / 4/3 z dr, 1.123
re re ple 1+ 606z sinh~ !z ( )
where 3 is a constant and z = ‘;—/’;'.

Nowadays the most popular (and most reliable) GGA are PBE (denoting
the functional proposed in 1996 by Perdew, Burke and Ernzerhof [19]) in
physics, and BLYP (denoting the combination of Becke’s 1988 exchange
functional [18] with the 1988 correlation functional of Lee, Yang and Parr

[20]) in chemistry.

1.6.3 Hybrid functionals. Colle—Salvetti functional

The idea of using hybrid functionals was introduced by Alex Becke in 1993
[22] who suggested that the simple ab initio functionals [23] are inadequate
to reproduce many molecular properties, such as atomization energies, bond
lengths, etc. and he proposed the hybridization of exchange—correlation
functionals with Hartree-Fock exact exchange.

A hybrid functional, in fact, is an exchange—correlation functional used
in density functional theory that incorporates a portion of exact exchange
from Hartree-Fock theory with exchange and correlation from other sources

(ab initio, such as LDA, or empirical).
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The exchange correlation functional for a hybrid is usually a linear com-
bination of the Hartree-Fock exchange (ELF) and some other ones combina-
tions of exchange and correlation functionals. The parameters relating the
amount of each functional can be arbitrarily assigned and is usually fitted
to reproduce well some set of observables (bond lengths, band gaps, etc.).
For example, the popular B3LYP (Becke, three-parameter, Lee-Yang-Parr)

exchange-correlation functional is:

BEYP — BEPA+ao(BEY - BEP4) - an(BEOA - BEP) +ao(BEOA - B

(1.124)
where ag = 0.20, a, = 0.72, a, = 0.81 and are the three empirical pa-
rameters; Eg(;"GA and ESCA are the generalized gradient approximation for-

mulated with the Becke 88 exchange functional [18] and the correlation
functional of Lee, Yang and Parr (LYP) [20].

Another important example of hybrid functional is the so—called Colle-
Salvetti (CS) functional. In 1975, R. Colle and O. Salvetti [21] proposed
a correlation energy formula in which the correlation energy density is ex-
pressed in terms of the electron density and Laplacian of the second—order
Hartree-Fock density matrix:

_ p5 (r,r) (14 bp ¥ ()[VEPST (v, 8)]s—veap[—cp/3(r)]
Be=—da / e ( I+ dolr) 1 )ar

(1.125)
where pilF (r,s) is the second-order Hartree-Fock reduced density matrix
expressed in terms of interparticles coordinates

r= 1 -;—1‘2, S =r] — Iy, (1.126)
and a = 0.04918, b = 0.132, ¢ = 0.2533 and d = 0.349.

This formula was arrived at by Colle and Salvetti by a theoretical analysis

accompained by a series of approximations, beginning from the reasonable
proposition that the second—order density matrix including correlation may
be approximated by the Hartree—Fock second order density matrix times a
correlation factor. The constants a, b, ¢ and d in the final formula were
obtained by a fitting procedure using only the Hartree-Fock orbital for the
helium atom. In this formulation, the correlation kinetic energy is assumed
to be zero. The only contribution to the correlation energy comes from the
electron—electron potential energy, computed from the model of two—electron
reduced density matrix. Lee, Yang and Parr, in [20], restated the Colle—
Salvetti formula in Eq. (1.125) including the density, a local “Weizsacker”
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kinetic-energy density tw and the local Hartree-Fock kinetic-energy density

tur defined as following, respectivley:

1 |
_L1Np0F 1ge (1.127)

W) =5—m "8

n(r) = 3 SOl — 5% (1128)

The CS correlation energy formula in terms of density, tw and tyr is

N b2 )t (1) — 2w (e

1+ dp1/3(r)

and in terms of density and its gradient can be written as in the following:

E, = /[ —ap abp~5/3|Vp|2e=cr '’ _ abp?3e=? " Typ
¢ 1+d

p=1/3 dp(1 + dp=1/3) L+dp 1)

abefcp_1/3pf2/3v2p
8(1 + dp~1/3)

]dr, (1.130)

where in Txp we have included a local kinetic part and a term with V2p:
Tur = tue + nV2p. Equation (1.130) lacks of being pure density functionals
because of the appearance in it of the Hartree-Fock kinetic—energy density
Tur which depends on individual orbital densities. It is possible to turn
Eq. (1.130) into explicit density—functional formulas by using expansions,
whereby Tyr is expanded, by Lee, Yang and Parr, about the Thomas—Fermi

local kinetic—energy density to second order:

1|Vp2 1
TI{_I,I\;P _ CFp5/3 + 7_2% + ﬂ v2p_ (1.131)
N - o =
Tns K

For the Colle and Salvetti expansion

1 1
cs _ 1 2 1o
TR = 5 > vy s V. (1.132)
—
fhf n
We have implemented a fortran code in the TURBOMOLE programm [78]

in which the correlation functional has been obtained starting from the LYP

functional but inserting the kinetic energy in therms of Kohn—Sham orbitals:

E.= / [— ap  abe=? Pp 2y abee=” p?|VpP?
c 14+dp1/3 14+dp1/3 12(1 + dp~1/3)



36 Theory and some implementations for molecular systems

1

(1.133)

abde=* """ p 2|V p* _ abe " /‘°’p—5/3|wl2]d
12(1 4 dp=1/3)2 12(1 + dp=1/3)
In our implementation #; is the one described in Eq. (1.132) and the term
of the second order expansion (V2p) has been treated with the gradent
theorem in order to obtain only terms in p and Vp.
In Table 1.1 we report the results of our implementation with some atoms

and ions, and in Table 1.2 the implementation with some molecules.

‘ Atom ‘ Energy [20] ‘ Energy (implementation CS) ‘

He 0.0416 0.04158
Lit 0.0438 0.04390
He?t 0.0442 0.04421
Be 0.0926 0.09265

Table 1.1: Implementation of Colle—Salvetti correlation functional for some

atoms and ions with comparing to the results obtained by Lee Yang and Parr

/20].
‘ Molecule ‘ R ‘ Enr [24] ‘ Egnr implemented ‘ Exc [24] ‘ Ex ¢ implemented
Ca 2.00 75.32869 75.32873 0.3872 0.38747
2.10 | 75.36906 75.36909 0.3845 0.38480
2.35 75.40182 75.40184 0.3785 0.37879
4.00 75.15516 75.15516 0.3561 0.35633
F> 2.30 | 198.75462 198.75448 0.6732 0.67353
2.50 | 198.77194 198.77182 0.6690 0.66934
2.725 | 198.76284 198.76271 0.6650 0.66533
4.00 | 198.60303 198.60286 0.6527 0.65242
CH, — — 40.21540 0.290 0.29023
H>O — — 76.06436 0.336 0.33643

Table 1.2: Implementation of Colle-Salvetti correlation functional for some

molecules with comparing to the results obtained by Lee Yang and Parr [2/].

1.7 Time-Dependent Density Functional Theory

Time-dependent density functional theory (TD-DFT) extends the basic
ideas of groundstate density functional theory (DFT) to the treatment of

time-dependent phenomena and in particular of excitations. As DFT can
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be viewd as an alternative formulation to solve the stationary Schrodinger
equation, TD-DFT can be viewed as an alternative formulation of time-
dependent quantum mechanics. Also, TD-DFT retains all the advantages
of DFT: the 3N—dimensional wave function is replaced by the 3—dimensional
electron density.

The scheme for the construction of TD-DFT is similar to the one used to
derive DFT. Firts the Runge-Gross theorem, which is the time-dependent
analog of the Hohenberg—Kohn theorem, is proved, then the time-dependent
Kohn-Sham equations are derived. This scheme can be applied for the
solution of almost any time-dependent situatio. However two regimes are
usually observed: if the time-dependent perturbation is weak, it is sufficient
to study the system by linear-response theory; if the perturbation is strong
a full solution of the Kohn—Sham equation is needed.

Let us introduce a system of IV electrons, the Hamiltonian that described

this system is:

N Nnuc N ZA 1 1
H(r,t)=-2) VZ_ + = + V(r,1),
2V 2 DR T2 2

(1.134)
where V(r, t) is a generical external time—dependent field. The time-dependent
wave function of the system is a solution of the time—-dependent Schrédinger
equation

0
za\ll(r,t) = H(r,t)U(r,t). (1.135)

From the wave function the electron density can be evaluated by quadrature.

The electron density is the main variable in TD-DFT.

1.7.1 Runge—Gross Theorem

The Runge—Gross theorem is the time—-dependent counterpart of the Hoenberg—
Kohn theorem. It states that:

for a many-body system envolving from a fized initial state there is a
one—to—one correspondence between the external time—dependent potential
and the electron density.

The proof of this theorem is by reduction ad absurdum. We have to
demonstrate that if two potentials v(r,t) and v'(r,t) differ by more than a
purely time-dependent function ¢(¢) they can not produce the same time-
dependent density p(r,t). The demonstration is splitted in two parts. First
we will proove that if v(r,t) # v'(r,t) + ¢(t) than the current densities j and
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j', generated by v and v’ respectively, are different. Then we will show that
this implies, via the continuity equation, that also the densities are different.
Let us consider the Taylor expansion of the external potential with re-

spect to the time coordinate around the initial time %.

v(r,t) = ap(r)(t — to)* (1.136)
k=0
with the expansion coefficients
1 o
= — 1.137
ax(r) = 50| (1.137)
and let us define the function
_ o ’
un(r) = 5o [v(r,t) _ v (r,t)] L:to. (1.138)

Of course if the two potentials differ by more than a purely time—dependent
function, there will be at least one k in their Taylor expansion for which
a(r) —aj,(r) #constant; that is there will be at least on & for which uy(r) #
constant.

Now let us demonstrate that if v # v’ + ¢(t) then the current densities j
and j', generated by v and v’ respectively, are different. The current density

is defined as

~

J(r,t) = (T(B)]j(r) ¥ (2)), (1.139)

where the current density operator is

3 = £ [(Vo )i — ') ()| (1.140)

The equation of motion for j and j' are
P25, 1) = (eI i), A 0)] 20 (1.141)
85 (e, 1) = (W(0) [F0e), T ()] 1) (1.142)

At the fixed initial state, the wave functions, the densities and the current
densities must be equal in the primed and unprimed systems. Thus, at t = g
the only difference is the Hamiltonian. If we take the difference between Eq.
(1.141) and Eq. (1.142) at t = tp we have

i% [j(r,t) —j(r, t)] L = (T [E(r)ff(to) - I?’(to)] [To) =

=10
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= (g [_/j\(r),v(r, to)—v'(r,to] [To) =ipo(r)V [v(r,to)—v'(r,to] = 1po(r)Vugo(r).

(1.143)
If we apply the equation of motion k + 1 times we finally have
g+l
G )~ 0] = o) V(o). (1.144)

We have seen that, if the two time-dependent external potential differ by
more than a purely time-dependent function, there will be at least one k

for which uk(r) # constant, that is there will be at least one k for which

% e, 0) = 5'(r. 1) ‘ # 0. (1.145)

=to
This implies that j(r,t) # j'(r,t) for ¢t > t.
Now, let us consider the continuity equation

0 .
—p(r,t) ==V -j(r,1). (1.146)
ot
If we write the continuity equation for the primed and unprimed system and
take the difference, we have

0

= o) = /)] = =V - i) -7 9)]. (1.147)

We take the (k + 1)th time derivative, at ¢ = ¢y of Eq. (1.147)

Gh+2 o+ .
gz P ) o] = V- gsfien —feo]| o 0149)
By Eq. (1.144) we have
ak—|—2
e [p(r,t) s t)] tho = V. [po(r)Vuk(r)]. (1.149)
If uk(r) # constant, as it is the case, then
V. [po(r)Vuk(r)] £0 (1.150)

and from Eq. (1.149) it is clear that p # p/, from which the Runge-Gross
theorem follows.
1.7.2 Time—-dependent Kohn—-Sham Equations

In possession of Runge-Gross theorem, it is fairly strightfoward to con-

struct a scheme to find the electron density. Similary to what is done in
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DFT, where a Kohn-Sham scheme is adopted, we can introduce an auxil-
iary noninteracting system subject to an external potential vs(r, ) such that
its electron density is the same as that of the interacting system. Again we
can introduce into the problem, which are solutions of the time—dependent

Schrodinger equation

i%qﬁi(r,t) = [~ 597 +vale )] e, ) (1.151)

The electron density can be evaluated from the time-dependent Kohn—Sham

orbitals v
ple,t) = 3 pi(r, [ (1.152)
i=1

Eq. (1.151) is a one—particle equation and can be. in principle, easily solved
once v is known.

The potential v, is usually separated into three contributions:
vs(r, 1) = vege(r, t) + J[p(r, )] + vge(r, t), (1.153)

where vez: is the time-dependent external potential, J[p] is the classi-
cal Coulomb potential and v,. is the exchange—correlation potential that
comprise all the many body effects. Unlike ordinary DFT, in TD-DFT the
formal definition of the exchange—correlation potential is not easy to write
because of a problem related to causality. The solution of the problem was
given by van Leeuwen [25]. Usually approximate expressions for vy, are

used.

1.7.3 Functionals

In Eq. (1.153) the time-dependent Kohn—-Sham potential is divided in two
known terms vey: and J, and one unknown term vy, that we try to approx-
imate using physical and mathematical arguments.

It is important to stress that v,., because of the Runge-Gross theo-
rem is not only a functional of the electron density, but also of the initial
Kohn—Sham determinant and of initial many-body wavefunctio. For prati-
cal reasons the latter dependence is always negletted.

The adiabatic approzimation is the simplest procedure to obtain a time—
dependent exchange—correlation potential. The adiabatic time—dependent

exchange—correlation potential is

021, ) = vse[p(r)] | (1.154)

p=p(t)’
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where v;.[p(r)] is any approximation to the ground state exchange—correlation
potential. In practice in the adiabatic approximation we employ at each time
t the ground state functional v,. evaluated at the density p(r,t¢). This ap-
proximation is quite strong, but it may be expected to work well when the
system is locally close to equilibrium. This may be the case, for example,
of low laying excited states, but is not the case of matter interacting with
strong laser fields.

The adiabatic approximation allows to naturally extend the use of all

the existing functionals for ground state DFT to TD-DFT. For example, by

LDA
zc

mation (ALDA).

taking vy = v we obtain the so—called adiabatic local density approxi-

1.7.4 Linear Response Theory

When the external time-dependent perturbation is small, it may not be
necessary to solve time-dependent Kohn—Sham equations. The behaviour
of the system can be determined, instead, via perturbation theory. In par-
ticular linear perturbation theory has prooved to be a valuable tool for the
calculation of excited states energies and properties.

Consider as interacting many—particle system with a time—independent
Hamiltonian H. The time-dependent Schrédinger equation for the system
is

ih%@(t)) = H|®(t)) (1.155)

with the formal solution
|2(t)) = e [To), (1.156)

where |Ug) is the stationary solution of Schrédinger equation. If at time
to we turn on a time-dependent perturbation V(¢) the new wave function
|®(t)) must satisfy

0
if s |2(1)) = [H + V(t)] 1B(t)). (1.157)
We can solve Eq. (1.157) searching for a solution of the type
|B(1)) = e~t'% A(t)|®o). (1.158)

by substitution of Eq. (1.158) into Eq. (1.157) we find

z‘h%A(t) = BV (e 1B A). (1.159)
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Ht

Let us define Vi (t) = eiTV(t)e_'%, then, to the first order in Vy we have

7 t
Ay =1 /t Via (#)dt' (1.160)

0
Substituting in Eq. (1.158) we obtain the solution to first order
It i [
|®B(t)) =" [1 — ﬁ/ VH(t’)dt’] |®@o). (1.161)
to

Let us, now, compute the expectation value of a generic operator O(t)

(O@)) = (2@®)|01)[2(t)) =

_ <x110\[1+%/t VH(t’)dt']ei’?O(t)ei’?[1—%/ttVH(t')dt']|\po). (1.162)

to 0

This is at the first order

i [t
<O(t))=<<I>(t)|0(t)l<1>(t))+ﬁ/ (Tol[Vir(¥'), O (1)][o)dt,  (1.163)

to

where we have defined O (t) = ei%O(t)e*i%. A more interesting quantity
is the variation of the expectation value of any operator due to the external

perturbation V. This is

§(0(t)) = (T®)|O@)|E(2)) — (2M)[O@)|2(1)) =
— % tt (To|[VE ('), Ou ()] To)dt'. (1.164)

If V and O, as it often happens, are one-body operators we can write

Oult) = / dey O (1, )o(ry, ) T g (r1, 1) = / drio(r1, )pu(r1,t) (1.165)

Vi () = / dry (9, Y02, )T g (22, ¢') = / drav(ra, ) prr (r2, ¥)
(1.166)
where pg(r,t) = ei%p(r)e”’% is the electron density in the Heisenberg
picture. By substitution of Eq. (1.165) and Eq. (1.166) into Eq. (1.164) we
find

5O(t) = % /to dt' / drydrso(ey, 1o(es, ) (Lol s (2, ), prr(e1,1)] [T0).
(1.167)

Because the integral on ¢’ implies ¢’ < t we write

O(t)) =
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%/Z dt’/ dridrao(ry, t)v(re, t)0(t — t') (T [PH(I‘Q, #), pr (e, t)] To),
(1.168)

where we have allowed ty — —oco. We can call the quantity
x(rit, rot') = i0(t — ') (T [pH(rQ, ), prr(x1, t)] W) (1.169)

linear density—density response function.

