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Chapter 1

Introduction

A large variety of physical-chemical systems with competing short and long range

interactions self organizes in domain patterns [for a review see [1]]. Examples range

from ferromagnetic systems [2, 3] to diblock copolymers [4]. Inhomogeneous states

display a simple set of predominant morphologies of some degree of regularity like cir-

cular droplets (“bubbles”) and stripes in two-dimensional (2D) systems [see Fig. 1.1],

and layers, cylindrical rods and spherical droplets embedded in a three-dimensional

(3D) matrix. The characteristic scale of the domains can vary from mesoscopic scales

of hundreds of angstroms as in films of block copolymers [5] to as much of centimeters

in ferrofluids [6].

Magnetic domains were first discovered by Weiss who suggested their existence

in ferromagnets. He proposed that a large number, typically 1012 − 1018, of atomic

magnetic moments were aligned parallel. The direction of alignment varies from

domain to domain in a more or less random manner although certain crystallographic

axes, namely easy axes, may be preferred by the magnetic moments. The geometrical

1
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Figure 1.1: Mesoscopic domains in magnetic solid (A,B) and fluid (C,D) films. [
Adapted from Ref.[1] ].The panel A and C show stripe phase with labyrinth-like
patterns. Bubble phases are shown in B and D. The period of the domains is in the
µm scale.

configurations of the domains were first discussed theoretically by Landau and Lifshitz

[7]. Short range forces in a ferromagnet favor one particular direction for the electron

spins, up or down in an Ising ferromagnet. However the fully polarized phase has

a large energy cost due to the long range dipolar interactions which get minimized

when the field generated by the sample is made as small as possible. Domains appear

as a compromise where these competing forces are optimized.

From a thermodynamic point of view a density driven first order transition, like the

liquid vapor transition, behaves in many aspects analogously to an Ising ferromagnet

identifying magnetization with density, and the up and down phases with liquid and

vapor. Electrons in a solid can also exhibit first order transitions like the liquid gas

transition and are subject, of course, to the long range Coulomb interaction, thus it

is natural to ask if domains can appear. To our knowledge the first to suggest this
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possibility was Nagaev in connections with doped magnetic semiconductors [8]. A

similar phenomena has been suggested to occur in neutron star matter [9].

In electronic systems, this idea has gain momentum in recent years due to the-

oretical and experimental studies in materials like cuprates and manganites. It has

become clear that strong electron correlations generally produce a tendency towards

phase separation in electron-poor and electron-rich regions [10, 11, 12, 13, 8, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. Still, a macroscopic charge imbalance

would imply an electrostatic energy cost that grows faster than the volume in the

thermodynamic limit. Thus, in analogy with ferromagnetic domains, one can expect

charge poor and charge rich domains in order to guarantee large-scale neutrality. In

this way, the charge is segregated over some characteristic distance but the average

density at large distances is constant. This has been proposed in a variety of electronic

systems [13, 8, 15, 16, 29, 30, 31, 32].

From the experimental point of view, the research in the field is in its infancy.

There are no good probes of electron density specially at mesoscopic distances. In

recent years, a prominent emergent tool has been scanning tunneling microscopy

(STM) which allows to sense local variations of the density of states. Hoping that

these are coupled to density fluctuations, experimentalist have tried to determine

charge variations in different systems. Interesting systems are colossal magnetore-

sistant manganites. STM experiments in thin films [22] have revealed domains with

filamentary and droplike metallic and/or insulating regions in the scale of tens to

thousands of nanometers with smooth surfaces [see Fig. 1.2 very similar in morphol-

ogy to the domains of the classical systems. In addition, percolation of the metallic
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Figure 1.2: Coexisting metallic (white) and insulating (black) domains observed
with scanning tunneling spectroscopy in thin films of the perovskite manganite
La0.7Sr0.3MnO3 [ Adapted from [22] ]. The area of the insulating regions grows with
temperature approaching the transition from the metallic ferromagnetic low temper-
ature phase to the insulating paramagnetic high temperature phase.

regions is closely correlated to abrupt changes in transport which suggests that frus-

trated phase separation is at the heart of the colossal magnetoresistence behavior

[22, 33]. Interestingly also neutron and X-ray scattering, which couple indirectly to

the charge through lattice distortions, has revealed (much smaller) clusters on the

nanometer scale, in the bulk.[34, 14, 35, 36]

In cuprates, as in manganites, the situation is complex and different inhomo-

geneities have been reported at different length scales. At a scale of ∼ 10nm ∼ 20

lattice constants, the system appears to segregate into a pseudogap or underdoped

phase with a large gap and a superconducting phase with a smaller gap with smooth

interfaces in between [21] [see Fig. 1.3]. This is consistent with Coulomb frustrated

phase separation between an underdoped pseudogap phase and an overdoped phase

[37]. This scenario has been reproposed on the light of recent neutron scattering
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Figure 1.3: Gap maps in the high-temperature superconductor Bi-2212 obtained from
scanning tunneling microscopy [Adapted from Ref.[21]]. The top (bottom) panel
indicates the map for an underdoped (overdoped) sample. The superconducting
nanopatches correspond to smaller gap region.
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Figure 1.4: Left: The in-plane resistivity tensor in Sr3 Ru 2O7 [Adapted from Ref.[39]].
Notice the anisotropy in the resistivity occurring when a tilted magnetic field is ap-
plied. Right: Anisotropy in the resistivity of an high-mobility GaAs/AlGaAs het-
erostructure [Adapted from Ref.[40]]. The two traces correspond to different current
directions in the sample. The anisotropy is manifested in the high-Landau level N = 2
at the filling fraction ν = 9/2.

experiments [38].

Recently a strong transport anisotropy in ultra clean Sr3 Ru 2O7 samples have

been observed in the vicinity of a metamagnetic quantum critical point [39]. From an

electronic point of view, this is a layered material and the phenomena can be explained

if the system is assumed to segregate in electronic stripe domains which break the

C4 symmetry of the lattice and orient with a small perturbing field generating by a

small tilting of the sample with respect to the control field. This is also consistent

with the proposal of exotic electronic liquid phase analogue [41] to the intermediate

order states of liquid crystals [42]. The idea that the domains in Sr3 Ru 2O7 are due

to frustrated phase separation has already been put forward [43].

The phenomenology of ruthanates has a strong similarity to that observed in GaAs

heterostructures. Several magneto-transport anisotropies arise when the Fermi level

lies near the middle of a highly excited Landau level [right panel of Fig. 1.4] [40]. It
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Figure 1.5: Density dependence of the chemical potential (top panel) of a two-
dimensional hole gas as obtained in Ref.[18] across the metal-insulator transition.
Above the transition density the chemical potential follows the Hartree-Fock predic-
tion. In the insulating side, many small steps arises corresponding to spikes in the
inverse electronic compressibility (bottom panel).

has been proposed [44] that in a clean two-dimensional electron gas (2DEG) in high

Landau levels, a uniform phase would be unstable against a charge density striped

phase where the electron density alternates between zero and full-filling.

Evidences for inhomogeneous states have also been reported in the 2DEG at zero

magnetic field. Using a local probe, Ilani and collaborators [18, 17] have shown that

close to the still debated Metal-Insulator transition (MIT) [45, 46, 47], mesoscopic

inhomogeneities appear. In addition thermodynamic measuraments have shown that

close to the MIT the compressibility departs sharply from the predictions of an ho-

mogeneous electron gas [48, 49, 50, 51, 17, 18].

Another interesting finding is the appearance of negative spikes in the electronic

compressibility [see Fig. 1.5] [18] which indicate that the transition from the ho-

mogeneous state to the inhomogeneous state is discontinuous as found theoretically
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for a metal-insulator striped Coulomb frustrated phase separated state[52, 53]. The

main difference between the theoretical result [52] and the experiment [18], is that

in Coulomb frustrated phase separation, there is a single large step at the transition

from the homogeneous metallic phase to the striped phase whereas Ilani et al. find

many small steps around the critical density. This behavior is easy to rationalize if

one considers that in the presence of disorder, the density will not be uniform in the

entire sample. A distribution of critical densities and fragmentation of the large step

in many small steps will be naturally produced. The minimum step size will be given

by the appearance of a single domain.

This leads us to the problem of disorder, another possible route by itself to charge

segregation. As emphasized by Dagotto and collaborators[54, 55] in the context of

manganites disorder close to a density driven first order first transition can also induce

charge segregation. The physics is well known since the work of Imry and Ma on the

random field Ising model. In the case of strong disorder, we expect domains to be

much less regular than for Coulomb frustrated phase separation. Interestingly, also

irregular patterns have been observed in manganites [56].

It is not clear at the moment which of the two mechanism (quenched disorder

or short and long range forces) is dominant to determine each of the anomalous

properties of complex electronic systems and more theoretical and experimental work

is needed. Probably both mechanism are important but to understand the phe-

nomenology in the clean limit, which is the main objective of this thesis, is certainly

a prerequisite to understand the more complex disordered case.

It is also of interest to mention that, even in the absence of quenched disorder, the
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complexity of the energy landscape of frustrated phase separation models, can make

the ordered ground state unreachable leading to a glassy state [57].

As in classical systems, one expects that equilibrium patterns displaying common

structural features can be described by simple models which neglect the specific details

of the microscopic structure of each system capturing their general properties.

Since domains in these systems have often mesoscopic scales of several lattice con-

stants, general aspects of the phenomena can be analyzed within a coarse grained

approach. In this case, tendency to phase separation is recognized by the appear-

ance of anomalies in the electronic contribution to the coarse grained energy of a

system. In this thesis we study the formation of electronic inhomogeneities resulting

from Coulomb frustrated phase separation considering two kind of anomalies that

are often encountered in strongly correlated electronic systems. The first situation

is determined by a negative compressibility density region. A notorious example is

the uniform electron gas at low density[58] but this feature appears in several other

models including the Hubbard model in infinite dimensions [27], the Falicov Kimball

model [59], cuprates models [16, 60], manganites models [61, 62, 63], semiconductors

heterostructures [64] and in neutron star matter [9]. As we will show in Chapter 2, this

feature leads to mesoscopic phase coexistence when long-range Coulomb interactions

are taken into account. We are specially interested in the nature of the transition (first

or second order) leading to a charge inhomogeneous state which has not been clari-

fied before. A complete discussion will be addressed in Chapter 3. This is a general

important question and assumes a relevant importance in metallic systems where the

existence of a second-order quantum critical point from a homogeneous phase to an
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inhomogeneous one can destroy the Fermi liquid behavior [16]. Another possibility is

that the inverse electronic compressibility has a point with a Dirac-delta-like negative

divergence. This happens when the free energies of two states which are separated by

a barrier, cross each other leading to a cusp singularity. An example is also provided

by the uniform electron gas. Indeed, numerical simulations showed that in a uniform

electron gas, the Wigner crystal and the Fermi liquid homogeneous phase free ener-

gies cross at some density [65]. The same feature appears in several models including

manganites [66, 28]. In Chapter 2, we show that for weak Coulomb interactions, a

universal picture can be achieved and the main properties of inhomogeneous states

are irrespective of the specific modeling of the competing phases. On the contrary,

at strong Coulomb couplings, the phenomenology of mesoscopic domains strongly

depends upon the particular anomaly in the compressibility and two universality

classes then arises [67]. In the negative compressibility class (Chapter 3), the transi-

tion is generically first order both in three- and two-dimensional systems except for a

liquid-gas-like critical point where the transition is driven by a charge-susceptibility

divergence [68]. The scenario changes when strong anisotropies are taken into ac-

count. Indeed, if charge modulations are restricted to a preferential direction, both

first-order and second-order transitions are allowed separated by a tricritical point.

The phenomenology of the systems with a cusp singularity, instead, points to a major

role covered by the system dimensionality. Two-dimensional systems displays a more

pronounced tendency towards phase separation than three-dimensional ones [69].

In the inhomogeneous phase region, the typical size of the domains, are determined

by the competition between the long-range Coulomb interaction and the surface en-
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ergy. The latter is usually determined by short-range effects. We show in Chapter

4 how to extend the concept of surface energy in three-dimensional Coulomb sys-

tems. We show that the inclusion of long-range forces leads to a new term due to the

interaction between the local electric field at the interface with the dipole layer.



Chapter 2

Modeling Coulomb-frustrated

phase separation

In this chapter we discuss two different mechanisms producing tendency towards phase

separation (Sec. 2.1) and introduce the related coarse grained models of Coulomb

frustrated phase separation (Sec. 2.2). In Sec. 2.3 we discuss the basic length scales of

the problem leaving Sec. 2.4 for a discussion of the main properties of phase-segregated

states for weak Coulomb interaction where a unified picture can be achieved. A large

portion of this chapter has appeared in Ref. [67].

2.1 The scenarios behind mesoscopic

phase separation

The tendency towards a phase segregated state of matter is manifested by a thermo-

dynamic instability of the homogeneous phase of a system. Usually, thermodynamic

12
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stability criteria are formulated by referring to the availability [70, 71] of a system

immersed in a bath of fixed temperature T0 and subject to an external pressure p0

defined as: A = U − T0S + p0V where S and V indicates respectively the entropy

and the volume of the system alone and U is its internal energy. In a thermodynamic

equilibrium state A takes a minimum. The pressure and temperature of the system

then satisfy T = T0 and p = p0. This means that the system is in equilibrium with

the bath and cannot act as a source of work for an ideal Carnot machine. Thus,

deviations for any infinitesimal change from the equilibrium state must be positive.

By working at constant temperature this implies

δA =
1

2

1

kTV
δV 2 > 0 (2.1)

as easily follows by expanding in a Taylor series the internal energy U to second or-

der around the equilibrium point. Notice that we introduced the isotherm compress-

ibility as kT = −(∂V/∂p)T/V to emphasize that, at fixed temperature, a positive

compressibility is a necessary condition to guarantee the stability of the system in its

homogeneous phase. In the following we will introduce two possible scenarios where

the appearance of a negative compressibility instability drives the system towards the

phase segregation mechanism.