Poles of the response function

We can write Eq. (1.169):
—ix(rit,rat’) =

0(t — t')(Yolpm (ra, ') pr (r1,1)|Yo) — O(t — ' ){(Tolpm (r1,t) pm (r2, )| o).
(1.170)

By inserting a complete set of states {1, } we have

—ix(rit,rat’) = O(t — ') Y [(‘I’0|PH(P2,t')\‘I’n)<‘1’n|PH(P1a £)[¥o)

n

—~(Wolp (1, D) ¥a) (o (x2, )| ¥o) | =

ot -1y [eiE’?

n

0 (W pr2) [ ) (Tl (1) [ To) -

e T (W () [ W) (T (1) [ W) - (1.171)

It is evident that x(rit,rst’) depends on the difference ¢t — ¢', thus we can
perform a Fourier transform and shift to frequency representation. We can

also use the integral formula for the 8 function:
1 e (1)

0t —t)=——

1.172
omi | o an (1.172)

with n an infinitasimal complex factor. We find for the first term

zwtt)

’ ;En—Eg ’
-9 dlt zw t t / —(t t)
7T/ (t - Z 27 ET in %

x(Wo|p(r2)[¥n)(¥n|p(r1)[¥o) =

Ie—zwtt’
_zZ\IJ0|pr2|‘IJ (Tp|p(r1)|To) /dt—t /d w+“7

§ Y Wl W) Bl o) [ (o (o PR

—i B Boy gy _
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N (Yolp(ra)[¥n) (Tn|p(r)[Yo)
ZZ w + dwy, +in ’ (1.173)

n
where we havw defined dw,, = (E,, — Ep)/h. The second term on the right
hand side of Eq. (1.171) similarly yields

- (Tolp(r) [¥n)(Tnlp(ra) | o)
_lgn: 0 ;_&Un“n 2)170 (1.174)

From Egs. (1.173) and (1.174) we finally obtain the Lehmann representation

of the response function

w — dwy, + 11 w + dwy, + i
(1.175)

From the Lehmann rapresentation it is evident that the poles of the linear

X rsw) =3 [<‘I’o|p(r1)I‘I’n)<‘1’n\p(r2)l‘1’0) <‘I’o|p(r2)I‘I’n)<‘1’n|p(r1)\‘1’o)]_

n

response function are frequencies of the excited states of the system.

Linear Response Function of a Noninteracting Fermion System

Consider Eq. (1.175) in the case of a noninteracting fermion system. in
this case the states of the system are described by Slater determinants. The

density operator can be written

plr) = YH(R)(r) = 3 ¢ (x)¢;(r)ala; (1.176)

where ¢(r) are single particle orbitals and a;f is the creation operator of
an electron in orbital ¢ and a; is the destruction operator of an electron in

orbital j. In Eq. (1.175), let us consider elements of the type

(Wolp(r1)|¥n)(Wn|p(ra)|Wo) (1.177)

where, by virtue of the sum over n, ¥,, is any excited Slater determinant.

We can write

Y D ir)di(r)(Tolalas[Tn) DD i (ra)ulra) (Tnlafar| o).

i€occ j l€occ k

(1.178)
The matrix element are both non zero only if |¥,,) differs from |¥y) by at

most one orbital and if 1 = and 5 = k. In this case we have

DD B ) di(r1) ¢} (r2) dira). (1.179)

i€occ j
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Introducing f;, the occupation number of the ¢—th orbital, we can remove

limitations on the sum over i. We can write
DN fidi(r1) ¢ (r1) ¢ (r2) di(ra). (1.180)
i g
Hence, the first term in Eq. (1.175) is

ML g 5,)‘5 e, (1.181)

where the sum over n has been replaced by the sum over j and dw, =
(ej — €i)/h because |U,,) differs from |¥() by at most one orbital. Similarly
the second term of Eq. (1.175) is

ZZ *(r ¢J r2) ¢} (r1) di(r1) (1.182)

E] Ez +’LT]

We can interchange the dummy index and finally write for Eq. (1.175)

x(r1,r2,w ZZ ¢ r1)¢a(2)¢; (fz):z(m)

(1.183)

1.7.5 Kohn—Sham Linear Response Theory

Consider the variation of the electron density of a system due to an external
time—dependent potential v(ry,w). From Eq. (1.168) and Eq. (1.169) we

can write, after a Fourier transformation

dp(r,w) = /drgx(r,rg,w)év(m,w), (1.184)

where we have used o(ri,t) = d(r — r1). In time-dependent Kohn—-Sham
framework, the density of the interacting system under the time-dependent
perturbation v is identical to the density of a noninteracting system under
the external potential vs as described in Eq. (1.153). So we can calculate

the variation of the density in the noninteracting system as well

op(r,w) = /drxs(r,rQ,w)(fvs(rg,w). (1.185)

The main difference is that now x,(r,rs,w) is the linear density—density
response function of a non interacting system and is given by Eq. (1.183),
where ¢ are the Khon—Sham orbitals and € are the orbital energies. Follow-

ing Eq. (1.153) we can divide vs in three contributions:

(S’US(I‘, w) = 5'Uezct(ra w) + 6‘][9] + 5Uwc(ra w)' (1'186)
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The variational of the external potential is simply dv(ry, w), while the change

in the Coulomb potential is

MM:/M

op(r', w)
r—r'|

(1.187)

The linear variation of the exchange—correlation potential is the linear part

in §p of vy, St )
Vxe(r,w

Bve(rrw) = / S e

It is useful to introduce the exchange—correlation kernel

dp(r', w). (1.188)

vz (r,w)
p(r,w)

fae(r, 1", w) (1.189)

Hence, Eq. (1.185) becomes
Sp(e,0) = [ draa(rra,0)+

+/dr1dr2Xs(r,r2,w)[m + fe(re, T1,w) | p(r1, w). (1.190)

Using Eq. (1.184) for the density in Eq. (1.190) we find an equation for the

linear response function, that is the following one:
x(r, ', w) = xs(r,r'w)+

—l—/drldrgxs(r,rl,w)[ —I—fwc(rl,rg,w)]x(rg,r',w). (1.191)

[r1 = ra]
A self-consisten solution of Eq. (1.191) would yield the response function
of the interacting system and consequently the excitation energies. Unfor-
tunately, this equation is hard to solve and so, often, some other methods

are used to compute the excitation energies of the system.

1.7.6 Pseudo—Eigenvalue Solution

To avoid the difficulties due to Eq. (1.191) it is possible to rewrite Eq.
(1.190) as a pseudo-eigeinvalue equation, which eigenvalues are the excita-
tion energies of the system. Consider Eq. (1.190). We can rearrange the

terms in the following way:

/ drsd(x — 12)0p(ra,w) = / oo (r, T2, )0 (rs, )+

+/dr1drzxs(r,r2,w)[ —i—fm(rl,rg,w)] dp(ra,w) (1.192)

lr1 — 1o
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[ deaf{te —x2) = [ drinaomr) [+ el 2] Yoot ) =

ri —ro
/dr2xs(r,r2,w)6v(rz,w). (1.193)
Let us define
1
E(r,ro,w) = /drlxs(r,rl,w) [7|r1 —— + fae(ri,ro,w)|. (1.194)

Eq. (1.193) can be written

/drg{é(r —ry) — E(r,ro,w)}dp(re,w) = /dI'sz(I', ro,w)ov(ry, w).

(1.195)
As we have seen, the linear response function has poles at the excitation
energies of the system. Because of the external potential does not have any
special pole structure, this implies, via Eq. (1.184), that also the linear
variation of the density dp has poles at the excitation energies. Thus in Eq.
(1.195) the left hand side has poles at the excitation energies of the system,
while the right hand side remains finite. For the equality to hold we must
therefore require that the operator multipling dp on the left hand side of Eq.
(1.195) has zero eigenvalues at the excitation energies. This is equivalent to

the requirement
lim Mw)=1 (1.196)

w—
where (2, are the excitation energies and X is the solution of the eigenvalue

equation
/dr'E(r,r',w)f(r',w) = Mw)é(r',w). (1.197)

It is possible to transform this equation into another eigenvalue equation
which has the true excitation energies of the system (2, as eigenvalues. Let

us define

Gij :/drldr2¢;(r1)¢j(r1)[ +fwc(r1,r2,w)]§(r2,w). (1.198)

|r1 — 1o
Equation (1.197) can be written

Z(fz - fj)w _gb(;(zr)_qz](;)_l_ Z.nCij(w) = Mw)é(r', w). (1.199)

tj

By solving this equation for £ and substituting in Eq. (1.198) we find

Z M
w—€em—¢€ +1in

ml

Gim (W) = AMw)Gij(w), (1.200)
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where we have defined

Mijrm = (fl—fm)/dr1dr2¢f(r1)¢j(r1)[ + f:cc(rlar25“)]¢l(r2)¢:n(r2)'

(1.201)

|r1 — ro

Introducing the new eigenvector

Gij (€2)
Q—(ei—¢5)’

Il

Bij (1.202)

taking the limit 7 — 0 and using the condition A(2) = 1 we finally find

Z[5im5jl(€m —€1) + Mijrmi| Bru = QB;j (1.203)
ml

RPA-Like Solution

It is also possible to rewrite Eq. (1.190) as an RPA-like equation [26].

In this section we will adopt the convention of calling %,; the occupied
orbitals and a,b the unoccupied ones. The indices k, [, m, n will denote
general orbitals.

From equations (1.185) and (1.183) it is clear that only elements of the
first order variation of the density dp that are nonzero are those coming from
particle-hole (f; > f;) and hole-particle (f; < f;) contributions. Then, it
is convenient to divide dp in particle-hole and hole—particle contributions.

We can use for the linear variation of the density the expansion

6p(r,w) = 3 [Pialw) s (1)1 (1) + Pui()ga(r) 67 (1)) (1.204)
Substituting in Eq. (1.190), and using Eq. (1.183) for the Kohn-Sham

response function, we find two coupled—equations for P;, and P,;
[0ij0ab(€a — €5 + w) + Kiqjn) Pjp + Kiapj Poj = —viq (1.205)
[0ij0ab(€a — €5 — w) + Kaiv| Poj + Kaijo Pjp = —Vai (1.206)
where we have defined

v = [ drgi(e)ovs o), (1.207)

and

1
v —r'|

Kitmn = [ e Ge)1 (o) [ =7 + el ', 0) | 6160 (1208
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Using the notation X;, = P, Yiq = P, and V;, = v, we can write the
coupled—equation in a compact form:

(e )= ONG) () o

Liajp = 6ij6ab(5a — &) + Kiajb (1.210)

with

Miqjb = Kiabj- (1.211)

As we have seen, the linear response function has poles at the excitation
energies of the system. Because the external potential does not have any
special pole structure, this implies, via Eq. (1.184) that also the linear
variation of the density dp has poles at the excitation energies. The same
must be obviously true for X and Y. So at excitation energies the left hand
side of Eq. (1.209) diverges, while the right hand side remains finite. This
implies that at excitation energies the matrix on the left hand side of Eq.

(1.209) must have zero eigenvalue, that is,

(50 () e

where  are the excitation energies of the system. Equation (1.212) has the
same structure as the RPA problem in HF theory .

If the orbitals ¢; are real, as it is usual in quantum chemistry, also the
matrices M and L are real. The eigenvalue problem Eq. (1.212) can be

further simplified by a unitary transformation

_ v (1.213)
u-\/§ L 1) .

Equation (1.212) becomes

U(L M)UTU<X>:QU<_1 0 )<X> (1.214)

M L Y 0 -1 Y

<L+M 0 )(X-I-Y):Q(—l 1><X> (1.215)
0 L-M X-Y 1 -1 Y

<L+M 0 )(XJrY):Q(—(X—Y))' (1.216)
0 L-M X-Y —(X+Y)
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From Eq. (1.216) we get coupled equations
(L+M)(X+Y)=-QX-Y) (1.217)

(L-M)(X -Y)=-QX +7Y) (1.218)

Solveing for (X —Y) in Eq. (1.218) and substituting in Eq. (1.217) we find
(L-M)(L+M)(X+Y)=0*X+Y). (1.219)

Equation (1.219) reduces the dimension of the problem of a factor of two.
Nevertheless the matrix product on the left hand side is non-Hermitian.
If (L — M) is positive defined, Eq. (1.219) can be transformed into an

Hermitian eigenvalue equation
(L — M)Y*(L — M)"*(L + M)(L — M)Y*(L - M)'?(X +Y) =

= Q0L - M)'>(L - M)'*(X +7Y). (1.220)

We call (X +Y)' = (L — M)/2(X +Y) and we write
(L - MY2(L+M)(L—-MY(X+Y)=0*X+Y)". (1.221)

Since in TD-DFT the matrix (L — M) is diagonal with diagonal elements

€qa — €iy BEq. (1.221) is particulary simple to solve in this case.

1.7.7 Spin formalism

To properly describe an electron system it is necessary to include in the
description the spin degrees of freedom. In this section we will review the
result presented in sec. 1.7.4 when spin is presented.

The spin variables will be denoted by greek indices o, 7, ..., and consid-

ered discrete variables.

Linear response Theory

The variation of the expectation value operator due to the external pertur-

bation V, is

5O(1) = (T[0T (2) - (2()|O]2(4)) =

- t
_ % /to (o [Vir ('), Ot (£)] o) dt'- (1.222)
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If V and O are one-body operators we can write

Ou(t) = /drl\If g(r1,t)os(r1,t)¥op(r,t) = /drloa r1,t)pon(r1,t)
(1.223)
Z/er\IJTH ro,t )’UT(I'Q,t) +H 1‘2, Z/drzfuT ro,t pTH(rg,t).
(1.224)
We find
5(0(t)) =

. +m
30 [t [ dvidraon(er,tposra, 100t ~ ) (Wallora(r2,t), pri(rz, )] o).

(1.225)
We can call the quantity

Xo,r (rlt’ r2t,) = Ze(t - t’)<\110|[p7.H(r2, tl)v PoH (I‘l, t)”\IlO) (1-226)

linear density—density response function. In the Lehmann rappresentation
this is written
Xo,r (1‘1, ro, w) =

3 [(‘I’oIpa(rl)‘I’nM‘I’nlpr(rz)‘I’o) _ {(Wolpr(ry) ¥n)(¥n \pa(n)‘l’o)]
w — Swp, + 17 w + dwy + 9

n

(1.227)
In the special case of a noninteracting fermion system the linear density—

density response function can be written

Xor (01,12,0) = 057 O Y (fio—Fjr) %(rlma(z)ff(r2)¢"(r2) . (1.228)
i g W= +m

Kohn—Sham Linear Response Theory

From Eq. (1.225) and Eq. (1.226) we can write the linear variation of the

spin density p, due to external perturbation dv,, as

50 (r,w) = / dr3 X, (5, T2y )05 (£, ), (1.229)

where we have used 0, = 0,00(r — r1). In the time-dependent Kohn—
Sham framework we can calculate the variation of the spin density in the

Khon—Sham noninteractiong system

0po(r,w) :/erXU,T(r,rg,w)évﬁ(rg,w), (1.230)
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where x; . is given by Eq. (1.228). As usual we can divide §v° into three

contributions:
6vs (r,w) = v (r,w) + 6.J[p;] + v7¢(r, w) (1.231)

where v¢® is the variation of the external potential, §J[p,] is the variation

of the Coulomb potential and

0vEe(r,w)
(s’l)fc(r,(U) = /dr'mépa(r',w). (1232)
We define the exchange—correlation kernel
dvEe(r,w)
T = _T 17 7 1.233
7 Opalr,w) ( )
Thus, we can write Eq. (1.230) as
dpa(r,w) = /drgxi,T(r, ro,w)dv,(re, w)+
Ore
/drldrgxa)‘h L IR Spales, @) (1.234)

RPA-Like Solution

Equation (1.233) can be written as an RPA-like equation. We will call i, j
the occupied orbitals and a,b the unoccupied ones. The indices k,[,m,n
will denote general orbitals. In analogy with the section 1.7.6 we can use

for the spin density the expansion

8pa(t;w) = D [Pias (@) bss (1) i (¥) + [Paio (w) dao (1) $, ()] (1.235)

ia
Substituting in Eq. (1.233), and using Eq. (1.228) for the Kohn—-Sham

response function, we find two coupled—equations for P;,, and P,;,
[60,70ij0ab(€a — €i + W) + Kiaopjr|Pjor + Kiaobjr Pojr = —Vieo  (1.236)
[05,70ij0ab(€a — €i — w) + Kaiopjr|Pjor + Kaio,jor Pjbr = —Vaic  (1.237)

where we have defined

VkioOor | drdy, (r)dv, ¢y (), (1.238)

and

Kkla,mm' = 501\/drdr1¢2)\(r)¢l)\(r)|:| 6)\7— | +f (r,r',w)] ¢¢zr(rl)¢mr(r,)-
(1.239)
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Using the notation X4 = Pigs, Yiao = Paic and Vige = vjge, Eqgs. (1.236)

and (1.237) can be wirtten in compact form:

()= (3 SNE) () oo

Liaa,jbr = 5075ij5ab(5a - 5i) + Kiaa,jbr (1-241)

with

Miaa,ij = Kiaa,bjT- (1.242)

In analogy with section 1.7.6 we must require that at excitation energies the

matrix on the left hand side has zero eigenvalue, i.e.

(Ajﬂ(f):fl(_ol _01)()5) (1243

with € excitation energies of the system.
If the orbitals ¢; are real, we can perform a unitary transformation and

obtain
(L — M)Y?(L+ M)(L — M)"?(X +Y) =Q*(X +Y), (1.244)

where (X +Y)' = (L — M)/?(X +7).
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Chapter 2

Torsional Effects on Excitation
Energies of Thiophene Derivatives
Induced by S/—Substituent:

Comparison between Time-Dependent
Density Functional Theory and
Approximated Coupled Cluster
Approaches

In this chapter, the influence of methyl or phenil substitution in f—position
of dioxygenated ter—thiophene and diphenyl-thiophene on the optical prop-
erties is investigated by first—principles calculations. We compare the ap-
proximated singles and doubles coupled cluster (CC2) approach with time—
dependent functional theory methods. CC2 reproduces experimental exci-
tation energies with accuracy of 0.1 eV. We find that different substituents
modify the inter-ring torsional angle which in turn strongly influences the
excitation energies. The steric contribution to the excitation energies have

been separated from the total substituent effects [27].