• Negative compressibility density region

Let us begin by assuming the density dependence of the free energy density f(n) and

its first derivative to be continuous everywhere. In the unstable negative compress-

ibility region, the inclusion of higher order terms in the internal energy expansion [71]

provides a double-well form as shown schematically in Fig. 2.1. In a finite window of
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nB0

nA0

n

free energy density

Figure 2.1: Sketch of the free energy density of a system unstable towards phase
separation with a negative compressibility density region. The dashed line indicates
the energy of a phase separated state with local density composition nA 0 and nB 0.

densities, the negative inverse short-range compressibility 1 κ−1 = ∂2f/∂n2 yields the

system to be locally unstable against spinodal decomposition [42]. Outside this “mis-

cibility” gap [72], whose extremes correspond to the spinodal densities with κ−1 = 0,

the homogeneous phase of the system is locally stable because of the positiveness of

the curvature of the free energy. Now, let us assume that we are dealing with an

ideal neutral system of average density n = N/V . We want to show that, in a certain

range of densities, the energy of the system can be lowered by segregation in two

macroscopic regions with local densities nA 0 and nB 0 with nB 0 > n > nA 0. The total

free energy density then reads:

fPS = (1− ν) f(nA 0) + νf(nB 0) (2.2)

1We caution that hereafter we will refer to the short-range compressibility κ that is related to
the usual isotherm compressibility kT through κ = kT n2.
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where ν is the volume fraction in the high density nB 0 phase and the additional

constraint

n = (1− ν)nA 0 + νnB 0 (2.3)

relates the local densities of the coexisting phases to the average density of the sys-

tem. Minimization of the phase separated free energy Eq. (2.2) under the condition

Eq. (2.3) with respect to nA 0 and nB 0 gives:

µ(nB 0) ≡ µ(nA 0) ≡
f (nB 0)− f (nA 0)

nB 0 − nA 0

(2.4)

where µ = ∂f/∂n indicates the chemical potential of the homogeneous phase. The

solution to these equations can be find graphically with the Maxwell or “tangent”

construction that is illustrated schematically with the dashed line in Fig. 2.1. The line

connecting the two local densities is tangential to the free energy of the homogeneous

phase (the full line of Fig. 2.1) and determines nA 0 and nB 0. The free energy of

the mixture is given by the value of the line at n and is obviously lower than the

uniform energy f(n) in all the range nA 0 < n < nB 0. The coexistence equations do

not change if a constant is added to the free energies. They are also invariant with

respect to the addition of a term linear in density µ0n since it has the only effect to

shift the origin of the chemical potential scale. This invariance also persists in the

presence of the Coulomb interactions and will be used to simplify the models defined

in Sec. 2.2.1. Between the spinodal points and the Maxwell construction densities, a

“metastable” region of densities forms, where the homogeneous state of the system

is globally unstable because the total free energy density of a phase separated state

has lower energy but is locally stable to small density fluctuations. We will augment

a free energy of this kind with the long-range Coulomb interaction in Sec. 2.2.1.
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• Dirac-delta-like negative compressibility divergence

Along a different route, we assume that the minimal free energy of a homogeneous

phase has an upward cusp singularity at a reference density nc and, as a result, a

Dirac-delta-like negative divergence in the short-range compressibility κ (see Fig. 2.2).

This occurs in systems undergoing a putative direct density driven first-order phase

transition [73, 72], in which case the system switches at nc from one A-phase to

another B-phase not continuously connected to the first one in the space of the

macroscopic thermodynamic variables of the system. The negative divergence of the

compressibility at the reference density nc drives the system towards phase segrega-

tion. Indeed in the neutral case the free energy of a phase separated state as ruled by

the Maxwell construction Eq. (2.4) represents a minimal free energy. An important

feature differentiating the cusp singularity scenario depicted in Fig. 2.2 from the nega-

tive compressibility density region case, is the absence of a miscibility gap (except for

the reference density nc) unstable towards spinodal decomposition. Mixed scenarios

in which the cusp singularity is accompanied by a density region unstable towards

spinodal decomposition are possible but will not be considered in this thesis.

One can capture the above depicted situations with tendency towards phase seg-

regation, by expanding the free energy around a reference density nc as

fγ = α |n− nc|γ + β (n− nc)
2γ (2.5)

where we have subtracted the constant and the linear term corresponding to the

Maxwell-construction line according to the previous discussion. Obviously we need

α < 0 for the tendency to phase separation to occur and β > 0 is essential to provide
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fAHnL

fBHnL
nC

n

free energy density

Figure 2.2: Sketch of the behavior of the free energy of a system with a cusp singularity
at nc. The system switches from an A-phase to a B-phase with an upward cusp
singularity in the total free energy. The thin dashed lines indicate the metastable
density regions of the two competing phases. Finally the thick dashed line is the free
energy of the phase separated state as ruled by the Maxwell construction.

a double-well form of the free energy. Finally γ = 2 indicates a system with a nega-

tive compressibility density region whereas γ = 1 corresponds to the cusp singularity

model. Notice that in the free energy expansion Eq. (2.5) we are assuming the same

short-range compressibility κ for either n > nc and n < nc. Of course, one can also

consider asymmetric situations by adding cubic terms. Such asymmetry does not

change the physics substantially and will be neglected for simplicity. The exception

is the important case of an incompressible “insulating” phase coexisting with a com-

pressible “metallic” phase. This limiting case constitutes a different universality class

and will be discussed to some extent in Chapter 5. A full treatment can be found in

Ref.[31] in three-dimensional systems and in Ref.[52, 53] in two-dimensional systems.

In the Maxwell-construction picture, the behavior of both γ = 1 and γ = 2 systems

is identical. The local densities of the coexisting regions are determined by the minima

of the double-well nA 0 = nc −∆n0/2 and nB 0 = nc + ∆n0/2 (∆n0 = 2 [|α/(2β)]1/γ).
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Because of the segregation at local densities different from the average one n, the

systems acquires a phase separation energy gain equal to the height of the double-

well barrier f0 = α2/(4β) for n = nc. This gives the scale for the typical phase

separation energy gain which plays a fundamental role in this thesis.

2.2 Coarse grained models of Coulomb-frustrated

phase separation

Since now, we have dealt with ideal neutral systems where macroscopic phase separa-

tion is determined by the Maxwell construction. In electronic systems, this behavior

is drastically changed by the presence of the long-range Coulomb interaction. There

are several ways of introducing charging effects in the phase coexistence phenomenon.

For example the electronic charge density can be coupled to the square of an order

parameter as relevant in systems with Jahn-Teller interactions [74]. In this section,

we introduce two models that are able to provide a full analysis of Coulomb frustrated

phase separation in systems where tendency towards charge segregation is induced

respectively by a Dirac-delta-like negative divergence in the short-range electronic

compressibility [γ = 1 in Eq. (2.5)] and by a negative compressibility density region

[γ = 2 in Eq. (2.5)]. The “fluid” of the previous section is now considered to be

charged. Thus the models are supplemented by the long-range Coulomb interaction.