2.1 Introduction

Oligothiophenes [28] and their S, S-dioxygenated derivatives [29], [30] have
attracted great research interest because of the wide applicability of these
materials, ranging from medicine and biology [31], [32] over electronic de-

vices, such as field-effect transistors,[33]-[35] to opto-electronic devices, as

55
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light emitting diodes [36]-[43] or solar cells[44]. For all these applications
is very important to achieve a fine tuning of the absorption and/or emis-
sion energies. In oligothiophene derivatives this tuning can be efficiently
obtained by different functionalization schemes. From a theoretical point
of view, several first principles studies on oligothiophenes [45]-[52] and S,
S-dioxygenated oligothiophenes [53]-[57] have investigated the structural,
electronic, and optical properties, such as molecular geometry, substituent
effects, absorption, and emission energies. In particular, theoretical inves-
tigations [53], [54], [56] on terthiophene, S, S-dioxo-terthiophene, and S,
S-dioxo-diphenylthiophene have shown how the oxygen func-tionalization of
the sulfur atom modifies the optical properties, and which is the correlation
between changes in the inter-ring torsional potential and shifts of the excita-
tion energies. Additional substituents in -position can further influence the
geometric and electronic structures of the compounds, allowing a fine tuning
of the optical properties, where the chemical and sterical nature of different
groups determine the inter-ring torsional angles and thereby the absorption
wavelengths [47], [57], [58]. Because of the reduced symmetry in nonplanar
oligothiophenes theoretical investigations are computationally more expen-
sive and therefore often restricted to semi-empirical approaches [58]-[63]. In
this work we will employ ab initio approaches to inves-tigate ground-state
geometries and absorption energies of S, S di-oxygenated terthiophene and
diphenylthiophene carrying hydrogen-, methyl, or phenyl-substituents on
both S—position on the central thiophene ring as shown in Figure 2.1.

We will compare theoretical approaches with different degrees of accu-
racy in the description of molecular geometry (in particular the inter-ring
torsional angle) and excitation energies. Most present day excited state
calculations of small organic compounds are done using Time-dependent
density-functional theory (TD-DFT) [64]-[67] employing gradient-corrected
or hybrid density functional methods. It is well established, that these
approaches have severe shortcomings in the description of charge-transfer
bands or Rydberg states [68], but they are considered as reliable tools for
single-reference valence excitations. However, there are reports on unex-
pected substantial failures even for valence transitions [69]. In a previ-
ous hybrid density functional theory study on S—unsubstituted S, S-dioxo-
thiophenes [56] the experimental excitation energies were underestimated
by 0.20.4 eV and it was unclear if these deviations have to be attributed to

a poor description of the molecular geometry, i.e. the inter-ring torsional
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(b) T30xMe

(e) DPToxMe (f) DPToxPhe

Figure 2.1: Investigated terthiophene and diphenylthiophene structures

angles, or to inaccurate electronic structure description. For this reason
it is highly desirable to compare the DFT results with higher level ab ini-
tio calculations. The approximate coupled-cluster singles and doubles model
(CC2) [70] has recently attracted strong interest [49], [69], [71] thanks to the
implementation of the resolution-of-identity approximation, i.e. the RICC2
[72], [73] approach, which allows an efficient computation of excitation en-
ergies of medium-size organic molecules, such as the ones considered in this
work. RICC2 is well suited for single-reference systems that are indicated
by sufficiently small D1 diagnostic values [74]. Multi-reference effects can
be investigated with the DFT-based multi reference configuration interac-
tion (DFTMRCI) [75] method, which is significantly cheaper in terms of the
computational cost than e.g. Complete active space (CAS) based methods
[46], [50], [76], [77]. In this work we compare molecular geometries obtained
from DFT and RICC2 calculations as well as excitation energies obtained
for the optimized structures. Vertical excitation energies are calculated at
the RICC2, DFTMRCI, and TD-DFT level of theory, employing hybrid den-
sity functionals, containing different amounts of exact exchange. The effects

of the basis set size on the description of molecular geometries and excited
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states are also investigated. We describe how the different substituents mod-

ify the molecular conformations and excitation energies.

2.2 Computational Details

All calculations were performed using the TURBOMOLE 5.7 [78] package.
In particular the modules DSCF [79], ESCF [66], and RICC2 [72], [73] have
been used. In the DFT ground and excited state calculations we employed
the B3-LYP [80], [20] and BH-LYP [81] hybrid functionals. The default m3
numerical quadrature grid was used in all DF'T calculations. The basis sets
were taken from the TURBOMOLE basis set library (TURBOMOLE home-
page via the FTP Server Button (in the subdirectories basen, jbasen, and
cbasen)) [82]. For RICC2 calculations, basis sets of valence-triple-¢ quality
with double polarization functions (TZVPP) [83] have been employed. The
corresponding auxiliary basis sets [83], [84] were used in all RICC2 calcu-
lations. For a further save of computation time, core orbitals have been
kept frozen in the framework of this approach. RICC2 calculations were
well converged and the ground state wavefunctions did not show signifi-
cant multi-reference character (D1 diagnostic values in the range 0.07-0.08).
The neglect of triple or higher excitations was also unproblematic, because
the single excitation contribution were always greater than 90%. For DFT
calculations we use basis sets of valence-triple-¢ quality with polarization
functions (TZVP) [85] and augmented (ATZVP) with one additional diffuse
functions for each angular momentum (the exponents have been determined
by a geometric series from the last two exponents). For DFT geometry op-
timization we also use the TZVPP basis set. DFT-MRCI calculations were
carried out with the DFT/MRCI code of Grimme and Waletzke [75] using
the BH-LYP density functional and a configuration selection cutoff of 0.8
E}. Core orbitals with energies below —0.2E}, and virtual orbitals above

2.0F}, were excluded from the correlation treatments.

2.3 Results

2.3.1 Ground State Geometries

As stated in the Introduction the S excitation energy strongly depends

on the inter-ring torsional angle of the system, hence the discussion of the
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molecular geometries mainly focuses on this parameter. The results of the
RICC2 calculations are taken as reference values for the density functional
calculations, because no experimental data for these structures are available.

Inter-ring torsional angles can be found in Table 2.1. The unsubstituted ter-

RICC2 B3-LYP B3-LYP B3-LYP BH-LYP
TZVP  TZVP ATZVP  TZVP TZVPP

T30x 1.0 3.4 3.3 3.6 3.7
T3oxMe 17.5 22.3 221 27.8 31.6
T3oxPhe 0.2 0.4 0.4 0.4 0.6
DPTox 16.7 16.6 16.6 21.2 17.2
DPToxMe 45.8 49.0 48.5 50.7 50.4
DPToxPhe 19.9 38.2 37.5 41.3 39.5

Table 2.1: Inter-ring Torsional Angles in Ground Geometries, Optimized
with RICC2, B3-LYP, and BH-LYP Methods, Applying Triple-¢ Valence
Basis Sets.

thiophene species T3ox is almost planar with a dihedral angle of 1.0°. This
represents a major difference to the unoxidized ter-thiophene, which is not
planar, but shows an inter-ring torsion of 25° [53]. The methyl substituted
structure T3oxMe has a torsional angle of 17.5°, and thus it is strongly
twisted, whereas the phenyl-derivative T3oxPhe is almost planar. A similar
trend is observed for the Diphenyl (DPT) systems, albeit all values are con-
siderably larger and no planar structure can be found. DPTox, which carries
hydrogen substituents on the central thiophene unit, is twisted by 16.7° and
the methyl-groups in DPToxMe enforce a torsional angle of 45.8°. For DP-
ToxPhe it is 19.9°. For the T3o0x system the deviations of the DFT/TZVPP
results from the RICC2 reference values are small. With the B3-LYP func-
tional, the dihedral angle is found to be 2.4° above the RICC2 result and
with BH-LYP (last column of Table 2.1) the difference slightly increases to
2.7°. The B3-LYP result for T3oxMe is 22.3°, which is somewhat larger than
in the RICC2 geometry and the BH-LYP optimization yields a significantly
larger value of 31.6°. For the phenyl substituted compound T3oxPhe, the
agreement of all methods is within the range of 0.4° almost perfect. This also
holds for the DPTox molecule, where the B3-LYP result is 0.1° below and
the BH-LYP result 0.5° above the reference value. At this point it should
be mentioned, that the torsional potential for DPTox obtained from DFT
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calculations is rather flat. A scan of the potential surface with constrained
geometry optimizations, keeping the values of the dihedral angles fixed be-
tween 0.0 and 30.0°, revealed that over the whole range, energetic differences
were not larger than 0.1 kcal/mol, indicating a large flexibility along this
torsion coordinate. The DFT results for DPToxMe are again quite similar
to the reference value, the B3-LYP angle is only 3.2° and the BH-LYP value
only 4.6° above the dihedral angle obtained by the RICC2 optimization.
The situation is quite different for the phenyl-substituted structure DPTox-
Phe. Here the DFT calculations predict torsional angles, that are nearly
20° larger than the ones obtained with the RICC2 method. The basis set
effects can bee seen in Table 2.1. When comparing the B3-LYP results for
the additionally polarized (TZVPP) and augmented (ATZVP) triple-¢ ba-
sis sets, almost no difference is found for the individual structures. The
largest deviation is 0.7° for DPToxPhe. In case of the smaller TZVP basis
set, some structures show slightly increased dihedral angles compared to the
larger basis sets. But only in the case of T3oxMe the difference between the
TZVP and TZVPP calculation exceeds 5°. The effect of diffuse functions is
thus similar to the additional polarization functions. In the following sec-
tion we will present results for excitation energies computed employing the
RICC2/TZVPP and the B3-LYP/ATZVP geometries.

2.3.2 Excitation Energies of the Electric Dipole Allowed 5;
Transition

In Table 2.2 the excitation energies and oscillator strengths of the S; tran-
sition of the six molecular species obtained by RI-CC2 and TD-DFT (B3-
LYP) calculations using RI-CC2/TZVPP optimized geometries (A) and by
TD-DFT (B3-LYP and BH-LYP) as well as DFT-MRCI (BH-LYP) using
B3-LYP/ATZVP optimized geometries (B) are shown. Experimental re-
sults, from absorption spectra in THF solution [86], are reported in the last
column of Table 2.2. No solvent-dependence of the absorption peak has
been found in experiments [56], [86]. The DFT-MRCI (RICC2) calculations
for all systems have shown that the single excitation from the highest occu-
pied molecular orbital (HOMO) to the lowest unoccupied molecular orbital
(LUMO) contributes by more than 94% (91%) to the S; excited-state. In
the TD-DFT treatment the HOMO-LUMO transition contributes by more
than 98% to the S; excited-state. A first inspection of the RI-CC2/TZVPP
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(A) RICC2/TZVPP optimized structure
RICC2/TZVP B3 LYP/TZVP Exp®

Energy(eV) fL Energy(eV) L Energy(eV)

T3ox 2.99 0.692 2.60 0.598 2.92
T3oxMe 3.11 0.592 2.72 0.508 3.12
T3oxPhe 2.92 0.628 2.60 0.526 2.87
DPTox 3.332 0.606 2.86 0.536 3.25
DPToxMe 3.67 0.370 3.20 0.342 3.62
DPToxPhe 3.22 0.485 2.83 0.400 3.31

(B) B3-LYP/ATZVPP optimized structure
B3-LYP/TZVP B3-LYP/ATZVP

Energy(eV)  fr  Emergy(eV) [z

T3ox 2.72 0.612 2.69 0.590
T3oxMe 2.88 0.494 2.87 0.489
T3oxPhe 2.78 0.531 2.76 0.525
DPTox 3.00 0.563 2.96 0.545
DPToxMe 3.41 0.330 3.40 0.328
DPToxPhe 3.21 0.328 3.11 0.329

BH-LYP/TZVP  DFT-MRCI/TZVP

Energy(eV)  fr  Energy(eV)  fr

T3ox 2.96 0.622 3.00 0.785
T3oxMe 3.19 0.513 3.20 0.655
T3oxPhe 3.03 0.542 2.98 0.744
DPTox 3.28 0.565 3.24 0.717
DPToxMe 3.81 0.349 3.76 0.420
DPToxPhe 3.50 0.354 3.42 0.472

2 From [86]

Table 2.2: Calculated Ezcitation Energies [eV] and Oscillator Strenghts of
the Electric Dipole Allowed Si Transition from RICC2/TZVPP and B3-
LYP/TZVP, B3-LYP/TZVP Calculations, and Ezperimental Values. The
Molecular Geometries have been Optimized Either on the RICC2/TZVPP
(A) or B3-LYP-ATZVP (B) Level of Theory. The DFT-MRCI Calcu-
lations have benn Performed with the BH-LYP Density Functional and a
SV(P) Basis set.
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values shows, that the resulting excitation energies lie between 2.92 and 3.67
eV. The almost planar species (T30x and T30xPhe) show the lowest excita-
tion energies, whereas the energy of the more distorted T3oxMe structures
is blue-shifted by about 0.2 eV and it has a smaller oscillator strength with
respect to T3ox and T3oxPhe. Replacing the two lateral thiophene sub-
stituents by phenyl groups in general leads to higher excitation energies. As
described in [56], this increase in energy is due to larger torsional angles and
decreased polarization of the phenyl groups with respect to thiophene. The
oscillator strength for DPTox is with 0.606 of the same magnitude as for the
ter-thiophene species, whereas for DPToxMe and DPToxPhe this value drops
below 0.5. The corresponding B3-LYP excitation energies for these geome-
tries are all at lower values. For the ter-thiophene structures this red-shift is
between 0.3 and 0.4 eV, while it is even larger (0.4.0.5 eV) for the diphenyl
substituted systems. The oscillator strengths of the TD-DFT calculations
are somewhat lower than those of the RI-CC2 calculations but show more or
less the same trend. Employing DFT (B3-LYP/ATZVP) optimized struc-
tures rather than RI-CC2 geometries leads to somewhat higher values for
the TD-DFT excitation energies. The differences are in the range of 0.1.0.2
eV for most molecules and the largest deviation (0.29 eV) is observed for
DPToxPhe. This can be easily understood, since the two optimized ge-
ometries also show the largest deviation in the inter-ring torsional angle of
20°. To check the basis set effect on the excitation energies, we repeated
the TD-DFT (B3-LYP) calculations with the larger ATZVP basis set. The
difference in absorption energy is at most 0.05 eV (for DPTox), which is
close to the limits of computational accuracy. The oscillator strengths are
more or less unchanged. Thus the use of the smaller basis set is clearly justi-
fied for TD-DFT calculations of oligothiophenes of this type. Increasing the
amount of Hartree.Fock exchange from 20% (B3-LYP) to 50% (BH-LYP)
yields higher (0.3.0.4 eV) excitation energies while the oscillator strengths
are not affected. Finally, DFT-MRCI excitation energies are very close to
BHLYP because neither the ground state, nor the lowest lying excited state

feature any significant multi-reference character.
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2.4 Discussion

2.4.1 Ground State Geometries

The geometry optimizations of the molecular structures revealed that the
oxygenated diphenylthiophenes generally show larger torsional angles be-
tween the lateral substituents and the central thiophene unit than the oxy-
genated terthiophenes. Despite this effect on the dihedral angles between
the central thiophene unit and the lateral substituents, there are only minor
changes in the structures caused by the different substitution patterns. One
additional difference is found, when comparing the T30oxPhe with the DP-
ToxPhe structure. In T30xPhe, the central phenyl-substituents are found in
a perfect perpendicular orientation to the thiophene ring, but they are tilted
by about 20° in DPToxPhe. This probably can be attributed to the steric
interaction with the lateral phenyl substituents in DPTox- Phe, where a too
close contact of the lateral and central substituents has to be avoided. Gen-
erally speaking, the terthiophene species are more planar and thus better
conjugated than their diphenyl analogues and methyl substitution signifi-
cantly increases the relevant dihedral angles. So both changes in the sub-
stitution pattern offer a strategy to manipulate the inter-ring torsion of the
m-conjugated system and such to take influence upon the absorption wave-
length. From a theoretical point of view it could be shown that increasing
the amount of Hartree-Fock exchange in density functional theory calcula-
tion leads to larger, sometimes even too large, inter-ring torsional angles.
The application of an augmented triple-£ (ATZVP) instead of an addition-
ally polarized (TZVPP) basis set does not lead to significant changes in the
molecular structures, whereas calculations with the TZVP basis set result
in small deviations of the geometries. Nevertheless, the ATZVP basis set
seems to represent a good compromise between accuracy and computational
cost of the geometry optimizations. The largest differences in the molecu-
lar structures, depending on the computational method, are found for the
DPToxPhe system. The inter-ring torsional angle as obtained from RICC2
calculations is ~ 20° smaller than the ones received form density functional

theory calculations.
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2.5 Excitation Energies

2.5.1 Molecular Orbitals

Before discussing the calculated excitation energies and comparing them
to experimental results, we have to regard the HOMO and LUMO orbitals,
which characterize the electric dipole allowed S; transition. Figure 2.2 shows
Kohn-Sham (KS) HOMO and LUMO wavefunctions for the methyl and
phenyl substituted structures. For the plots of T3ox and DPTox see [56].