A rigid background is added to ensure charge neutrality.
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2.2.1 The negative compressibility model

Coulomb frustrated phase separation in systems with a negative compressibility den-

sity range can be analyzed by introducing a model where the electronic charge density

plays the role of a scalar order parameter in a analogous way as the liquid-gas tran-

sition of classical fluids. The Hamiltonian reads:

H2 =

∫
dDx

[
α∆n2 + β∆n4 + c|∇n (x) |2 +

e2

2ε0

∫
dDx′

[n (x)− n] [n (x′)− n]

|x− x′|

]
(2.6)

Here ε0 is the dielectric constant due to the degrees of freedom not included in the

model, n is the average charge coinciding with minus the density of the rigid back-

ground to ensure charge neutrality and ∆n = n−nc is the electronic density deviation

from the reference density. The reference density can be fine tuned so as to elimi-

nate a small cubic term. Finally the gradient term models the surface energy of

smooth interfaces and is parameterized by the stiffness constant c. This model (or

closely related variants) has been used to describe inhomogeneities in a variety of

systems [57, 75, 15, 76, 4] including mixtures of block copolymers [4], charged colloids

in polymeric solutions [75] and electronic systems [15, 57]. A full treatment of the

model Eq. (2.6) in the case of D-dimensional systems subject to a weak D-dimensional

Coulomb interaction has been provided by Muratov [32].

Eq. (2.6) has several free parameters (α , β , c , etc.). For the future discussion, it

is useful to define also a dimensionless form where the parameter space is drastically

reduced. We thus measure lengths in units of ξ =
√

2c/α, and define a dimensionless

density φ(x) = 2∆n(x)/∆n0 and measure energy in units of f0ξ
D. Thus, apart from

an irrelevant constant, we are left with the following hamiltonian:
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Figure 2.3: Behavior of the free energy densities for electronic uniform phases
Eq. (2.7). The dashed lines are the exact energies of layered inhomogeneities for
different values of the frustrating parameter. The short-long dashed line corresponds
to the Maxwell construction (QR = 0).

H̃2 =

∫
dDx

[(
φ(x)2 − 1

)2
+ |∇φ(x)|2 +

Q2
R

2

∫
dDx′

[
φ (x)− φ

] [
φ (x′)− φ

]
|x− x′|

]
(2.7)

with φ = 2(n − nc)/∆n
0 and Q2

R a rescaled dimensionless Coulomb coupling given

by:

Q2
R =

e2

ε0

2 ξD−1

|α|
.

We see that the parameter space can be reduced to only two parameters, the di-

mensionless global density φ and the renormalized coupling Q2
R. The solution of this

model will be discussed in Chapter 3.

2.2.2 The cusp singularity model

To analyze Coulomb frustrated phase separation in systems with a Dirac-delta-like

negative compressibility divergence (γ = 1), it is convenient to introduce an auxil-

iary field s linearly coupled to the charge and analogous to a Hubbard-Stratonovich
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variable. Two versions of the model are possible which lead to similar results: s can

be taken as a soft spin [73] or a conventional Ising spin with s = ±1 [69] where the

sign distinguishes the two competing phases. We take the latter model which is more

straightforward to analyze. It consists of a ferromagnetic Ising model linearly coupled

to the local charge:

H1 = −J
∑
<ij>

(sisj − 1)− |α|
∑

i

si (Ni −Nc) +
β

aD

∑
i

(Ni −Nc)
2

+
e2

2ε0

∑
ij

(
Ni −N

) (
Nj −N

)
ri j

(2.8)

where si = ±1, the index i runs over the sites of a hypercubic lattice of dimension

D = 2, 3 with lattice constant a, the N ’s are dimensionless numbers of particles per

site and N their average value. The soft version replaces the Ising part with a double

well potential [73].

We have written the model on the lattice for clarity but we are interested on

the continuum limit of this model with n(x) ≡ Ni/a
D. Uniform phases correspond

to a ferromagnetic state in s. Inserting the two possible values of s in Eq. (2.8),

one obtains that uniform phases are described by Eq. (2.5) with γ = 1, i.e. two

intersecting parabolas with minima at ±∆n0/2 and a crossing point at nc ( the full

lines in Fig. 2.4). In the hard spin case, domain walls of the Ising order parameter

are sharp by construction with a surface tension σ = 2J/aD−1, thus the Ising term

can be written as σΣ with Σ the total surface of interface among the two phases.

To provide a dimensionless form of the model Eq. (2.8), it is convenient to define,

analogously to the negative compressibility model Eq. (2.6), the unit length scale ξ

defined as ξ ≡ 4σβ/α2. This represents the size that inhomogeneities should have
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Figure 2.4: Behavior of the free energy densities for the electronic uniform phases
Eq. (2.9) and D = 2. The dashed lines are the exact energies of stripe inhomo-
geneities for different values of the frustrating parameter. The short-long dashed line
corresponds to the Maxwell construction (QR = 0).

for the total interface energy to be of the same order as the phase separation energy

density gain α2/(4β). As before, we measure the energy in units of ξDα2/(4β), lengths

in units of ξ and surfaces in units of ξD−1. In these units σ ≡ 1 and apart from an

irrelevant constant one obtains the following dimensionless hamiltonian:

H̃1 = Σ +

∫
dDx[φ(x)− s(x)]2 +

Q2
R

2

∫
dDx

∫
dDx′

[
φ (x)− φ

] [
φ (x′)− φ

]
|x− x′|

(2.9)

where

Q2
R =

e2

ε0

ξD−1

β

As for the model Eq. (2.7), the parameter space is determined by the two dimen-

sionless parameters φ and QR. The exact solution for layered inhomogeneities in

three-dimensional systems and striped states in two dimensions will be provided in

Chapter 5.
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2.3 Typical length scales

In the absence of the Coulomb interaction, both models Eqs. (2.7), (2.9) are sub-

ject to ordinary phase separation in a range of global densities |φ| < 1 as determined

by the Maxwell construction shown by the short-long dashed lines in Figs. 2.3, 2.4.

The phase-separated state is made up of macroscopic domains with constant local

densities φ = ±1.