T3oxMe T3oxPhe

HOMO 7 7 HOMO

DPToxMe DPToxPhe

Figure 2.2: HOMO and LUMO orbitals at an iso density value of 0.02 au of
the investigated structures, obtained from B8-LYP/TZVP//RICC2/TZVPP

calculations.
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Apparently there are no big differences in the atomic-orbital (AO) coeffi-
cients on the central thiophene unit, with respect to the various substitution
patterns. A certain contribution for HOMO and LUMO is located on the
central methyl and phenyl substituents, but a significant influence on the
main m—system is not recognizable. The interaction of these small AO coef-
ficients located on the -substituents with the 7 coefficients on the central
ring is in all cases of antibonding character. The largest difference in the
molecular orbitals is of course caused by the most important change in struc-
ture, namely the torsion of the lateral substituents. In case of the HOMO, a
nodal plane is located on the carbon-carbon bonds, which connect the cen-
tral with the lateral rings. In the LUMO a bonding 7 contribution is found

at this position. The corresponding orbital energies are given in Table 2.3.

System HOMO LUMO GAP

T3o0x -5.71 -2.90 2.81
T30xMe  -5.58(-5.57) -2.60(-2/289) 2.98(2.88)
T30xPhe  -5.47(-5.68) -2.65(-2.90)  2.82(2.78)
DPTox -6.05 2.83 3.22
DPToxMe -6.07(-6.30) -2.35(-2.68)  3.72(3.62)
DPToxPhe -5.78(-6.08) -2.65(-2.83)  3.22(3.25)

Table 2.3: FEnergies in eV of Frontier Orbitals and Resulting Kohn—Sham
Energy Gap from B3-LYP/TZVP//RICC2/TZVPP Calculations.

In terthiophenes (diphenylthiophenes), methyl substitution strongly desta-
bilizes the LUMO energy by +0.30 eV (0.48 e€V), while HOMO eigenvalues
are much less affected. As a consequence the HOMO-LUMO Kohn—Sham
gap of T3oxMe (DPToxMe) is increased by 0.17 eV (0.50 eV) with respect
to the unsubstituted system. In contrast, the phenyl substituents destabi-
lize both, the HOMO and the LUMO by approximately the same amount
(0.24-0.25 eV for terthiophenes and 0.18 eV for diphenylthiophene) so the
resulting energy gap remains unchanged when compared to the unsubsti-
tuted molecules. Because of the fact, that the phenyl groups are orientated
almost perpendicular to the central thiophene ring, no conjugative stabiliza-

tion as usually expected for +M substituents can occur. The Kohn—Sham
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energy-gaps reported in Table 2.3 are very close to the corresponding B3-
LYP/TZVP excitation energies reported in Table 2.2 and they show the
same trend among the different systems. In fact the KS energy-gap repre-
sents a zero-order approximation to the lowest TD-DFT excitation energy
[87].

2.5.2 Comparison with Experiments

For the excitation energies of the S transition, excellent agreement is found
between the results of the RICC2 calculations and the experimental data,

as shown in Figure 2.3. The calculated excitation energies deviate by less
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Figure 2.3: Ezperimental and theoretical excitation energies for the electric

dipole allowed S; transition. Experimental values are taken from [86].

than 0.1 eV from the experimentally observed ones and for most of the
structures errors are even below 0.05 eV. The largest difference (0.09 eV) is
found for the DPToxPhe system. The corresponding TD-DFT energies are
systematically redshifted, when calculated with the B3-LYP density func-
tional. Using the BH-LYP density functional better agreement with the
experimental values are obtained. The deviations of the BH-LYP results
from experimental values are in a range between +0.03 and +0.19 eV and in
three cases (T30xPhe, DPToxMe, DPToxPhe) larger than 0.1 eV. The small-
est error of the B3-LYP calculations with respect to experiment is —0.11 eV
for T3oxPhe, all other results deviate by —0.20 to —0.29 eV. The values
obtained from DFT-MRCI calculations are rather close to the RICC2 and
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experimental results and slightly better than the TDDFT BH-LYP results.
For the ter-thiophenes the deviations from experiment are found between
+0.04 and +0.11 eV and for the diphenyl-thiophene between —0.01 and
0.14 eV. The use of diffuse or additional polarization functions in the basis
set are not strictly mandatory for the TD-DFT calculations. No significant
multi-reference character was found, neither for the ground, nor for the ex-
cited states of the investigated structures, so single-reference methods are
safely applicable for analyses of the systems investigated here. In general the
results from both, experimental and theoretical data can be summarized as
follows. First, the excitation energies of the diphenylthiophene species are
higher than for the terthiophene structures and second the energies for the
methyl substituted structures are always higher than for the hydrogen or
phenyl substituted species. Both observations can be clearly related to the
influence of the different torsional angles discussed in the previous section,
which are larger for the diphenyl compared to the terthiophene systems and

also for the methyl substituted compared to the other structures.

2.6 Substituent Effects

The effect of changes in the substitution pattern on the inter-ring torsional
angle and thus on their excitation energies could be characterized as a steric
effect. The question is, if besides another more direct effect exists. To sepa-
rate both influences, we decided to repeat the excited state calculations on
the RICC2/TZVPP level of theory, substituting the phenyl and methyl lig-
ands by hydrogen atoms, but keeping the remaining atoms in fixed positions,
as obtained from the RICC2/TZVPP optimization of the fully substituted
structures. The difference between the excitation energies of the fully substi-
tuted structures (solid lines in Figure 2.4) and the excitation energies of the
hydrogen substituted ones (dashed lines in Figure 2.4) reflect the individual
shifts caused by the methyl and phenyl substituents. From Figure 2.4, it can
be seen that the methyl groups cause a blue shift of 0.08 eV and 0.06 eV for
T3oxMe and DPToxMe, respectively, whereas phenyl substitution induces
a small red shift of the excitation energies. For DPToxPhe this shift is 0.11
eV and thus slightly larger than for the T3oxPhe system where the energy
only changes by 0.05 eV. The remaining difference between the values of the
hydrogen substituted systems to the T3ox and DPTox excitation energies

(horizontal lines in Figure 2.4) reflects the purely steric influence, caused
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Figure 2.4: Effects of methyl- and phenyl-substituents on the excitation
energies from RICC2/TZVPP//RICC2/TZVPP calculations (filled circles)
and B3-LYP/TZVP//RICC2/TZVPP calculations (hollow squares). Solid
lines represent the fully substituted structures (H, Me, Phe) and dashed lines
the hydrogen substituted structures (H in all cases) using geometries of fully

substituted structures.

by the different torsional angles. The steric effect is for T3oxMe 0.04eV
and for T3oxPhe -0.02 eV and thus of similar magnitude as the pure sub-
stituent effect. For DPToxMe the difference in the torsional angle compared
to DPTox contributes 0.29 eV to the total shift and thus clearly dominates
for this species. In case of the DPToxPhe structure the dihedral angle is
slightly larger than for the DPTox system, resulting in a small blue-shift of
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0.01 eV, which is one order of magnitude smaller than the redshift caused
by the phenyl substituents. Nevertheless it should be mentioned, that the
relative geometrical orientation of the different substituents with respect to
the central thiophene unit, like the tilting of the phenyl groups in DPToxPhe
might have an influence on the results. The corresponding TD-DFT calcu-
lations qualitatively yield the same results, with the exception of T30xPhe,
where the absorption energy of the fully substituted system is slightly above
the one of the hydrogen substituted structure. The individual shifts can be
traced back to Kohn—Sham (KS) orbital eigenvalues. In Table 2.3 we report
in brackets the HOMO, LUMO, and the KS gap energies if the substituent
are replaced by hydrogen atoms. In the hydrogen substituted structures, the
KS gap increases with inter-ring torsion angle. As already found in [53], the
HOMO energy is much more sensitive to the interring torsion angle than the
LUMO energy. This is more evident for terthiophenes in which the LUMO
energy is fixed to 2.9 eV. The methyl substituents induce an increase of the
HOMO-LUMO gap, due to a larger destabilization of the LUMO than the
HOMO, whereas phenyl substituents almost do not affect the gap size.

2.7 Relevant aspects

In this theoretical study we have investigated the effect of S—substituents
on the torsional angle of S, S-dioxygenated thiophene derivatives. We have
compared several quantum chemical methods and different basis sets with
respect to their applicability for molecular structure and electronically ex-
cited states calculations for thiophenes with different substitution patterns.
The RI-CC2 results represent state of the art benchmark values for these
kind of systems, as they are close to the limit of computational feasibility
with present day hard- and software. Nevertheless it was found, that more
approximated computational schemes, such as DFT with valence triple-&
basis set can yield a qualitatively correct description of the investigated
systems. However, the BH-LYP hybrid-functional is much better suited to
reproduce experimental excitation energies than B3-LYP. We have shown
that methyl substitution leads to a strong blueshift of the excitation ener-
gies compared to the unsubstituted species. The reasons for this are (i) a
relatively large change in the inter-ring torsional angle and (ii) a pure sub-
stituent effect. The former is the predominant effect for DPToxMe and the
latter is for T3oxMe. Phenyl substitution yields a negligible change in the
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torsional angle and destabilizes HOMO and LUMO to a similar extend, so

the overall effect on excitation energies remains small.



Chapter 3

Entanglement

3.1 What is entanglement

Quantum entanglement is a concept commonly used with reference to the
existence of certain correlations in a quantum system that have no classical
interpretation. This concept was first introduced by Schrodinger in 1935 in
a paper in which he underlined the typical quantum nature of entanglement.
Indeed, he wrote: “Mazimal knowledge of a total (quantum) system does not
nesessarily include total knowledge of all its parts, not even when these are
fully separated from each other and at the moment are not influencing each
other at all.” [88]

From a mathematical viewpoint, entanglement can be considered as a
consequence of the linearity of standard quantum formalism based on Hilbert
space, but it has an essential role in quantum mechanics (QM) and it is a
very useful resource in Quantum Information (QI) [89]. Let us now describe
how.

One of the most important principles of QM is the superposition principle
which is a direct consequence of the linearity of the Hilbert space: if a system
can be in two different states rapresented by the kets |a), |b) € 4, then it
can also be in the state represented by the linear superposition «|a) + 3|b)
with o, 8 € C and || + |8]? = 1.

In general, we can distinguish between pure state and mized states, de-
pending on the information we have on the state.

The pure states are those states that we use when we want to describe
a particle that is in a well defined state, i.e., it is in a given state with

certainty and are represented by unit vectors of the Hilbert space associated

71
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with the system. Let p be a pure state represented by the vector |1). Then,
the corresponding density operator is p = |¢)(¢| and it has the following
properties:

Trp="Trp? = 1. (3.1)

When we don’t know exactly in which state the system is, but there is
only a probability p; for the system to be in the pure state represented by
|1;), then we say that the system is in a mixed state that we represent with

the density operator

p= Zpil?ﬁi)(%\ = pipi; (3.2)

where p; > 0, >, p; = 1 and p; is the density operator associated with the

pure state |1;). On the contrary, mixed states are such that
Trp=1%# Trp’. (3.3)

The most important consequence of the mathematical structure of the
state space is in the study of compound systems. For example, let us consider
a system T made up by the two subsystems A and B whose states are
represented by the elements of the Hilbert space £, and 3, respectively.
Then, the system T is described by 54 = 4 Q #3p and a pure state of T'
can be represented by |¢) € . Let us denote by {|#;) }ien, the elements
of s, and by {|x;)}jen the ones in 5. Thus, if the state |¢) € H#7 can
be written as a tensor product of an element of 54 and an element of 7%,

as in the following,
[9) = 19) @ x) = l¢,x), (3-4)

we say that |¢) is a product or separable pure state.

For example, the system can be in a pure state |a,a) or |b,b). But,
the linearity of the Hilbert space % implies that any superposition of this
states is represented by |9) = ala,a) + B]b,b) € H#7. Such a state is a pure
state of #7, but there is no element |¢p) € 4 and |x) € H#p such that
|) = |¢, x)- In this case, we say that the system is in an entangled state.

In order to recognize whether a pure state is entangled or not we can
consider the biorthogonal decomposition (also called Schmidt decomposition

[90]) on the correlated elements of the two subspaces as in the following:

[9) =D Vil di(A)xi(B)), (3-5)
i=1
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where 1 < n < 00, 0 < p; < 1and ) ,;p; = 1. The origin of the name
“biorthogonal” is due to the fact that

(¢:(A)[4;(A)) = dij, {(xi(B)Ixj(B)) = dij-

The number n of the term that appears in the decomposition described
in Eq. (3.5) characterized uniquely the state ). In fact, if the Schmidt
decomposition (3.5) contains only one coefficient, p; = 1, the state |¢) is a
product pure state (in other words, if p; = 1, the pure state |1) described
in Eq. (3.5) assumes the form of the separable state in Eq. (3.4)); if there

are more than one nonzero Schmidt coefficients the pure state in entangled.

3.2 Consequences of entanglement: from EPR to
Bell

In 1935 Einstein, Podolsky and Rosen (EPR) wrote a paper [91], later be-
come famous, in which they aimed to prove that QM is incomplete. Let us
briefly resume their argument. Firstly, EPR stated the following two condi-
tions.

Condition of completeness: Fvery element of the physical reality must have
a counterpart in the physical theory;

Condition of reality: If, without in any waty disturbing a system, we can
predict with certainty (i.e. with probability equal to unity) the value of a
physical quantity, then there exists an element of physical reality correspond-
ing to this physical quantity.
By using a modern argument, we can say that the EPR paradox is based on
the fact that the result of a measurement is in presence of local correlation,
a property associated with the quantum system right before the measure-
ment was performed. To explain it we use the Bohm model whose results
are equivalent to those of the EPR paradox. In this model we consider a
system 7' in the singlet state with total spin 0 made up by the two qubits
A and B with spin 1/2

1
V2

We assume that the two qubits, which are in the quantum state (3.6), are

[r) = —=[10418) — [1.408)] - (3.6)

spatially separated, and that a measurement of their polarization is done on
each qubit: let |1 4) denote vertical polarization of qubit .4, and |0 4) horizon-
tal polarization. Analogously for qubit B. According to the laws of QM the
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outcome of the measurement on qubit A projects the state |1/) onto the state
|04)[18) (or |14)|05)) with probability 1/2. But if we find + as outcome
for the measurement on A, the state of the system after the measurement
is |14)|0) with certainty. Thus, horizontal polarization is an element of
reality for qubit B after this measurement. Hence, even if we don’t make
any measurement on B we can have some information on it. Thus, if we
accept the hypothesis of locality we say that before measurement, B had an
element of reality that QM was not able to predict. Thus EPR concluded
that QM was incomplete. EPR proof of incompleteness was immediately
criticized by the majority of scientific comunity, but raised a fundamental
problem: if QM is incomplete, how it could be completed? If the vector
|1) representing the state of the system does not describe completely the
system itself, is it possible to introduce new “hidden” variables such that
their specification allows to describe now completely the system? In 1964
J. Bell proved that any hidden variables theory that satisfied conditions of
reality and locally is experimentally distinguishable from QM since it gives
rise for some experiments to results that contrast with quantum predictions
[92]. Let us briefly follow Bell reasoning. The ket |¢)) cannot describe all
the properties of a system, but there exist some hidden variables A that
complete the information. Basically, he envisaged an experiment such that
the measurements could be performed in any direction, that is, in a possible
basis different to the logical one. For example, when working with photouns,
such measurements could be performed by using polarized rotated by differ-
ent angles. Bell introduced a correlation function P(71,73) which denotes

the average product of the outcomes of the corresponding measurements for
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different directions ; and that is defined as the following:
P(f1,72) = (Yo7 (A)or, (B)|dr) = =71 - 72, (3.7)
where

o7 (A) =07 (A) @1 = [J(A) ?] Q1 = [awrlw + oyriy + azrlz] ®1p3

07 (B) =14 ® 07 (B) =14 Q® [O(B) . @] =14® |:O'm7‘2m + oyroy + O'Z‘I“Qz].

He also assumed that the measurement outcome of quibit B was indepen-
dent of the orientation 7 where qubit A is measured (hypothesis of locality).
Therefore, there exist two functions M 4(7, ) and Mp (7%, A), which corre-

spond to both measurements outcomes, with values
My (71, A) = 1, Mp(7a, \) = £1. (3.8)

(the latter equation can be seen as an hypothesis of reality). In particular,

both functions satisty the desired result if 7, = 7%:
Ma(71,A) = —Mp(71,A), VA (3.9)

Nevertheless, if p()\) is the probability distribution for the hidden variable,
withp(A > 0) and [ p(A)dX = 1, the average of the product of both outcomes
should be

P17 = [ pO)MA(T, N M (72 N (3.10)

and
P(7, ) = —/p(/\)MA(Fl,/\)MA(FQ,)\)d)\. (3.11)

Considering another unit vector 7, and considering that the three integers
M4 = £1 satisfy

Ma(7) [MA(@) _ MA(@')] = [1 - MA(FQ)MA(TE')], (3.12)

and after some algebraic manipulation, the following Bell inequality is ob-
tained:
‘P(FI,FQ) - P(‘Fl,T_é,N S 1 + P('FQ, T_é,). (313)

The last inequality is called Bell inequality and it is important to notice
that there are some quantum states in which a quantum machanical system
violates them, just because of the existence of non-classical correlation. This

correlation of quantum nature, induced particular states as |1r) that is know
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as Bell state that is maximally entangled. For such a state, if the vector 71

and 7 are orthogonal and 73’ lies between them at 45° we have

1
P(71,7) = 0,P(71,75) = P(ia,13) = V.3 (3.14)

The Bell inequality is thus violated, since
V2 V2
> £1- TR (3.15)
The violation of this inequality not only implies that QM is a non—local
theory, but it also says that there not exist a local realistic theory that is
probabilistically equivalent to QM. Moreover Aspect et al. experiments in
1982 demonstrated that nature is non—local and that hidden variables don’t
exist. As a consequence, EPR argument is not acceptable because of its
condition of locality, and QM is a complete theory. However, an analysis of
the measurement process tells us that the existence of these of non-classical

correlations does not imply a violation of causality principle, as EPR stated.

3.3 Relations among the compound system and its
subsystems
Our main aim in this section is to discuss the relations among a compound
physical system and its subsystems, but first let us spend some words on
the notations we shall use on these topics.
In the following, we use |1);) to identify a product or separable pure state
and p; for the correspondent density operator. Anologously, we use |).) and

pe when refering to an entangled state and its density operator, respectively.

Hence, let us associate with the product state |1,) the density operator

ps = [Ps){s| = [9) x){(Dl{x| = |#, x) (&, X/, (3.16)

and with the entangled state the density operator

pe = |tpe) (the| = Z VPi/Pili(A))xi(B)) {4 (A)|(x;(B)| =

= VPivpil9i(4) xi(B)) (9 (4), x;(B)] (3.17)

Once we have expressed the global state in terms of the biorthogonal de-

composition, it is possible to obtain some informations on the subsystems.
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For example, if we are interested in predicting expectation values or prob-
abilities of outcomes for measuraments performed on subsystem A (B), we

only need the reduced density operator

pa=Trpep (pB = TTAp). (3.18)

We can shown that if the compound system is in a separable pure state, the
subsystems are in a pure state. Indeed, if |1s) = |¢, x) is the ket associated
with the separable state, its density operator is p; = |¢, x)(#, x|. Hence, in
order to obtain information on the subsystem A we make the partial trace

as the following:

pa=Treps = Y _(xj(B)lolxj(B)) = |#)(¢], (3.19)

where {x;(B)};en is an orthonormal basis on the Hilbert space .#5.
Moreover, one can prove that if the compound system is in an entan-
gled pure state, the subsystems are in a mixed state. Indeed, if the entan-
gled state is represented by [ve) = > .o, /Pi|#i(A))|xi(B)), then the corre-
sponding density operator is p. = Eij \/;71\/1)7|¢,(A), xi(B))(¢j(A), x;(B)].
Hence, by making the partial trace with respect to system B, we obtain

pa=Trppe =

= Y aB)eha(B)) = 3 VB (alB) (A (B85 (A (B) ba(B)

! ijl

=D VPivpi8udloi(A) (@i (A) = D pla(A)@i(A)]. (3.20)
il 1

A similar result can be obtained by tracing out with respect to system A
In other words, the vector |¢) represents a product state of the compound
system if and only if the corresponding reduced density operators represent
pure states. If [¢) is an entangled state, the corresponding reduced density
operators must correspond to mixed states.

Hence, if we want to measure the degree of entanglement we can calculate
the degree of mixedness of the corresponding reduced density operator (or
matrix) [93].

3.4 Entropy and its rule in information theory

We have seen that the mixedness of the reduced density operators is linked

to the entanglement of the corresponding state. This is a consequence of the
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fact that an entangled state gives rise to correlations and if we only observe
one subsystems we lose information about these correlations, as it results
from the fact that we effectively have a mixed state.

Since the von Neumann entropy is of particular significance for describing
randomness of a state and mixedness of density operators, in this paragraph
we deald with the concept of entropy.

The highway of the development of entropy is marked by many great
names as Clausius, Boltzmann, von Neumann, Shannon, Jaynes and several
others.

The word “entropy” was created by Rudolf Clausius according to which
the change of entropy of a system is obtained by adding the small portions of
heat quantity received by the system divided by the absolute temperature
during the heat absorption. This definition is satisfactory from a mathe-
matical point of view and gives nothing other than an integral in precise
mathematical terms. Clausius postulated that the entropy of a closed sys-
tem cannot decrease, which is generally referred to as the second law of
thermodynamics. Nevertheless, he did not provide any heuristic argument
to support the law. In 1877, the concept of entropy was really clarified by

Ludwig Boltzmann, whose great discovery was the celebrated formula
S=kplnhW, (3.21)

where kp is the Boltzmann constant (kg = 1.38 * 10716 erg/K). It estab-
lished the connection between the variable of the state, “entropy”, which
had been derived from phenomenological considerations, and the “amount
of chaos” (or disorder) of a system, which, more precisely, means the num-
ber of microstates which have the same prescribed macroscopic properties
(this number is known as “thermodynamical probability” and is commonly
representad by the letter W).

In 1927, von Neumann generalized the classical expression of Boltzmann
to quantum mechanics. Entropy is not an observable, and there isn’t an
operator with the property that its expectation value in some state would
be its entropy. It is rather a function of a state. If the state is described by

the density matrix p, its entropy is defined by
S(p) = —Trplnp, (3.22)

in which kp = 1 which corresponds to measuring the temperature in ergs

instead of Kelvin, the entropy becomes dimensionless. It is important to note
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that any density matrix p can be diagonalized, that is, it can be represented

in some orthonormal basis, by a matrix of the form

pp 0 -+ 0
0 py -~ 0

p= 0 0 p3 --- |, (3.23)
0 0 - pn

where p; > 0 and Efvzl p; = 1. By inserting Eq. (3.23) in Eq. (3.22) we thus
obtain the following for the von Neumann entropy: (p) = — ) _ p; Inp;, where
for definition we assume 01n0 = 1. The coefficients P; are the probabilities
of finding the system in the corresponding pure state. If we consider N
copies of the same system, the Hilbert space that describes the resulting
system is

Hror=HOH® ---QH, (3.24)

N times

where H is the Hilbert space of the original system. In this new sys-
tem there are microstates of the form |1) ® |2)---, where |1) occurs pi N
times, |2) poN times, and so on. All these microstates have the same
weight. According to Boltzmann one obtains for the entropy ln Wy (with
Wx = N!/(p1N)!(paN)!--+). The corresponding portion for one system is
(1/N)In Wy, which goes to S(p) as N — oo. In 1943, after Boltzmann
and von Neumann, Shannon initiated the interpretation of the quantity
— > ; pilog p; as “uncertainty measure” or “information measure”. He posed
a problem in the following way:

“Suppose we have a set of possible events whose probabilities of occurence
are p1,pa,-*+,pn- These probabilities are known but that is all we know
concerning which event will occur. Can we find a measure of how much
“choice” is involved in the selection of the event or how uncertain we are of
the outcome?”

Denoting such a measure by S(p1,p2,---,pn) he listed three very rea-
sonable requirements which should be satisfied. He concluded that the only
H satisfying the three assumptions is of the form

N

S = —KZpilogpi, (3.25)
i=1

where K is a positive constant. For § he used different names such as

information, uncertainty and entropy. Many years later Shannon said
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“My greatest concern was what to call it. I thought of calling it ‘infor-
mation’, but the word was overly used, so I decided to call it ‘uncertainty’.
When I discussed it with John von Neumann, he had a better idea. Von
Neumann told me, ‘You should call it entropy, for two reasons. In the first
place your uncertainty function has been used in statistical mechanics under
that name, so it already has a name. In the second place, and more impor-
tant, nobody knows what entropy really is, so in a debate you will always
have the advantage’.”

Shannon’s postulates were transformed later into the following axioms:
1. Continuity: S(p,1 — p) is a continuous function of p.
2. Symmetry: S(p1,p2,---,pn) is a symmetric function of its variables.

3. Recursion: For every 0 < A < 1 the following recursion holds
S(pla “++,PN—1, PN, (1 — A)pN) = S(p1, - +,pN) +PNS(A, 1 = A).

These axioms determine a function S up to a positive constant fac-
tor. Excepting the above story about a conversation between Shannon and
von Neumann, we do not know about any mutual influence. Shannon was
interested in communication theory and von Neumann’s thermodynamical
entropy was in the formalism of quantum mechanics. Von Neumann himself
never made any connection between his quantum mechanical entropy and
information. The concept that entropy is a mesure of our ignorance about a
given physical was recognized very early, however Boltzmann was also aware
of it.

The mathematical theory of information originally was intended as a
theory of communication. The simplest problem it deals with is the fol-
lowing: take any message, for instance consisting of word or of digits. One
can represent it as a sequence of binary dogits and thus, if the length of
the “word” is n, one needs n digits to characterize it. The set E, of all
words of lenght n contains 2" elements, therefore the amount of information
needed to characterize one element of its is log, N, where N is the number
of elements of Ey and it is N = 2. Elaborating on this little bit, one arrives
at the result that the amount of information which is needed to characterize
an element of any set of power N is logy N. Moreover, let £ be a union
Ei1U---UEg of pairwise disjoint sets, N; is the number of elements of F;.
Let p = N —i/N, n = )  N;. If one knows that an element of E belongs
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to some FE;, one needs log, N; additional information in order to determine
it completely. Hence the average amount of information need to determine

an element, provided that one already knows to which F; it belongs, is

Z(Ni/N) logy, N; = Zpi logy, Np; = Zpi log, p; + logy N.

The quantity log, N is the information that is needed if one does not
know to which E; a given element belongs, hence the corresponding average

lack of information is
—> pilogy pi. (3.26)

This is usually called Shannon’s formula, although it was discovered by
Wiener independently.

Eq. (3.26) is very important because if the set E is considered as a set
of N measurements, and the p; are the probabilities of finding the system
in the pure state |i), then, a part for an irrelevant factor In2, Shannon’s
expression equals the definition of entropy.

By means of information theory it is possible to rephrase the well-known
maximum entropy principle as in the following: suppose that for some sys-
tem you know only a few, macroscopic quantities, and you have no further
knowledge of it. Then the system is expected to be in the state with maximal
entropy, because if it were in a state with lower entropy it would also con-
tain more information than previously specified; it is the so—called Jaynes’

principle, due to Jaynes in 1957.
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Chapter 4

Entanglement of electrons in

interacting molecules

Entanglement is a concept commonly used with reference to the existence of
certain correlations in quantum systems that have no classical interpretation
and it holds a fundamental role in quantum information theory. Starting
from the Collin’s conjecture, that is, the correlation energy in molecular
systems is proportional to their entropy, we have interpreted the degree of
entanglement as an evaluation of correlation energy. Entanglement is in fact
a physical observable directly measured by the von Neumann entropy of the
system. This concept is used in order to give a physical meaning to the elec-
tron correlation energy, which is defined as the difference between the total
energy of a given molecular system, with respect to the one obtained with
the Hartree-Fock approximation method. We have made a measurement
of electron entanglement and compared with electron correlation energy in
two different examples of bipartite systems, as Hydrogren molecule and the
dimer of ethylene, where each hydrogen atom or each ethylene molecule,
respectively, can be considered a qubit. Changing the relative orientation
and distance of the molecules of the dimer, we have found the configuration

corresponding to maximum entanglement [94], [95].

4.1 Usefulness of entanglement

Entanglement is the name given by Schrodinger to the nonlocal correlations
responsible for violations of the Bell inequalities [96]. The potential use-

fulness of this property has been demonstrated in a variety of applications,

83
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such as quantum teleportation [97], quantum key distribution [98], quantum
cryptography [99], and it is a useful resource to accelerate some quantum
processes as, for example, the factorization in Shor’s algorithm or to enhance
the mutual information of memory channels.

The quantum information community devoted a lot of efforts to analyze
entanglement theoretically and experimentally. For example, Machiavello et
al. [100] considered a different class of channels, in which correlated noise
acts on consecutive uses of channels. They showed that higher mutual infor-
mation can be achieved above a certain memory threshold, by entangling two
consecutive uses of the channel. Banaszek et al. [101] implemented Machi-
avello et al. suggestion experimentally. They shown how entanglement can
be used to enhance classical communication over a noisy channel. In their
setting, the introduction of entanglement between two photons is required
in order to maximized the amount of information that can be encoded in
their joint polarization degree of freedom.

Schliemann proposed an idea [102], extended by other outhors [103],
[104], to make a measurement of the degree of entanglement. He, in fact,
suggested to use a density matrix in the spatial coordinates and to compute
the von Neumann entropy. Such an approach is based on an analogous of the
Schmidt decompostion for state vectors of two fermionic particles: through
an unitary transformation the antisymmetric wave function is expressed into
a basis of Slater determinants with a minimum number of nonvanishing
terms. This number, known as Slater rank, is a criterion to identify whether
a system is entangled or not, which involves the evaluation of the von Neu-
mann entropy of one particle reduced density matrix. In order to exploit
entanglement in quantum computation also more complex molecules are
studied. For example, the researchers of Hahn—Meitner—Institut are work-
ing on the realization of molecular quantum computers whose quantum bits
could be formed by fullerenes with a single nitrogen or phosphorus atom
trapped inside.

For this reason, it is important to investigate the properties of some
molecules and the interaction among them. A study of this kind is car-
ried out in this chapter. Here, the starting point is the so—called Collin’s
conjecture [105], that is, the correlation energy in molecular systems is pro-
portional to their entropy. This conjecture was confirmed by numerical
evidence by Ramirez et al. [106] and taken up by Huang and Kais in [104]

who interpreted the degree of entanglement as an evaluation of correlation
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energy. Entanglement is in fact a physical observable directly measured by
the von Neumann entropy of the system. This concept is used in order
to give a physical meaning to the electron correlation energy, which is not
directly observable since it is defined as the difference between the total en-
ergy of a given molecular system, with respect to the one obtained with the
Hartree—Fock approximation method. The Hartree-Fock method, in fact,
is typically used to solve Schrodinger equation for a multi-electron atom or
molecule described in the fixed—nuclei approximation (Born-Oppenheimer
approximation) by the electronic molecular Hamiltonian and the calculation
of the error due to this approximation is a major problem in many-body
theory and a vast amount of work has been done on this subject [107].

In this work, we make a measurement of electron entanglement in two
different examples of bipartite systems, as Hy molecule and the dimer of
ethylene, where each hydrogen atom or each ethylene molecule, respectively,
can be considered a qubit. In this chapter, firstly, we decide the method we
use to make a measurement of entanglement comparing the von Neumann
entropy of the reduced density matrix S(p;) and the von Neumann entropy
of the density matrix S(p) for the Hy molecule. After, fixed that the most
convenient method to adopt is the second, (S(p)), we analyze a dimer of
ethylene. Using the Klein’s inequality for a bipartite system, we define the
interaction electron entanglement in order to study the degree of entangle-
ment between the two molecules of the dimer then, we compare it with the
interaction electron correlation.

The structure of the present chapter is the following: in §4.2 we briefly
resume what entanglement is [108] (equivalently, when a state is separable
or entangled [109]) and why we choose the von Neumann entropy to make an
estimate of the degree of entanglement. In §4.3 we first analyze a dimer of
ethylene considering it as a multielectrons system, calculate the correlation
energy, and then compare it with the entanglement, as a function of the
distance between the two molecules. In §4.4 we introduce a new quantity,
the interaction electron entanglement, which is defined as S;,; = S[2C2Hy]—
2S[CyHy], in order to obtain the entanglement between the two molecules
of the dimer. Then, we change the relative orientation and the distance
between the molecules, in order to obtain the configuration corresponding to
maximum entanglement. In this way, the system can be considered bipartite
and each molecule can be seen as a qubit for an application to quantum

computing. In §4.5 we explain some computational details describing the
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package we use and how we prepare the input for the compound systems

that we analyzed. Finally, in §4.6 some comments and results are discussed.

4.2 A measurement of entanglement

As a simple bipartite system, let us consider the H molecule, whose Hilbert

space can be represented by:
# =|2m1) e 721) @ 272 @ #42)| = ") @ 6*™(2), (41)

where .Z and . represent the orbital and the spin space, respectively; in
brackets we denote one of the two electrons while the index represents the
dimension of the space.

In the occupation number representation [110] (ny t,n1 |,ne T,n2 |
yeo sy T,y J) the subscripts denote the spatial orbital index and with

this notation let us introduce an orthonormal basis for each space €™:

([ [n 1) ) ([ fnit) )
n1 ) n1 )
In2 1) In2 1)
q In2d) p ® ( In2d) (4.2)
|7m 1) T 1)
( [7m L) ) [ [P ) )

(1) (2

A pure two-electron state |¥) can be written in this representation as

10y =3 wapchef|0), (4.3)

a=1 b=1
where |0) is the vacuum state, the coefficients w,j satisfy, accordingly to

Pauli exclusion principle the following requests:

{ Wa,p = —Wh,a (4 4)

wi; = 0,

and ¢! and ¢ are the creation and annihilation operators of single-particle

states, respectively, whose action on the vacuum state is

15|n1T> 25|n1¢>
= 4=
cZCZ|0) = |ab), a,b€ {1,2,3,4,...,2m} 3 [ng 1) . Ing J)
2m —1=|n, 1) 2m=|n, )
(4.5)
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The coefficients w, p can be calculated by using the configuration interaction
method [111], [112]. In particular, for Hs molecule we use configuration
interaction single-double (CISD) method that is limited to single and double

excitations:

[TOIP) = colapo) + )l + D il (4.6)

ar a<b,r<s
where |10) is the ground state Hartree-Fock wave function, ¢} is the coeffi-
cient for single excitation from orbital a to r, and ¢ is the double excitation
from orbital @ and b to r and s. In the occupation number representation,

the CISD wave function is given by

[T) = co|11120304 . .)+¢3 |01 151504 .. .)+c3[110203 14 .. ) +¢75[01 051514 .. )+ -

(4.7
where each “1” represents the presence of the electron and the subscript
represents the site where the electron is [113].

In order to realize whether the state of the compound system is entan-
gled or not, we have to construct the corresponding reduced density matrix.
Indeed, the vector |1) represents a product state of the compound system
if and only if the corresponding reduced density operators represent pure
states (equivalently, 1) is an entangled state if and only if the correspond-
ing reduced density operators formally represent mixed states). Hence, if we
want to measure the degree of entanglement we can calculate the degree of
mixedness of the corresponding reduced density operator (or matrix) [114].
This is a consequence of the fact that an entangled state gives rise to cor-
relations whose information is lost if we only observe the subsystems, as it
results from the fact that we effectively have a mixed state.