For QR 6= 0, macroscopic phase separation is precluded since the Coulomb cost

grows faster than the volume in the thermodynamic limit and mesoscale domains

appear. This follows immediately by dimensional analysis of the models. Indeed,

taking φ ∼ 1 in the last term of Eqs. (2.7), (2.9), the Coulomb energy density per

domain of typical size ld can be evaluated as:

flr = Q2
R l̃

D−1
d

where we have defined l̃d ≡ ld/ξ and the integrals have been evaluated in a volume of

order l̃Dd . As anticipated, flr diverges for l̃d →∞ reflecting the fact that a macroscopic

phase separation is avoided in electronic systems. In a mesoscopically phase separated

state, a large number of small inhomogeneities minimize the Coulomb energy but they

cost too much energy for the system to form domain walls. Indeed the surface energy

density goes as:

fσ ∼ l̃−1
d (2.10)

The competition between interface and charging effects (shown schematically in

Fig. 2.5) determines the typical size of the inhomogeneities. The two terms are
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ld�Ξ

energy density

Figure 2.5: Sketch of the competition between interface and charging effects in a
mesoscopic phase separated state. The full line shows the behavior of the surface
energy while the dashed and the dotted-dashed line indicates the contribution of the
Coulomb energy respectively in two- and three-dimensional systems.

optimized at a scale:

l̃Dd =
1

Q2
R

. (2.11)

Another important length scale is the screening length of the Coulomb interaction

that can be defined for two- and three-dimensional systems as:

lD−1
s =

[
2D−1πe2κ

ε0

]−1

(2.12)

where κ is the characteristic short-range electronic compressibility of the competing

homogeneous phases:

κ = (2β)−1 (γ = 1) (2.13)

κ = (2|α|)−1 (γ = 2) (2.14)

For both the above presented models, the characteristic screening length in units of
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ξ is given by:

l̃D−1
s ≡ 1

2D−2πQ2
R

(γ = 1) (2.15)

l̃D−1
s ≡ 1

2D−3πQ2
R

(γ = 2) (2.16)

From Eq. (2.11),(2.15),(2.16) it turns out that at weak frustration (QR << 1) we

have the following hierarchy of scales [32]:

ls >> ld >> ξ. (2.17)

This separation of lengths allows for a unified treatment of the frustrated phase

separation mechanism at weak frustration that will be discussed in the following

section.

On the contrary, at strong frustration we expect the behavior of the models

Eqs. (2.7), (2.9) to be radically different leading to two “universality” classes [67].

This can be qualitatively anticipated by considering the QR → ∞ limit where only

uniform phases are allowed. For the γ = 2 case, the behavior is analytic as a function

of the density whereas for γ = 1 one has a first-order phase transition at n = nc.

2.4 The weak coupling regime

In the weak frustration regime, the effect of long-range forces can be considered as

a small perturbation upon the ordinary phase separation mechanism. Thus, mixed

states are expected to appear with local densities close to the two minima of the

double-well. For systems with γ = 2, frustrated phase separation can be analyzed by

expanding quadratically the free energy around the two densities φ = ±1 2. Then,

2For the range of validity of the quadratic expansion of the γ = 2 model see Appendix C.
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the bulk free energies become the same as for the γ = 1 model. In addition, the

hierarchy of length scales Eq. (2.17) for QR << 1 allows to consider the interface

as sharp. A surface tension can be defined by neglecting long-range effects in the

interface scale ξ and computing the excess energy of an isolated interface [32]. At

this point, the two models become equivalent and the phenomenology of mixed states

is depicted in a universal fashion. In addition, a mesoscopically phase separated state

can be assumed to be similar to the macroscopically phase separated state of neutral

fluids. Thus, the local variation of the charge density inside the domains can be

approximately neglected and we can refer to a uniform density approximation (UDA)

[29, 30, 31, 52, 69] in which the local density inside the domains can be assumed

constant. This also follows from Eq. (2.17) since ls represents the scale at which the

electrostatics imposes charge variations and is much larger than the inhomogeneity

scale ld. We will show in the following chapters, that the UDA gives very accurate

results for both two- and three-dimensional systems even beyond the expected range

of validity. The low (n < nc) and high (n > nc) density phase will be termed

respectively A and B. Defining f̃ ≡ f/f0 the free energy density of a phase separated

state can be put as:

f̃ = (1− ν) f̃A (φA) + νf̃B (φB) + emix (2.18)

ν indicates the volume fraction of the B-phase domains and

f̃A = [φA + 1]2

f̃B = [φB − 1]2
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Figure 2.6: The left (right) panel shows the function u(ν) in two- (three-) dimen-
sional systems for stripes and disks (layers, rods and droplets). For the disk, droplet
and rod inhomogeneities, the mixing energy has been computed referring to B-phase
inhomogeneities for ν < 1

2
while A-phase droplets and rods has been considered for

ν > 1
2
. The inset in the right panel shows the difference in u with respect to the

droplet geometry to resolve the crossings between the different morphologies.

Finally, emix represents the additional energetic cost to form inhomogeneities due to

the long-range Coulomb interaction and the interface boundary energy. For a given

geometry, it is determined by adding the Coulomb cost and the surface energy cost

and optimizing with respect to the dimension of the inhomogeneities as discussed in

Appendix B. By the means of the charge-neutrality constraint φ = (1− ν)φA + νφB,

it is possible to eliminate the local densities φA and φB in favor of φ and the density

deviation φB − φA. The mixing energy can be then cast in the suitable simple form:

emix = Q
2/D
R (φB − φA)2/D u(ν). (2.19)

The dependence of the mixed state (MS) free energy upon the morphology of the

domains is stored in the function u(ν). In analogy with the set of morphological

structures displayed in classical systems [1], we account in the following for periodic

striped structures and disks in two-dimensional systems. Alternating layers, cylindri-
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cal rods and spherical droplets are instead considered in three-dimensional systems.

In the latter case, u (ν) can be easily obtained computing the macroscopic electric

field generated by the charged coexisting domains. For rod-like and droplet-like in-

homogeneities, this can be achieved by referring to the Wigner-Seitz-approximation

(WSA)[77, 13, 58] in which the system is divided respectively in slightly overlapping

cylindrical and spherical cells. In Appendix B, we will address a detailed evaluation

of these functions. They can be put as:

u (ν) = 35/3 π

10

1/3

ν
[
2− 3ν1/3 + ν

]1/3
Droplets (2.20)

u (ν) = 3ν1/3
[
−πν2 log

√
ν − π

2
ν2 +

π

2
ν3
]1/3

Rods (2.21)

u (ν) =
π

2

1/3

[3ν (1− ν)]2/3 Layers (2.22)

These functions appear also in the theory of diblock copolymers [4]. In the right panel

of Fig. 2.6, we plot u(ν) for the different geometries in three-dimensional systems. In

the two-dimensional case, we can refer to an approximated evaluation of u where

the Coulomb energy cost coincides with the self-energy of a neutral Wigner-Seitz cell

i.e. neglecting the Coulomb interaction among different cells [52]. The approximated

expressions for disks and stripes are given by [c.f. Appendix B]:

u (ν) =
8√
3
ν Disks (2.23)

u (ν) = 2
√

2ν (1− ν) [− log ν (1− ν)]1/2 Stripes (2.24)

and are shown in the left panel of Fig. 2.6. The advantage of the UDA approximation

is that the mixing energy, that encloses long-range force effects, can be computed

independently from the specific modeling of the homogeneous phases free energy.

These functions are valid whatever form one choses for fA/B.
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As shown in Fig. 2.6, droplet-like or disk inhomogeneities are preferred for low

volume fractions of the minority phase (ν ∼ 0 or ν ∼ 1). On the contrary, stripes and

layers appear for ν ∼ 1
2
. At intermediate values of ν in three dimensional systems,

one finds cylindrical rods. In the diblock copolymer context the control parameter

is the volume fraction ν. Here instead the control parameter is the global density φ.

However for QR << 1, the volume fraction increases nearly linearly with the global

density and the two parameters are practically equivalent. From Fig. 2.6 one sees that

there will be a series of morphological transitions that connect droplet states near the

homogeneous-MS transitions to the striped mixed state at φ ∼ 0. In the present

approximation, they appear as first order however consideration of more complicated

geometries and charge relaxation effects can change this to a smooth evolution of

inhomogeneities that could also include “fingering” and elongation of the domains as

in classical systems [1]. The stripe and rod phases are expected to behave as a glass

in quench experiments [57] with labyrinth-like patterns.

As discussed in Sec. 2.1, f0 determines the typical scale of phase separation energy

gain. emix is the energy cost due to frustration measured in unit of f0. To get a

typical scale for the energy cost, we evaluate Eq. (2.19) at ν = 1/2 and φB − φA = 2

(Maxwell construction). Apart from numerical factors this allows to give another

physical interpretation to the frustration parameter:

QR =

(
Typical mixing energy cost

Typical phase separation energy gain

)D/2

.

In Fig. 2.4, we show with dashed lines the typical behavior of mixed state free

energies at different values of QR. These results are exact but the results within

the UDA approximation at weak coupling are practically identical [see Chapter 5
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]. An interesting property of mixed states is that they present the “wrong” curva-

ture, that is, the electronic compressibility ∂2fe/∂φ
2 is negative. Generally, this does

not imply a thermodynamic instability since the usual stability condition of positive

compressibility must be formulated for the global neutral system thus including the

background compressibility. Since in our models, the inverse background compress-

ibility is assumed to be an infinite positive number (the background density is fixed

to the uniform average value φ), it follows from this point of view that the system is

in a stable mixed state. In solid state systems, the background represents the positive

ionic lattice that compensates the electronic fluid. In general, the compressibility of

the former can be neglected but when the electronic inverse compressibility becomes

very large and negative, they may compete. This will be discussed in Chapter 5.

An important difference with ordinary phase separation resides in the behavior of

the local densities of the domains. In unfrustrated phase separation, the two phases

have a constant density independently of the global density. In frustrated phase sep-

aration, the local density of the domains decreases with an increase of the global

density [29, 31]. This can have important consequences in physical systems undergo-

ing Coulomb frustrated phase separation. For example, the puzzling maximum of the

Curie temperature in the three-dimensional perovskite manganite La1−xCaxMnO3 at

x = 0.35 Ca doping [78], not predicted by the conventional double-exchange mecha-

nism [79, 80, 81], can be explained [30] by assuming that the Curie temperature is an

increasing function of the local density, rather than the global density controlled by

doping.



Chapter 3

Domain pattern formation in

systems with negative

compressibility

In this chapter, we analyze the phenomenology of domain pattern formation in

systems with negative compressibility from weak to strong coupling by means of the

paradigmatic model of Coulomb-frustrated phase separation introduced in Chapter

2. Using a combination of numerical techniques and exact asymptotic expansions,

we are able to derive the phase diagram of three-dimensional systems (Sec. 3.2) both

in absence (Sec. 3.2.1) and in presence (Sec. 3.2.2) of strong anisotropies. These

results,appeared in Ref.[68], can be interpreted as a mean-field description of a pa-

rameter (e.g. temperature) driven phase transition to charge inhomogeneous states

near a critical point (Sec. 3.3). A discussion of the nature of the transition in two-

dimensional systems embedded in the three-dimensional Coulomb interaction is re-

31
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ported in Sec. 3.4.

3.1 General considerations

As discussed in Chapter 2, domain pattern formation in systems with a negative

short-range electronic compressibility density region can be analyzed within the model

Eq. (2.7) that we recall for the reader’s convenience:

H̃2 =

∫
dDx

[
φ(x)2 − 1

]2
+ |∇φ(x)|2 +

Q2
R

2

∫
dDx

∫
dDx′

[
φ (x)− φ

] [
φ (x′)− φ

]
|x− x′|

(3.1)

The hierarchy of length scales ξ << ld << ls [see Chapter 2] of the weak coupling

regime, allows to treat the model within a sharp-interface approach. In this case,

strongly anharmonic mixed states appear with finite wave-amplitudes at the transi-

tion. On the contrary, in the strong coupling regime, the separation of length scales

is no longer valid and a sharp interface treatment is unreliable. The prominent role

of smooth interfaces leads to a very different mechanism for the creation of charge

inhomogeneities as will be shown below. Indeed computing the static response to an

external field in momentum space, one obtains the following charge susceptibility:

χ(k) =

[
|k|2 +

Q2
R

2
v(k)− 2 + 6φ

2
]−1

(3.2)

We remind that the system is considered to be D-dimensional but embedded in the

usual three dimensional Coulomb interaction. Thus:

v(k) =
2D−1π

|k|D−1
.

as follows from the effective Poisson equation for the 3D Coulomb interaction in two

and three dimensional systems [c.f. Appendix A] [82, 52]. The charge susceptibility
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has a peak at

k0 =
[
(D − 1) 2D−3πQ2

R

]1/(D+1)
(3.3)

determined by the competition between interface and charging effects. It diverges as

QR approaches a Gaussian instability line QR g from above where,

QR g =
1√
2π

[
1− 3φ

2
]

3D (3.4)

QR g =

√
4
√

2

3
√

3π

[
1− 3φ

2
]3/4

2D (3.5)

For values of QR greater than QR 0 = 1/
√

2π in 3D and QR 0 =
√

4
√

2/(3
√

3π) in

2D, the charge susceptibility turns out to be positive in the whole k-space and in the

entire region of global densities −1 < φ < 1. This ensures thermodynamic stability

of the homogeneous phase against small amplitude inhomogeneity. The divergence of

the charge susceptibility at QR g, indicates an instability of the homogeneous phase

towards a sinusoidal charge density wave (SCDW) with vanishing wave amplitude

and direction chosen by spontaneous symmetry breaking. This is analog to spin-

odal decomposition in neutral systems [42]. The correspondent second-order phase

transition is referred as the “microphase” separation transition in classical systems

[1, 32, 4]. A similar mechanism has been proposed in cuprates predicting charge

ordering instabilities and other anomalous properties in accord with experiment [16].

So far, the crossover from the strongly anharmonic inhomogeneous state expected

at weak coupling to the SCDW appearing at the Gaussian instability line, has not

yet been addressed and we will account for in the following section in the case of

three-dimensional systems.
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3.2 The phase diagram of 3D systems

In this section, we derive the full phase diagram of 3D systems from the limit

of zero frustration up to the strong frustration regime. We will first consider the

simple case of isotropic systems. To account for strong anistropic systems one should

consider an anisotropy in the gradient term that will be discussed in Sec. 3.2.2.