Of particular significance for describing randomness of a state and mixed-

ness of density operators is the von Neumann entropy, defined as

S(p) = —Tr(plogap). (4.8)

It is important to note that p is a non—negative trace class operator, while
S is not. In analogy with classical entropy, S measures the amount of
randomness in the state p. More precisely, the entropy S is zero if and only
if the state is pure, and it is maximized when S(p) = logad, where d is
the dimension of the Hilbert space. In other words, the more mixed is the
reduced density operator, the more entangled is the original state and this

result can be seen as a justification for the use of entropy as a measurement
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of quantum entanglement. Thus, the entanglement of a pure state of a pair
of quantum systems can be obtained as entropy of either member of the pair,
consequently, in order to calculate the degree of electron entanglement in the
Hy molecule we have to calculate the von Neumann entropy of the density
matrix reduced with respect to an electron. Starting from the density matrix
p= \\IJCISDM\I/CISDL we obtain the reduced density matrix by making
the partial trace relative to all the occupation numbers except n; 1 (see

Appendix A)
CISD CISD
=T =
. "nitngd ?

1<i<m
1<j<m

= Z <n1*LanQTanZ*La"'aananm*L|p|n1*Lan2Tan2*L7"'7ananm*L>

n; T=0,1
n; 1=0,1
p?ISD — ( Zz 1 %Z+1|2 + Zz] 1 QH_I 2]_|—2|2 0 >
ol + X7 P
(4.9)
The von Neumann entropy of the reduced density matrix p¢’“P represents

the degree of entanglement:

S(pIC’ISD) — 7y (P1 18D4q, pCISD) _

_ (Z 21+1|2+Z| 2i+1,2i+2,2 )log (Z |CQZ+1|2+Z| 2i+1,2i+2)2 )

7

~(leol® + Z 57422 ) g (Jeo|? + Z G2P2). (4.10)

In order to make a generalization of this method to multipartite systems, we
decide to measure the degree of entanglement as the von Neumann entropy

of the density matrix corresponding to the compound system:

S(p) =-Tr (ploggp) = —% ( Z a;logoay + Z ﬂilog2ﬁ,-), (4.11)

where «; and f; are the so called Natural Spin Orbitals (the eigenvalues of
p). We compare the behaviours of the entanglement obtained with the CISD
coefficients method or with the Natural Spin Orbital method, calculated as

a function of internuclear distance R.
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Entanglement (S)

R(A)

Figure 4.1: The figure shows the degree of entanglement in the Hydrogen
molecule calculated as the von Neumann entropy of the reduced density ma-
triz with respect to an electron (S(p{"5P)) and as the von Neumann entropy

of the density matriz (S(p)).

In Figure 4.1 we show that the entanglement calculated as the von Neu-
mann entropy of the reduced density matrix S(p$7*P) has a similar be-
haviour as the entanglement calculated as the von Neumann entropy of the
density matrix S(p) of the compound system. In particular, at small inter-
nuclear distances, the two curves representing the entropies overlap, while
outside the bond region, they give different results though their behaviours
are similar. Since we are interested to a qualitative course of entanglement
and to the search of its maximum value, we neglect the above differences
and choose to adopt the Natural Spin Orbital method in order to investigate

more complicated systems.

4.3 Entanglement as a measurement of electron

correlation

Our main aim in this Section is to show that entanglement can be interpreted
as a measure of the electron correlation [115], [116], [117]. Entanglement,
in fact, is a physical observable directly measurable by the von Neumann
entropy of the system. On the contrary, the electron correlation energy is
not directly observable, since it is defined as the difference between the exact

total energy of a given molecular system, with respect to the one prescribed
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by the Hartree-Fock approximation method, that is

E.=E5", — Eyp. (4.12)

exact

The correlation energy is the energy recovered by fully allowing the electrons
to avoid each other and Hartree—Fock method improperly treats interelec-
tron repulsions in an averaged way. In other words, the exact wave function
for a system of many interacting electrons is never a single determinant or a
simple combination of a few determinants. The corresponding error is due
to the correlations that are the analogue of the quantum entanglement in
separated systems and are essential for quantum information processing in
nonseparated systems.

Since in [104] the authors discussed the formation of Hy molecule, show-
ing a qualitative agreement between the entanglement and the correlation
energy as functions of nucleus-nucleus distance, let us generalize the argu-

ment proposed above to more complex molecules, as a dimer of ethylene.

4.3.1 Hydrogen molecule

Entanglement is a physical observable measured by the von Neumann en-
tropy and this concept gives a physical meaning to the electron correlation
energy in structures of interacting electrons. The electron correlation, in
fact, is not directly observable, since it is defined as the difference between
the exact ground state energy of the many electrons Schrodinger equation
and the Hartree—Fock energy. Hence, we want to investigate whether entan-
glement can be considered as an estimation of correlation energy.

In this framework, entanglement (S) and correlation energy (F,) are cal-
culated respectively by Eq. (4.10) and Eq. (4.12). the obtained behaviours
are represented in Figure 4.2 as functions of nucleus—nucleus separation.

Even if, in order to represent correlation energy and entanglement, we
use two different scales, in Figure 4.2 we can see that entanglement has a
small value in the united atom limit after it is growing for small distances
till it arrives at a maximum value then it decreases till it assumes zero value
at the separated atom limit and it is exactly the progress of the correlation
curve.

In order to compare the entropy S with the electron correlation energy
E., we rescale S with the parameter «,;, calculated with the procedure

illustrated in the following.
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Figure 4.2: Comparison between the entanglement, calculated by the von
Neumann entropy of the reduced density matriz, and the electron correlation

energy in the Hydrogen molecule.

Let us introduces the quantity A defined as
Ay =E.—aS,n (4.13)
and minimize the mean sqared deviation
I[a] = / A2 dR, (4.14)

where the integration variablr is the interatomic distance R.

The minimizing parameter a,,;, is the one that satisfies the condition

0I[a]
—— =0. 4.15
i (4.15)

Consequently
[ EcSyn dR
=< " " ~0.009. 4.16
“= TS, dR (419
Once we have found the parameter ayy;,, the corresponding A, . ,

Aamin = E. — aminSun, (4.17)

allows us to answer to the following question about the analysis of Hj
in Eq. (4.17) has a

more concrete physical meaning, in particular whether the minimizing pa-

molecule. We want to know if the quantity A

Qmin

rameter aun;, and the vanishing point of A does possess any physical

Qmin
meaning.

as a function of nucleus—nucleus distance:
is nearby R~ 2 A

that corresponds to the equilibrium configuration of the Hydrogen molecule.

In Figure 4.3 it is shown A

Qmin

it is important to note that the vanishing point of A

Qmin
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Figure 4.3: A,,,,;, for the Hy molecule as a function of nucleus—nucleus
distance.

4.3.2 Dimer of ethylene

Once we have setted the distance between the molecular planes, we calculate
the electron correlation energy of the dimer by the procedure described in
§4.2. For the same configuration, we calculate the degree of entanglement
with the Natural Spin Orbitals method. We repeate the same procedure
changing the distance between the planes or, once we have fixed this dis-
tance, we make a rotation as in picture and the results are in the first and
in the second panel of Figure 4.4 respectively.

As we can see from the above picture, the entropy (S) and the correlation
energy (E.) have a comparable behaviour, although we use two different
scales to represent these two quantities. In fact, when we plot them as
functions of the plane distance, the two curves quickly decrease till R = 4.5
A, moreover for bigger distances, both of them decrease more slowly. When
we set the distance at R = 3.5 A and change the mutual orientation of
the molecules on their planes, we can see that both the entanglement and
correlation energy decrease when the rotation angle grows up. The reason of
this fact is that when a rotation of a molecule on its plane is made, the bigger
is the rotation angle, the small becomes the superposition of the external
orbitals of the two molecules. Consequently, the electron entanglement and
the correlation energy decrease as it is shown in Figure 4.4.

The above reasonings suggest us to interpret the entanglement as an
efficient instrument to evaluate the electronic correlation energy, not only

for Hy molecule [104], but also for some bigger systems.
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Figure 4.4: A comparison between entanglement and correlation energy
in the dimer of ethylene, calculated by changing the mutual distance of the
molecules (left panel) with molecules in a face to face orientation and by

changing the relative orientation (right panel, the molecules are parallel at

R=3.54).

4.4 Results: interacting molecules

The study of the degree of electronic entanglement that we have made in
this thesis is a useful resource for quantum computers whose input states are
constructed in order to be maximally entangled. In this way, it is possible
to obtain an exponential speed—up of quantum computation over classical
computation. Therefore, the main aim of this work, is to analyze a dimer of
ethylene, which represents the simplest organic conjugate system, in order
to find the configuration corresponding to a maximum degree of entangle-
ment between the two molecules. Thus we have to consider the compound
system as a bipartite system where each molecule can be seen as a qubit
and, consequently, calculate the degree of the entanglement due to the in-
teraction of the molecules only, thus neglecting the internal interaction of
each molecule.

In order to realize our goal we utilize the well known fact in quantum
chemistry that the correlation energy between the two molecules of ethylene
can be obtained as the difference between the correlation energy due to the
interaction of all the electrons in the compound systems and the correlation

energy of the electrons in each molecule, i.e.,
E™ = E.[2CyH,] — 2E.[CyHy). (4.18)

Let us now observe in Figure 2a that when the distance between the two
C3H, molecules is infinite, we can consider them as two separated subsys-

tems of the compound system dimer, which we denote by 2CsHy, since
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they are uncorrelated. In this case, we have that p[2CyHy] = p[CoHy] ®
p[C2Hy), thus, by using the definition of von Neumann entropy, we have
that S(p[2C2H4)) = 2S5(p[C2Hy)). In the general case, i. e., for finite dis-

cances, the Klein’s inequality holds, that is,
S(p[2C2Ha]) > S(p[C2Hy)) + S(p[CoHa]) = 25(p[CoHal). (4.19)
We thus define the interaction electron entanglement (S(iny)) as
Stnt) = S(o2CoHi) — 25 (pICoH)). (4.20)

Then, we make a study of the degree of the interaction electron entanglement
in the dimer of ethylene by changing the relative orientation and distance
of the molecules. The results obtained are reported in Figure 4.5, where
it is shown the degree of interaction electron entanglement as a function of
the rotation angle (in (b) and (c¢)) and as a function of molecular distance
(in (d)) calculated in a face to face configuration. We can see that, for
R < 3.1 A, Sint grows up with the increasing of the molecular distance and
the maximum value of this function moves from a rotation angle § = 50°
to 8 = 30° and in general, the closer are the molecules the smaller is the
rotation we would make to obtain the maximum value of S;,;. Instead, for
R >3.1 A, Sint decreases with the increasing of R, and becomes less sensible
to the rotation angle since the molecules are more and more uncorrelated. In
order to confirm this behaviour, we plot S;,; as a function of R for different
torsion angles, in the Figure 4.5(d). It is evident that the configuration
obtained setting R = 3.1 A is the critical configuration. Indeed, for smaller
distances, the entropy increases, while for bigger distances, it decreases with
the increasing of R. Moreover, for R = 5.5 A, the correlation between the

two molecules is approximatively zero indipendently of the rotation angle.

4.5 Computational details

In order to calculate the CISD coefficients of the wave function, or equiv-
alently, the entries of the reduced density matrix p¢7” and to found the
eigenvalues of the density matrix, the so called Natural Spin Orbitals, we use
the package Gaussian 03 [118]. In the calculation concerning the dissocia-
tion of the Hs molecule, we expand the wave function with a Configuration
Interaction Single Double method. For this system, all the possible excita-

tions are the single or the double ones, hence the CISD method represents a
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Figure 4.5: Interaction electron correlation (in (a)) and interaction elec-
tron entanglement for the dimer of ethylene as function of rotation angle,
calculated for different molecular planes distances (R) in a face to face con-
figuration (in (b) and (c)). The same results for entanglement are plotted

as function of molecular distances for different rotation angles (in (d)).
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Full Configuration Interaction (FCI) method. In the study of the dimer of
ethylene, we expand the wave function with a Coupled Cluster Single Double
(CCSD) method [119], [120]. This is a numerical tecnique used for describing
many—body systems and has the property of describing coupled two—body
electron correlation effects. The CCSD method is an excitation truncated
Coupled Cluster (CC) method constructed in an exponential approach by
including only the desired excitation operators (single and double); hence it
cannot be considered a FCI-like method. However it can describe the inter-
action of separated molecules better than CISD [112]. For both systems, the
input is prepared with an Unrestricted Hartree-Fock (UHF) calculation. In
fact, the UHF description of bond breaking in Hs gives the proper dissoci-
ation products, while the Restricted Hartree-Fock (RHF) description of Ho
gives unrealistic ones. In the following we show that, in order to study the
dissociation of Hy molecule, the electron correlation energy must be defined
by UHF appoximation as |E.prr| = |FEezact — Evpr|- In fact, at short in-
ternuclear distances the RHF and UHF wave functions are identical but at
large distances, outside the bond region, only UHF reproduces the correct
progress of correlation energy of Hy that must be zero when the two atoms
are distant and each electron cannot interfere with the other (Figure 4.6).
The correlation energy in Eq. (4.12) is defined in terms of a complete one—
electron basis. In practice, however, an incomplete basis must be used for
the calculation of the correlation energy. The term correlation energy is that
used to denote the energy obtained from Eq. (4.12) in a given one-electron
basis.

The correlation energy usually increases in magnitude with the size of
the orbital basis, since a small basis does not have the flexibility required
for an accurate representation of correlation effects.

In order to confirm this theory, we analyze four different kinds of basis
sets known in the literature as 3 — 21G, 6 — 31G, 6 — 31G**, 6 — 31++G**
and we note, as it is represented in Figure 4.7, that the more increase the
bases used the bigger becomes the contribute to correlation energy.

The basis sets 3—21G and 6—31G use 1s, 2s and 1p atomic orbitals hence
their contributions to the correlation energy are approximatively the same.
The basis set 6 — 31G™** instead includes the orbital 1d, while 6 — 31++G**
uses the same orbitals but these are more diffuse. Hence, we can see that
the energy correlation obtained with these two bases is bigger than the one

obtained with the first basis sets. It is however important to note that at
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Figure 4.7: A comparison of correlation energy calculated with four different

basis sets.

short internuclear distances the correlation energy strongly depends on the
size of orbital basis whereas at large distances, outside the bond region, all

four courses become approximatively the same.

After the above preliminary study of basis sets we decide to use the
smallest basis set (3 —21G). This choice allows us to reduce drastically the
computational cost, which constitutes an enormus advantage in the study

of other systems, in particular more complex molecules.
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4.6 Conclusions

In this paper, we have analyzed and elaborated the suggestion in [104] that
the entanglement can be used as an alternative estimation of the electron
correlation in quantum chemistry calculations.

We have, firstly, compared the degree of entanglement in the dissoci-
ation process of Hy molecule calculated as the von Neumann entropy of
the reduced density matrix S(p;), as in [104], with the one calculated by
the entropy of the density matrix of the compound system S(p). The two
behaviours obtained in this way are shown to be similar, hence, we have
choosen to adopt S(p) for a qualitative estimation of entanglement in more
complex systems. Then, we have verified that the electron correlation en-
ergy for a dimer of ethylene is well reproduced by the entanglement S(p) for
different configurations of the system, as it has been shown in Figure 4.4.

Analyzing interacting molecules, we have introduced the interaction elec-
tron entanglement in order to calculate the only entanglement due to the
interaction of the two molecules without their internal correlations. As it has
been shown in Figure 4.5, there are configurations that maximize the degree
of entanglement. This study of the degree of electronic entanglement is a
useful resource for quantum computers whose input states are constructed

in order to be maximally entangled.



Chapter 5

Entanglement,

interferometry and statistics

5.1 Hong—Ou—Mandel interferometry

In this chapter we are going to describe the Hong-Ou-Mandel interferometer
in each its part: twin—beam source, 50/50 beam splitter and photodetectors.

Taking into account an interesting paper by Giovannetti [121], we discuss
a Hong—Ou—Mandel interferometer setup where the two particles entering

the interferometer obey generalized quantum statistics.

5.1.1 A twin—-beam source

The source of the light is a nonlinear crystal that is pumped with a monochro-
matic laser with frequency wgy. The laser radiaton goes through the crystal
and emerges with the same frequency wg, but a small part of it is sub-
jected to a down conversion process: some photons excite some atoms,
hence each atom emits a pair of photons with frequency w; and ws such
that w; + we = wp. It is important to note that the previous one is the only
constraint for the frequencies of the photons emitted by down conversion
process.

Moreover, it is possible to choose the crystal in a such way that the
emitted photons have two different polarizzations. In this way, one can
reproduce the two separated beam that one need in the Hong-Ou—Mandel
interferometer.

The wave function coming out of the crystal consists of two terms:

99
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§: Down-conversion
W ? W,ZWHW,

Figure 5.1: A twin—-beam source. A monocromatic laser with frequency wq is
pumped on a nonlinear crystal. The laser radiaton goes through the crystal
and emerges with the same frequency wy, but a small part of it is subjected
to a down conversion process, consequently two photons are emitted with

frequency w1 and wo such that w1 + we = wy.

o the first one is |0) that describes the being missing of a down conversion
process and it is relative to the emission of a photon with frequency

wo;

e the second one gives a small contribute to the wave function and takes

into account the down conversion process.
This is } ¢, g, ¢(k1, kg)ai(kl)ag(kg)m), where:

¢(k1, ko) describes the scattering in the crystal, in fact it is the two-

photon spectral amplitude which satisfies the normalization condition
Dbk |8k, B2)[? = 15

a1 (k) and ay(k) are the photonic annihilation operator associated with
the kth mode of the path A; or As, respectively, which obey the fol-

lowing standard bosonic commutation relations:

laj(k), aje (K] = 05 [a;(k), al, (k)] = 85 0w (5.1)

|0) is the vacuum state.