3.2.1 Isotropic systems

In our following analysis we will look for periodic textures. We can thus introduce a

Bravais basis {a1, a2, a3} for which the periodicity of the density can be expressed as

φ (r +m1a1 +m2a2 +m3a3) = φ (r)

with m1,m2,m3 real integers. In the dual momentum space, the wavevectors G will

form a reciprocal lattice with primitive wave-vectors {b1,b2,b3} determined by:

ai · bj = 2πδi,j i, j = 1, 2, 3

The Fourier decomposition of the density can be put as:

φ (x) =
1

V

∑
G

φG e
iG·x (3.6)

where V indicates the unit cell volume of the periodic texture. For a charge inho-

mogeneous state to be stabilized, we must require that its free energy must be lower

than the one of homogeneous phase
[
φ

2 − 1
]2

[c.f. Eq. (3.1)]. It is thus convenient to

refer to the difference of free energy density between a charge inhomogeneous state
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and a homogeneous phase whose Fourier decomposition comes out:

δF

V
=

1

V 2

∑
G 6=0

φGχ
−1 (G)φ−G +

1

V 3

∑
G1,G2,G3 6=0

4φφG1φG2φG3δ (G1 + G2 + G3, 0) +

+
1

V 4

∑
G1,G2,G3,G4 6=0

φG1φG2φG3φG4δ (G1 + G2 + G3 + G4, 0) (3.7)

where we remind that the G = 0 component of the Coulomb interaction cancels in

order to satisfy the electroneutrality constraint 〈φ (x)〉 = φ that in momentum space

reads φG=0 = V φ.

The presence of a self-generated cubic term in Eq. (3.7) calls for the possibility

of first-order transitions. This is a widely common behavior in mean field theory of

phase transitions and occurs for example in the isotropic-nematic and in the liquid-

solid transitions [42]. Rigorously, to capture first-order transitions, one should account

for all vectors G of a given reciprocal lattice in Eq. (3.7) and for all possible choices

for the reciprocal lattice. Thus a complete discussion requires a minimization of the

free energy density with respect to φG for all possible reciprocal lattice candidates.

A different route, however, can be kept if one refers to the strong-coupling regime. In

this case, we will assume that the transition will be at most weakly first-order which

can be checked a posteriori. We keep only wave-vectors of a given magnitude and we

assume that the magnitude of the wave vector is determined by the maximum of the

charge susceptibility in the uniform phase1. This makes a close connection between

our discussion and the liquid-solid transition theory [42, 83] where the typical wave-

vector is fixed by the static structure function peak in the liquid phase. In addition,

because of the isotropy, the amplitudes of the Fourier components φG will depend

1A variational determination of the optimal G would lead to the same condition.
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Figure 3.1: Left panel: The six shortest vectors of triangular lattice forming the
equilateral triangle a, c, e and its inverted image b, d, f . Central panel: The oc-
tahedron in which the m = 12 shortest vectors of a FCC reciprocal lattice can be
rearranged. The square a, b, c, d is planar while a, b, c, f is a non-planar diamond.
Right panel: An icosahedron. It is straightforward to show that for a triangular
lattice {p, q} = {1, 0} whereas for a FCC and a icosahedral lattice {p, q} = {2, 2}.

only upon the magnitude of G [83]. As a consequence, the free energy Eq. (3.7) comes

out in our strong coupling assumption:

δF

V
= χ−1 (G)φ2

G

∑
G

1+4φφ3
G

∑
G1,G2,G3

δG1+G2+G3,0+φ4
G

∑
G1,G2,G3,G4

δG1+G2+G3+G4,0

(3.8)

where the sums over the momenta are constrained by |Gi| = G. Obviously, the

quadratic contribution ∝ φ2
G is determined by the number m =

∑
G 1 of reciprocal

lattice vectors withGmagnitude. The key point is that to have an energetic advantage

from the cubic term of Eq. (3.8), which in turn leads to a first-order transition, we

need triads of wave-vectors of equal magnitude that add to zero thus forming an

equilateral triangle so that the Kronecker δ is fulfilled. This cannot be realized by

a one-dimensional reciprocal lattice for which m = 2. An additional translational

symmetry breaking is at least needed leading to consider reciprocal lattices with
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dimension d > 1. As stated in Ref.[42], there are only three distinct sets of equal

length vectors G containing closed equilateral triangles and both G and−G that form

symmetric structures. The first set consists in them = 6 edge vectors of an equilateral

triangle and its opposite image that can be formed by a triangular reciprocal lattice

[left panel of Fig. 3.1]. The second set consists in the m = 12 edge vectors of an

octahedron [center panel of Fig. 3.1]. These vectors can be translated so that their

tails are at the origin and their heads are on the surface of a sphere of G radius.

In this form, the latter set corresponds to a face-centered-cubic (FCC) lattice. The

latter possibility consists in the set of the m = 30 edges of an icosahedron [right panel

of Fig. 3.1] that can be formed by the shortest vectors of an icosahedral reciprocal

lattice.

For all sets of wave-vectors, it is possible to compute the free energy Eq. (3.8)

upon introducing the number p of equilateral triangles and the number q of non-

planar diamonds to which each vectors belongs. A detailed derivation is presented in

Appendix E. We finally obtain a Landau free energy expansion in the order parameter

φG that reads 2:

δF

V
= χ−1 (G)mφ2

G + 8φ pmφ3
G + φ4

G [3m (m− 1) + 6qm] (3.9)

Upon minimizing with respect to the wave-amplitude φG and requiring δF = 0, we

determine the first-order transition line:

QRt = QR g +QR 0
8p2φ

2

[3 (m− 1) + 6q]
(3.10)

2We caution that Eq. (3.9) differs from the result reported in Ref.[42]. We are in debt with T.C.
Lubensky for confirming us that the result in the book has to be modified.
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Figure 3.2: Constant density plot of the density deviation φ (x) − φ rescaled by
the transition wave-amplitude factor, at the transition to a nucleated BCC lattice.
The panel shows a cell with size −2

√
2π/G < {x, y, z} < 2

√
2π/G. The structures

enclosed by the surface represent electron-rich (electron-poor) region for φ < 0 (φ >
0).

The jump in the order parameter at the transition φG = −4pφ/ [3 (m− 1) + 6q] goes

to zero at φ = 0 confirming that the transition is weakly first-order with the Gaussian

line (the dotted line in Fig. 3.5) playing the role of the limit of metastability of the

homogeneous phase.

Decreasing QR the first inhomogeneous structure to become stable is the FCC re-

ciprocal lattice defined by the 12 wave-vectors G/G = 1/
√

2 [(±1,±1, 0) , (±1, 0,±1),

(0,±1,±1)]. The FCC lattice in the dual space gives rise in the 3D real space to

a BCC crystal of inhomogeneities shown in Fig. 3.2. At the BCC lattice points

xL =
√

2π/G [(±1,±1,±1) , (0, 0, 0)], the full constructive interference between the

sinusoidal charge density waves components of the density modulation implies that

φ (xL) = φ+ 12φG. Notice that since the transition wave amplitude has the opposite

sign of the global density φ, the charged domains will represent overcompensated or

undercompensated region respectively for φ < 0 and φ > 0.
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Figure 3.3: Behavior of the free energies Eq. (3.9) for the different reciprocal lattices
discussed in the text as a function of the global density at fixed Coulomb coupling.
Crossing between the different lines determine the morphological transitions. Notice
that the icosahedron reciprocal lattice corresponding to the icosahedral quasicrystal
is never favorable.