Hence, the wave function |¥) that describes the two—particle state entering

in the beam splitter of the Hong—Ou—Mandel interferometer is

[Ty = 10) + Y p(ky, ka)al (k1)ab(k2)]0) (5.2)
k1,k2

~

v

1¥)
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5.1.2 A 50/50 beam splitter

The process in the beam splitter has a scattering dynamics. Photons with
different frequencies propagate on the paths 1 and 2 and there is a probabil-
ity that these photons are transmitted or reflected with the same entering
frequency. In this context, each photon is subjected to an autonomus scat-

tering process. First of all, we consider the relations between entering and

A2 PHASE SHIFT

B,

BS
A, B,

Figure 5.2: A 50/50 beam splitter.

coming out field. If we represent with a;(k) and as(k) the entering photons

and with b1 (k) and by(k) the coming out ones, the following relations:

a1 (k) + ei‘pkaQ(k)' a1 (k) — ekay(k)
V2 ’ V2
hold. It is easy to check that bi(k) and be(k), that are built starting from

bosonic operators, satisfy the bosonic commutation relations. In fact:

(k) + ag(k) ar(k) — az(k)] _

b (k) =

ba(k) =

(5.3)

(b1 (k) bo (k)] = | =

V2T V2
al(k) a1 (k) — ag(k) ag(k) al(k) — ag(k) .
[\/i’ = ] [\/i = ]_0. (5.4)

Within the interferometer, the photons on path 2 undergo phase—shift trans-
formations introduced through controllable delays (the phase shift is de-
picted with a withe box in Figure 5.2) which transforms ay(k) into ag(k)e™.

Let us consider the different configuration on the beam splitter.

a) A photon entering in the beam splitter with frequency wy.

If the photon follows the path 1 the input state is aJ{\O), while, from

1 1
Eq. (5.3), the output state is wm). If the photon follows the

path 2, the input state becomes ag(k) and the output one becomes

bl (k)—bl (k
()\/5 ( )|O).
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By a classical point of view, there is the same probability that the

photon is emitted from path 1 or path 2.

b) Two photons entering in the beam splitter with the same frequency
wk. In this case, the input state is a];(k)ag(k)w); the output state is:

bl (k) + by (k) (bl(k) — b (k) 1
(1 ﬁ2 )(1 \/52 )|o>:§[b{(k)b{(k)—bl(k)bé(k)HO)

In this case, where the input particles are bosons, the only possible

output configuration is the so—called bunching configuration. This is a

consequence exclusively of the input (bosonic) particle statistics.

c) Two photons entering in the beam splitter with different frequencies:
Wk F W -
The input state is a{(k)ag(k’)\ﬂ), the output state is:
(bl(k) + b£<k>> (bm — b (k) )io) =
V2 V2
1
5 (b1 ()0} (k') — b] (k)b (') + BL(k)b] (k") — b3 (kD] (')][0)-

The two photons with different frequencies propagate themselves indepen-

dently each others.

5.1.3 Photodetectors

In the prototypical Hong—Ou-Mandel interferometer, behind the beam split-
ter, there are two photodetectors, one for each possible path of the coming

out photon. Let us describe the measurement procedure in correspondence

PD, ) b, (k)

BS

PD, ) b,(K)

Figure 5.3: A scheme of the two photodetectors that mesure coincidence
counts after the beam splitter, and bi(k) and by(k) represent the bosonic
fields.

of a photodetector: the two optical phat interfere at the 50/50 beam splitter,

where the photocoincidence Cqs is measured at the output ports.
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5.2 Detection of entanglement in input states

5.2.1 Bosons

Let us calculate the coincidence parameter C12 on the state |¥) in Eq. (5.2):

Ci2 = (0[N1.N2|0) + (0| N1 Na|vh) + (| N1N2[0) + (4| N1 N2|¢h) = (| N1Na|¢h),

(5.5)
where, for j = 1,2, Nj is the total photon number operator of the B; output
port:

Nj =Y n;(k), (5.6)
k

with n;(k) = b;r-(k)bj(k) being the number operator of the kth mode. If we
calculate explicitly the matrix element (/| N1 Nz|1), we obtain:

(PINLNa|p) =D (3p[b] () by (k)b (K')ba (")) =

kK’

= >~ (wlb (R)B3(K) [} (02K )] (5.7

kk' ~

o[0)

The term in brackets [b]I (k)bo (K" |¢)] is proportional to the vacuum state
by the factor Fy(k, k')

bl (k)ba(K')|9) = Fy (K, K")0).

By making the product scalar with the vacuum state:

Fy(k, k') = (0[by (B)ba (k') [9).

Hence, once we have manipulated the left side of Eq. (5.7) in the same way,

this equation becomes:

(B[N Nofgh) =Y (01F (k, K) Fy (k, K)|0) =D [ Foy (B, B[

kK’ kK’

>0l (k) 0} (53)

kK’

If we introduce the following quantity

W= Z¢ klakZ k2 kl) iy 7<pk2)a w e [_17 1]7 (59)
kK’
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the photocoincidence counts parameter C19 becomes:

Ciz = —— (5.10)
It is important to note that, for a suitable choice of the delays ¢, and of
the two-photon spectral amplitude ¢(k1, k2) (remenbering its normalization
condition), the real quantity w can take any values in the interval [—1,1].
Correspondingly, C12 can take values over the interval [0, 1].
In the following, we briefly sketch the proof of Eq. (5.10):

2
Ciz = 3 [(Olb1 (B (k1) =
kk!
: 2
3 ‘(O\bl(k)bg(k’) [ 3 ¢(k1,kQ)a{(kl)a;(@)ez(%—wk2>|o>] ‘ . (5.11)
kk' k1ks
Let us calculate only the quantity (0|b1(k)be(k")|9):
P (k1 ko) e Ph1—ks)
5 R T T 0ty (ks Yo () B (1) + B k) ) — B )]0,
k1ks
(5.12)
Let us calculate each terms separately
[ J
{0[B1 (R)ba (k) bl (k1 )b (k2)[0) = 0 (5.13)
(27k7:17k| |17k1:r1,k2)
[ ]
— {0161 (k)b (K) b (k1)B) (k2)|0) = =0k O, (5.14)
(251‘;7’151‘:‘ |15k1:r25k2>
[ ]
{0[ba (k)ba (k') bl (k1 )b (k2)[0) = 8y 1, Ok (5.15)
(Lks2,K/ 12,k131,k2)
Hence:
1 i(on. —
(01b (k)bo (') [90) =) §¢(k1k2)ez(%1 %){ — Ok Ok/ky + 5k’k15k1k2} =
k1ks
1 1 5 (Pr—Ppt) 11\ =5 (e —Ppt)
- 5{ — (kK )er=er) 1 p(k'k)e g } (5.16)

Adopting the substitutions & — k1 and k' — ko, we calculate the following

quantity:

(<|b1(l€1)b2(l€2)|’(ﬁ>)* — %{ _ ¢*(k1’k2)e—i(<ﬂk1—¢k2) 4 ¢*(k2,k1)ei(90k1_§0k2)}_
(5.17)
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Finally, inserting Eq. (5.16) and Eq. (5.17) in Eq. (5.11), the parameter

C12 becomes:

1 _
Cia = Z{ Z k1, ka)d™ (K1, ko) — Z Bk, ko) p* (K, k) e® (k1 —Pka) _

k1ko k1ko

=7 Blha, k) i, o) 20 =0m) 3 Gl K ) (ka, B ) p =

kik2 k1k2
11
- 5_5{ > <¢(k1k2)¢*(k1k2) 2ok =0ks) 1 p(koky ) ¢* (ghy ) e (k1 = %))} -
ki1ko
1l -w
2

Hong—Ou-Mandel interferometer allows one to detect the presence of entan-
glement in two—photon input state.

In fact, we consider the case in which the wave function ¥ in Eq. (5.2) is
separable with respects the two paths A; and As. In this case, the spectral
amplitude can be written ¢(k1,k2) = ¢1(k1)¢2(ke) and the function w in

Eq. (5.9) becomes, for separable states,
2
W= Weep = ‘ S Bt (k) (k)| > 0. (5.18)
k

Consequently, for separable states, the coincidence counts Ci2sp can assume
the maximum value 1/2:

1 — wgep

5 € [0,1/2]. (5.19)

Cl?sep =

Therefore, we can use Ci5 as an entanglement witness for two—photon input
states. Indeed, it is sufficient to repeat the coincidence measurement for

different values of the controllable delay.

5.2.2 Fermions

The fermionic counterpart of the Hong—Ou—Mandel interferometer is pro-
posed in [122]. It is important to note that such an interferometer, having
as input particles two fermions, can be described in a similay way, in other
words, we can use the two-particle input state introduced in Eq. (5.2) by
simply replacing bosonic commutation rules in Eq. (5.1) with their fermionic

counterpart:

{a,j(k), G,jl(k},)} == 0, {G,j(k‘), a;'-, (k,)} = 5jj’6kk’7 (5.20)
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where {r, s} = rs+sr is the anticommutator of the operators r and s. Hence,
with new particle statistics, Eq. (5.10) for the photocoincidence counts Cio
is replaced by

Cig = 5 (5.21)

with w as in Eq. (5.9). In the fermionic case, we can verify that among
the two-particle state ¥) of Eq. (5.2), only the entangled one can have
C12 < 1/2; separable states always stay upon the 1/2 threshold.

Of particular phisycal relevance is the fact that the sign difference be-
tween Eq. (5.10) and Eq. (5.21) implies that separable states of fermions
are forced to have Cio greater than or equal to 1/2, while separable states
of bosons have Ci9 smaller than or equal to 1/2 (in Figure 5.4 there is a
pictorial representation of Ci2 as a function of interferometric delay.) This
phenomenon can be interpreted in terms of the different bouncing and an-

tibouncig attitudes of Bose and Fermi statistics.

Cp BOSONS Cp FERMIONS
o R
N ..
Cp \ ----- - /\ T/
Y2 Xrhfoe \/

TANGLED STATE ONLY

DELAY

Figure 5.4: Scheme of the dependence of coincidence counts Cio upon the
interferometric delay @ in the Hong—Ou—Mandel interferometer. On the
left we depicted the bosonic case. Among the two-particle states |¥) of Eq.
(5.2) the separable one (represented by dotted curve) always have Ci12 < 1/2.
The only state that can have C12 > 1/2 are the entangled one (represented
by continuous curve). On the right we depicted the fermionic analogue case.

The area which is not accessible to separable states is the region below 1/2.

5.3 Intermediate statistics: quons

In this section a Gedankenezperiment is analyzed where the particles en-
tering the HOM interferometer are assumed to be quons. These have been

introduced by Greenberg as an example of continuous interpolation between
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Bose and Fermi algebras. We will use them to describe the sharp transition
from the left part to the right part of Figure 5.4 in terms of a continuous
deformation of the particle statistics.

For g € [—1,1] the quon algebra is obtained by replacing Egs. (5.1) and
(5.20)with the identity

aj(k)al, (k') — qal, (K')a;(k) = 8;5 - (5.22)

For |q] < 1, Eq. (5.22) can be used to define a valid non-relativistic field
theory but poses serious problems in deriving a reasonable relativistic quan-
tum field theory. A proper Fock-like representation can be derived upon

enforcing the vacuum condition
a;(k)|@) =0 (5.23)

for all j and k. In particular, it can be shown that for |¢| < 1 the squared
norms of all vectors made by polynomials of a;‘-(k) acting on the vacuum
state |@) are strictly positive. For ¢ = 1 and ¢ = —1 instead the squared
norms are never negative and nullify for those configurations which are, re-
spectively, totally symmetric and totally antisymmetric under permutations.
This allows us to recover the Bosonic and Fermionic statistics as limiting
cases of Eq.(5.22) without explicitly imposing the conditions in Egs. (5.1)
and (5.20), respectively. Of particular interest is also the ¢ = 0 case whose
statistics can be interpret [123] as a quantum version of the Boltzmann
statistics, based on a system of identical particles having infinite number of
internal degree of freedom.

The possibility of defining a proper Fock-like structure for the quon
algebra (5.22) implies the existence of number operators n (k) which satisfy

the standard commutation relations

[nj(k)aj (k)] = —djr Orrr a;(k) (5.24)

t
J
In the following we will adopt a pragmatic point of view assuming that

and which reduce to a;(k)a;(k) in the Bosonic and Fermionic limits.

the equations of the previous section yield a legitimate description of our
quon HOM interferometer. This is in part justified by the fact that the
input-output relations Eq. (5.3) map the quon annihilation operators a;(k)
into annihilation operators b;(k) which still satisfy the quon algebra Eq.
(5.22) and the vacuum condition (5.23). The only technical problem of our
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approach comes from the fact that for |¢| < 1 Eq. (5.5) is not necessarily a
real quantity. Consequently we replace the product N1 Ny with its Hermitian
part, i.e.

NNy 4+ NoNy

ClZ = <\If| 9

T) = Re (T| N1 No|T) . (5.25)

The right hand side term of Eq. (5.25) can now be computed by inverting
the transformation (5.3) and expressing the input state |¥) of Eq.(5.2) in
terms of the operators bj(k). With the help of the relations (5.24) and (5.22)
and using the vacuum condition (5.23) one can then verify (see Appendix

B) that the quon “coincidence counts” of the g-algebra are,

Cialg) =+ (5.26)

with w as in Eq. (5.9). Analogously one can verify that for normalized
input states the condition 3 |¢(k1,k2)|? = 1 still holds and that the average
number 7; o is equal to 1 for all . As expected, for ¢ = =1 Eq. (5.26) reduces
to the Bosonic and Fermionic case. More interestingly for ¢ = 0, C12(gq) does
not depend upon the two-particle input state |¥) and has constant value
1/2. This is exactly what one would expect from a classical model of the
interferometer confirming the Boltzmann interpretation [123] of the ¢ = 0
algebra.

Taking into account that for generic input state one has w € [—1,1] the

following bounds can be derived:

1- 1+
5 <Cu(@ <57 qef01]; (5.27)

1+ 1-—
— <Cu(q) < 5+ g€ [-1,0). (5.28)

On the other hand for factorizable amplitudes ¢(k1, k2), the function w obeys
Eq. (5.18). Therefore for these states one has

1—gq

5 < Cia(g) < g €1[0,1]; (5.29)

N =

1 1-—
5 <Cile) < —2 qe[-1,0] (5.30)

The above constraints have been plotted in Figure 5.5. They indicate
that the transition from the Bosonic regime to the Fermionic regime is char-
acterized by a critical point at ¢ = 0. Here the values C19 > 1/2 which for
g > 0 were pertinent to non factorizable input states |¥), become acces-

sible to factorizable configurations. At the same time, however the values
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Figure 5.5:  Plot of the mazimum and minimum values of C12 of Eq. (5.26)
allowed for a two—particle quon state as a function of the parameter q of
the quon algebra. The shaded region represents the allowed values in Egs.
(5.27) and (5.28) of C1a. According Eqs. (5.29) and (5.30), the gray region
is accessible only to non factorizable input configurations. For ¢ = 1 and
q = —1 the boundaries coincide with those of Bosonic and Fermionic case
respectively. It is interesting to note that the Boltzmann statistics ¢ = 0

admits only the value 1/2.

C12 < 1/2 become inaccessible to them. Following the discussion of the pre-
vious section this effect can be interpreted as a continuous transition from a
bouncing behavior to an anti-bouncing behavior with ¢ = 0 corresponding

to the classical “neutral” point.

5.4 Future Developments

Starting from these considerations and these results about entanglement of
fermions, bosons or quons, we want to extend our theoretical scheme in
order to detect the presence of entanglement in states of other particles,
the so—called exotic quasiparticles. We want to analyze particles, or “para-
particles”, obeying intermediate statistics, as anyons, interpolating between
bosons and fermions.

Indeed, a probable line of our future research can deal with the study
of entanglement, based on the coincidence counts parameter, for paraparti-

cles that obey to intermediate statistics and that are defined by means of
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the algebra satisfied by their creation and annihilation operators in Fock

representation.



Appendix A

The reduced density matrix
of Eq. (4.9)

The aim of this appendix is clarifying how one can calculate the reduced
density matrix as that one we propose in Eq. (4.9). In order to semplify
the calculations, we consider two electrons in a two-levels system. Let us
introduce the Hilbert space (4.1) with m = 2,

# =22 8. 770)] @[22 0 722)| =# ) 0 eh2), (A

where .Z and . represent the orbital and the spin space, respectively; in
brackets we denote one of the two electrons and the apex represents the
dimension of the space. An orthonormal basis for each space €* in the

occupation number representation (ny T,7n1 J,n2 t,n9 |) is

1 1) 1 1)
n2 1) n2 1)
2 1) In2 1)
A pure two-electron state |¥) in this case can be written as
4 4
T) = waschehlo), (A.3)
a=1 b=1

where |0) is the vacuum state, the coefficient w, accordingly to Pauli exclu-

sion principle, satisfies the following requests:

{ wa,b = _wb,a (A 4)

wi; =0,

3

111
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and ¢ and ¢ are the creation and annihilation operators of single-particle

states, respectively whose action on the vacuum state is

I=n1 1) 3=[n2 1)

ol =lab), wbefL23g T )

Let us now consider the four sites instead of the two particles: they are single
particle sites consequently they have no particle or one. Since our aim is
having some informations about the n; we proceed making the partial trace

of the density operator p with respect to ne T and no | that is,

Pny = T'rnzp = Z <’I’L2 Ta n2 *Jf |p|n2 Ta n2 *L) =

n2 T: 0, 1
na |=0,1
= (00]p|00) 4 (01|p|01) + (10|p|10) + (11|p|11). (A.5)

Let us calculate each matrix element separately.
The first one is

4 4
(001p00) = D~ 3" wapwiy (00[chcf0)(0]ey car]00) (A.6)
a,b=1a'b/=1

where a, b, a’ and b’ assume the values 1,2, 3,4 and they represent the four

sites of the two levels system that we are studying. Moreover, since we make

the inner product with (00| and |00), the only elements of the sum with a

nonzero contribution are |1100)1 thus they correspond to wy 2 and wy 1:
[1100): |n1 1) @ |n1 |) = wie

|7’L1 i) ® |n1 T) — Wa1.
Hence

2 2
(001p]00) = > 3" wapwi 4 (00]ch c}[0)(0]cy car[00). (A7)
a,b=1a'b'=1

Making explicit the sum and using the fact that w; = 0, it becomes:
(001100) = w1 27 5(00]f c}|0) (Olc2¢1]00) + w107 5(00]che [0) 0]ezc1[00) +

+wi w1 (00]c] c5]0)(0le1 €2]00) + wa, 1w} 1 (00[chel0)(0lere2]00).  (A.8)

In all these calculations, each vector with four components has the first and the
second entries corresponding with each two sites of ni level and the third and fourth
entries corresponding with ns level. Hence the ket |1100), for example, represents two

electrons on the level n1 and no one on the level ns.
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The action of the creation and distruction operators on the vacuum state
produces some states such as £|n; 1 n; |) and £|n; | n1 1) where the double
sign depends on the order of the operators. Using no more the representation
refering to fermions but the one refering to the sites all these states can be
represented with +[1100) so Eq (A.8) becomes:

(00[p[00) = w1 2w7 5(00]1100)(1100/00) — w2 1w7 5(00[1100){1100/00)+
—w1,2w5 1(00]1100)(1100[00) + wa 13 ;(00]1100)(1100[00). (A.9)
Using the orthogonality, we obtain:
(00|p|00) = 4|wia|?11)(11]. (A.10)

Let us analyze the second matrix element:

(01]p|01) = Z Z Wa,swir y (01]chch0) (O] ey cur]01). (A.11)
a,b=1d',b'=1

Since we make the inner product with (01| and |01), the only elements of the

sum with a nonzero contribution are |[1001) and |0101) thus they correspond

to Wi,4, W41 and W24, W42 1

11001):  |n1 1) ® )
In2 1) ® [n1 1) = war
|0101):  |n1l) ® |ng }) = was
[n2 1) ® [n1 1) = wao.

|ng 1) = wia

Hence

(01]p|01) = Z Z Wa bW b { 01|CTCT|O)<O|Cb/CaI|01). (A.12)
ab=1,2,4d/,b'=1,2,4

Making explicit the sum above and using the site representation as be-

fore, this matrix element becomes:
(01|p|01) = 4|wy 4|%10)(10]. (A.13)

Now, for the third matrix element, that is:

4
(10[p[10) = > Z Wapwi y (10[chc][0)(Oley e [10), (A.14)
a,b=1a',b'=1

we note that the only vectors that have a non zero contribution in the

summatory after the inner product with (10| and |10) are:
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[1010): |ni 1
[ng 1
[0110): |ng |
Ing 1

® |ng T
®|ny T
® |ng T
®|n1d

— W13
— W31

— W23

~ ~— ~ ~—
e~~~

— W39.
Hence,

(101p]10) = 4|wz,3|*/10)(10]. (A.15)
Finally, the latest matrix element, is, analogously,
(11|p|11) = 4|w3.4|200)(00]. (A.16)

Thus, in the basis {|OO); |01); |10); |11)}, Pn, reads

4wy 4|2 0 0 0
0 4|w2 3|2 0 0
= ’ AT
P 0 0  4uwia> 0 (A17)
0 0 0 4|w1,2|2

Equation (A.17) represents the density operator for the level n; and it is
important to spend some words on the entryes of the matrix: w34 repre-
sents the excitations on the second level so, in the two level system that we
consider, w3 4 is associated with the probability that n; is empty; w; 2 is as-
sociated with the possibility that the two electrons are in n1, the coefficients
we 3 and w1 4 are associated with the probability that n; can be occupied by

one eletron. This fact allows us to introduce the following notation:
4|UJ2,3|2 0
Py 0 = Awsal% pnye = 4wipl’s pnyi = , |, (A1)
0 4|w1,4|

where p,, o denotes an empty orbital, p,, 2 denotes two accupied orbitals
and pp,,1 denotes one electron occupied orbital. In order to obtain some
informations about one of the two electrons, we have to make the partial

trace of p,, respect one of the sites of the level ny (n; 1,11 }):

p1L = T"'mTﬂnl = Z P,
n11=0,1

B 4(|w3,4|2 + |w2,3|2) 0
0 4(le,4|2 + |w1,2|2)

In terms of CISD expansion coefficients, the transition amplitude w; ; can

(A.19)

be written as

2 2 2
C C cq
ol =2, Jwigl’ =2, |wsal* =

4 4

,2
4

2 C%
wra? =%, (A20)
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hence p; becames:

le1]? + Jer2]? 0
PSP = ) , |- (A.21)
0 lcol? + |c2]

Eq (4.9) is obtained as a generalization of this model to a m-level system.
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Appendix B

Coincidence counts

parameter for the quons

As we described in Chapter 5, the quon algebra is characterized by the

following relations:

e the commutation relations for quons are
a;(k)al, (K') — qal, (K)a; (k) = 8,50 dpw, (B.1)
with g € [-1,1];

e with a Fock-like representation, we can describe the action of the

annihilator operator on the vacuum state:
a;(k)|0) =0, (B.2)
for all j and k;

e the possibility of defining a proper Fock-like structure for the quon
algebra (B.1) implies the existence of number operators n;(k) which

satisfy the standard commutation relations

[n(k)sag (k)] = =855 Okir a;(k) (B.3)

and which reduce to a;(k)aj (k) in the Bosonic and Fermionic limits.

In this Appendix we make explicitly the calculations that bring us to
Eq. (5.26) for the coincidence counts of the g-algebra. In other words,
startint from Eq. (5.25) we compute the right hand side by inverting the
transformation (5.3) and expressing the input state |¥) of Eq.(5.2) in terms

117
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of the operators b;(k). With the help of the relations (B.1), (B.2) and (B.3)

one can then verify that the quon “coincidence counts” of the g-algebra are,

N1 Ny + No Ny 1—quw

: (B.4)

Ci2 = (Y| |¥) = Re (U|N Ny |¥) =

In detail, we have

11 —1 1= ; _
Co=37 D S ke T gk, p)ellon o)
k1, ks
ki, k2
kK

(01 b (K5)ba (k1) b1 (K5 )ba (k1) —ba (kb1 (k1) b1 (85 )61 (k1) | (ma () () +

a1 () ) [ (1Yol (2) — ] ()b () + B (k1 )] ) — b5 (k1 )b (k2) | 0).

(B.5)

Let us calculate the left part (or the action of the operator on the bra

(0| or, in other words, the upper line) of Eq. (B.5) using the relation and
properties in (B.1), (B.2) and (B.3).

(0] = ba(k3)ba (K1 )1 (k)na(k') = (O] — ba(k3)na (k)be (k1)na (k') =

= (0]=)n1 (k)b (k2)ba(k1)na (k) =

= (0l (k)ba (k)) (ma(K)b2(kD) + 8 prba (K1) ) = 0.

(0161 (k2) b2 (K1 )1 (k)na (k") = (0]b1 (k5)n1 (k)b (k)na (') =
= (0] (ma (k)b (K5)+ Sty 1 (k) ) bk )ma (k') = (018 b1 (k)b (Ko (k') =

= (0]0ks; b1 (k) ( ma(K")b2 (k1) + iy b2(K') ) = {018k Oy b1 ()b (K').
2 1 2 1

(0]=b2(k3)b1 (k1)n1 (k)na (k') = —<0|b2(k'2)(nl(k)bl(ki)+5kk'1b1(k'1))n2(k') =
= —(0[b2(k3)b1 (k1)na (k') g, = —(0[ba(k3)na(K")b1 (k1) Ops, =

= (0] (2 (k') ba k) + kg1 ba (kD) ) by ()t = —(O0lba (K5 )br (k1) Gy B
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(0161 (3)b1 (K1 )na (K)o (') =
= (0[01 (k) (ma ()1 (k1) + O by (K1) ) ma (K) =
= (0]b1 (K5)n1 (k) b1 (K7 )na (k") + (061 (K5)by (k'l)n2(k')5kkfl =

= (0| (m(k)bl(k;) + Ok b1(k'2)>b1(k'1)n2(k’) — 0.

(0b1 (k3)ba (k1 )na (K )n1 (k) =
= (0[b (K5) (na(K)b2(kY) + G ba(kt) ) ma (k) =
= (01 (k32)b2(k1)m1 (k)Oprky = (0[b1(ka)na (k)2 (K1) + dprgy, =

= (O] (1 ()n (kh)+ 8k, br () (k1) +6s; = (011 ()b (K G s

—(0]ba (k% b1 (K¢ ma (k'Y () = —(0[ba (k) (/Yo (k¢ (k) =
(0] (ma(k')ba(ky) + Guraba(k)) ) by () (k) =
= —(0]ba (k) b1 (K1 )n1 (k) dprgy =
— —{0[ba (k}) (o (£)b (K4) + s by (k) ) () Sy, =

= —(0]b2(k3) b1 (k1 )n1 (k) Sgkr Opriy, = —(0]b2(KS)br (KL ) O Okt Opr -

Hence, the matrix elements in Eq. (B.5) can be expressed, by the outcoming

fields, as the following;:

(0] ( Okt Oxriy 01 (K)ba (k') — ba (k5 )b1 (k1) Sy ks Operr + b1 (k5)ba (k1) Seky Ot

(1) (2 3)

— o (Kb (1) G G, ) (01 )b (ks

(4) (5) (6) (7

b} (k1 )b} (k2) ) [0)
(8)

Let us calculate the scalar product of the terms each others.

\~—
|
{ >
= —
—
ol
—
~—
>
N —+
—
oyl
N
~
+
=
N —+
—
=l
—
~—
o
=t
—
oyl
N
~
|
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(1)-(5):
(0101 (k)b (Kb} (k1 )b (2)10) = (011 () (@b (k1o (k') ) b (2) 0) =
= (0lgb1 (k)b] (k1)ba(K')b] (k2)[0) = 0;
(1)-(6):
— (0] ()b ()b (k1 )b (2 0) = —(0[bn (k) (ab] (k1 Yoo (K') ) b (k) 0) =
—(0[b1 (k)b (k1) (8, +b) (k2)ba () ) 10) = —(0]bw (k)gb] (k1) [0) 0, =

= —(0lgbs (£)b] (k1)[0)3yrx, = —(0la (b} (61)b1 (k) + G, ) 10V, =

—(0]0)q0kk; Ok ks

(0[By (k)ba (k')bY (k1 b1 (k) | 0) =
= (0161 (k) (B, + abl(k1)ba(K) )bl (2)]0) =
= (0]b1 (k)b] (k2)dxrk, 0) + (0[b1 (k) qblh (k1)ba (k)] (K2)|0) =

= (0|0 k1 901 (K2 ) b1 (K)[0);

—(0[br (k)ba (K')b5 (k1 )b} (K2)[0) =
= (011 (k) ( Bk, + abh(ku)bo () ) b} (k)] 0) =
= — (0|8, b1 (k)5 (2)]0) — (0|qby (k)b5 (K1 )ba(K')b) (k2)]0) =

—(0lgba ()b (k1) (st + b} (2)ba (') ) 10);

—(0fb (K4)br (k)] (1 )b (k2)|0) =
= —(0lba (k') (8,1 + a0 (k)b (k1) ) 6] (2)|0) =
= —(0[ba (k5) 8, kb (k2)[0) — (O[b2 (K))gb] (k1)1 (K1)b] (k2)[0) =
= (016 (K5)qb] (k1) (84,1, + abl (k2)b1 (k1) ) [0) =

= —(0[ba(K})qb] (k1) Sy, [0) = O;
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(0lba (K21 (k1 )] (k1)b (k2)|0) =
= (0162 (k) (Frag + @bl (k1)ow (K1) ) Bh(R2)10) =

= (01D (K3) 5,1, b1 2)10) = (018, k1 (St + a3 (K)o (K5) ) 0) =
- <0|0>5k1k'15k2k'2;

(0]ba (Kb) by (K} )bh (K1 )b (k2)|0) = (0[b2 (k%) gbh (k1)b1 (k4)b] (k2)[0) =
= (0lbs (k)b (kv (8,1, + ab] (2o (K1) )0} =
= (0[ba (Kb) b (k1) Sk, 4 ]0) =

= —(0[0)q6%, k! Ok,

—(Oba (k4)by (k1) (1)b] (k2)[0) = — (0[ba (K})bh (k1)b1 (K} )0k, ks b (k2)[0);

(0]b1 (Kb)ba (K )bl (K1 )b (k2)|0) = (0[br (k4) bl (k1)ba (K;)b] (k2)[0) =

= (0lqby (k)b (k1) (bl (k2)b(KY) ) 0) = 0

0]y (Kb) b (K} )b (K1 )bh (K2)|0) = (0[by (k) qb] (F1)ba (k5)bS (k2)|0) =
= (0[b1 (K3)gb] (k1) ( 8,y + ab3b2 )10) = (Ol iy b (k)] (1) [0) =

—(0g0p,; (5k1k’2 + qb];bl) 10) = —(0]0) g0k, k; Oy 1

(0]b1 (k)b (K7 )b (K1 )b (K2)[0) =
= (0151 (k) (Bt + abh(ka)ba (k1) )b (2)]0) =
(O1br ()BT (k) 8, k1, + qba (k)b (k1)) b (k)b (k2)[0) =
(016, iy Ok, + b (2)b (K5) + gba ()) B (1 )gb] (k2)ba (k1) [0) =

(0[0)6k, i, Oy,
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—(0[by (K})ba (K} )bb (k1) b (K2)[0) =
= (011 (K3) (S, 11 + @b (k)b (K1) )0 (k) 0) =

— (08 iy b1 (kb)Y (K2)+qbr (k5)bb (1 )ba (k4)b! (K2)]0) = —(0]0)S, k1 O

—(0[b2 (k5) b1 (K1)b] (k1 )b] (2)|0) =
= —(00ba (kb (8,1, + ab] (h)ba (1) ) ()]0} =
— (0102 (k)b (k1 )b (k1 )] (2)[0) = —(0lgba (k)b (k1) (84, +b{b1 ) 0) =

= —(0lqba (Kh)b] (1) g,k [0) = 0

(0[Ba (Kh) by (K1 )b] (1 )b (K2)]0) =
= (0lba (k5) (8kur, + b (k1 )bu (1) ) b (k2) 0) =

(018 1, b2 (505 () 0) = {016k, (St + @b ) 10) = (010) 3k, ;i

— (0] (K)o (k1) (1 )b (k2 0) = — (0l (k5 )b} (k1 Yo (K4 )b (12)[0) =
= —{0lgba ()b} (v (k,a, +ab*7B1 ) 0) = —(Olbs ()b (1)1 0) =
= {010yt (8,1, + abB2 ) 10) = —(010) 0, By
(4)-(8):
(0fb () )b (K )b (k1 )b (2)|0) = 0.

Finally, summing all the contributions we have obtained, the coincidence

counts parameter of the g—algebra becomes:

1 —i(p 1 —p1 i _
01225 Z ¢*( ’l,ké)e ((pk1 (pkz)QS(kl,kg)e (‘Pkl ‘Pk2)

ki, ko

1, k3
(X on-¢ X (o0)="5% (B.6)
ki, k2 ki, k2

! / / /
1:k2 lak'2
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List of used acronyms

ALDA Adiabatic Local Density Approximation
AO Atomic Orbital

ATZVP  Atomic Triple Zeta Valence Polarization
B Becke

B3LYP Becke three parameters Lee—Yang—Parr
BH-LYP Becke88 exchange, Lee—Yang—Parr
BLYP Becke-Lee-Yang—Parr

BS Beam Splitter

CC Coupled Cluster

CC2 Doubles Coupled Cluster

CCSD Coupled Cluster Single Double

CISD Configuration Interaction Single Double
CS Colle-Salvetti

DFT Density Functional Theory

DSCF Dynamic Self Consistent Field

DTP Di Phenyl Thiophene

EPR Einstein Podolsky Rosen

ESCF Energy Self Consistent Field

FCI Full Configuration Interaction

FTP File Transfer Protocol

GGA Generalized Gradient Approximation
HF Hartree—Fock

HOM Hong-Ou-Mandel
HOMO  Highest Occupied Molecular Orbital
HK Hohenberg-Kohn
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KS Kohn—-Sham
LDA Local Density Approximation
LUMO  Lowest Unoccupied Molecular Orbital
Me Methyl
MRCI Multi Reference Configuration Interaction
0x oxygeneted
Phe Phenyl
PD Photodetector
QM Quantum Mechanics
QI Quantum Information
RHF Restricted Hartree-Fock
RICC2  Resolution of the Identity Second order Coupled Cluster
RPA Random Phase Approximation
ST Theoretical Study
T3 Ter—Thiophene
TDDFT Time-Dependent Density Functional Theory
THF Tetrahydrofuran
TZVP Triple Zeta Valence Polarization
TZVPP  Valence triple-zeta plus polarization
URH Unrestricted Hartree-Fock
XC Exchange—Correlation
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