The first-order homogeneous-BCC transition line is given by:

QRt

QR 0

= 1− 3φ
2
+

32

45
φ

2
(3.11)

and is shown with the red thin full line in Fig. 3.5. It terminates at a liquid-gas-like

critical point (φ,QR) = (0, QR 0)(the black circle in Fig. 3.5) where the transition is

second-order-like and driven by the charge susceptibility divergence as easily follows

by considering that the cubic term of Eq. (3.7) vanishes at φ = 0. Thus at the critical

point the spinodal decomposition mechanism enters into play and leads to SCDW.

Below the first-order transition line, there is a tendency towards a morpholog-

ical change of the inhomogeneities. Close to QR 0, only the structures previously

identified are expected to compete. Therefore we can obtain the full phase diagram

around this point. In Fig. 3.3 we show the behavior of the free energies Eq. (3.9)

for the reciprocal lattice candidates as a function of the average density φ and fixed

coupling strength. Starting from the BCC-lattice region of stability at large φ, we
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Figure 3.4: Contour plot of the rescaled density deviation
[
φ (x)− φ

]
/φG in the two-

dimensional modulation plane of rod-like inhomogeneities. The white spots corre-
sponds to the lattice points of a triangular lattice where the sinusoidal charge density
waves are “in-phase” and φ (x) = φ + 6φG. In the purple areas the density value is
more close to its average value.

find a first-order morphological transition leading to rigid rod-like inhomogeneities

for which the modulation occurs in a selected plane and the translational symme-

try is preserved in a spontaneously chosen direction. The two-dimensional modu-

lation is specified by the triangular reciprocal lattice defined the six wave-vectors

G/G = (± cos π/3,± sin π/3) , (±1, 0) and is shown in Fig. 3.4. The appearance

of rod-like domains in a triangular lattice is reminiscent of type II superconductors

where above the lower magnetic critical field Hc1 “normal” state vorteces form the

Abrikosov vortex lattice [84]. It is worth noticing that the same feature appears in

the twist-grain-boundary (TGB) phase of liquid crystals [42].

By further decreasing the global density, we find a subsequent first-order morpho-

logical transition that restores the translational symmetry in an additional direction

and leads to layered structures. This state can be interpreted as a smectic electronic
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Figure 3.5: The full phase diagram in three-dimensional isotropic systems. The small
dots indicates the Gaussian instability line QR g. The thin and thicks lines represent
first-order transitions in the strong-coupling approximation and in the UDA . Full
lines indicates the transition from homogeneous to droplet-like inhomogeneities while
dashed and dotted-dashed lines the morphological transition from droplets to rods
and from rods to layers. Finally the �, 4 and ♦ points are the results from discrete
numerical minimization.

liquid phase that possesses orientational order and breaks the translational symme-

try only in one direction. Possibly, fluctuations of the stripe order can restore the

translational symmetry [85] thus leading to a nematic phase.

By determining crossings of the free energies as in Fig. 3.3 at different coupling

strength, we obtain the first-order morphological transition lines sketched with the

thin lines in Fig. 3.5. The icosahedral structure never becomes favorable according to

our analysis. This interesting structure corresponds to a quasicrystal in real space.

Here we would notice that with the inclusion of higher order harmonics at weaker

couplings, the icosahedral quasicrystal and other structures could be stabilized in a

narrow range of global densities. It can also happen that the first-order-like abrupt

changes of the inhomogeneity structure could be substituted by a more smooth evo-

lution as found in classical systems [1].

For QR << QR 0 the weakly first-order transition Eq. (3.11) cannot be correct
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since the inhomogeneous region must converge to the Maxwell construction phase

separation density range −1 < φ < 1 whereas Eq. (3.11) predicts a narrower range.

Indeed by decreasing the Coulomb coupling from QR 0 along the transition line, the

jump in the chemical potential is more abrupt and the weak first order character of

the transition is lost calling for a computation with more harmonics.

For small QR the separation of length scales (ξ << ld << ls) discussed in Chapter

2 allows to treat the problem within the Uniform-Density-Approximation. We have

refined the latter approximation by a direct evaluation of the free energy excess of an

isolated domain wall. Interestingly we find that one can extend the range of applica-

bility of the latter approximation by taking into account the density dependence of

the surface energy and the interaction of the dipole layer formed at the interface with

the local electric field. Details will be presented in Chapter 4. Within the refined

UDA, we find the same transitions as in strong coupling but now the inhomogeneities

form sharply defined spherical droplets, cylindrical rods and layers. The transition

lines in this approximation are shown with the thick lines in Fig. 3.5.

In order to study the crossover from the weak to the strong-coupling regime,

we have numerically minimized a discretized version of the model Eq. (3.1) in the

Wigner-Seitz approximation [13, 77, 58]. For rod-like and droplet-like inhomogeneities

we assumed respectively cylindrical and spherical shape to reduce the minimization

procedure to a one-dimensional effective problem in the radial direction alone. This

is a reasonable approximation if the typical size of the domains is much lower of their

typical distance [77, 58] as indeed found by decreasing the coupling strength. The
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Figure 3.6: Left panel: Behavior of the charge density modulation for different val-
ues of the dimensionless coupling QR for φ = 0. Near the Gaussian instability the
modulation corresponds SCDW (red-line). As QR decreases more harmonic plays a
relevant role and the charge modulation assumes the characteristic of a non-harmonic
“layered” structure. For QR → 0 the modulation is made by layer of φ ∼ ±1 (black
line) and converges to the Maxwell construction. Right panel: Evolution of the peri-
odicity of the charge density wave measured in unit of the periodicity of the SCDW
at QR = QR 0.

resulting transition line are sketched with the �,4 and ♦ points in Fig. 3.5 3.

Finally we study how the anharmonic behavior of the inhomogeneities is build up

into the systems as the coupling strength QR is decreased. We show the behavior

below the critical SCDW point, but the same feature appears in the whole phase

diagram. The evolution of the SCDW at φ = 0 as the Coulomb coupling is decreased

is shown in the left panel of Fig. 3.6. The SCDW smootly evolves into an anharmonic

charge density wave that has as a limiting case a macroscopically phase separated

state at QR = 0 in which the periodicity of the charge density wave becomes of the

order of the system typical size. The evolution of the modulation half-periodicity Rc

with QR is shown in the right panel of Fig. 3.6. The Fourier components behaves

3Since the free energies of the different morphological structures are very close in energy, we
applied a finite size scaling analysis to correctly determine the first-order morphological transition
lines.
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Figure 3.7: Evolution of the harmonic weights φm/
∑

m′ φm′ as a function of the
dimensionless coupling QR. The horizontal lines indicates the weights for a layered
structure of φ = ±1. The even components φm ≡ 0 due to the odd symmetry of the
charge density wave at x = ±Rc/2.

as φG = V
∑

m δ (G−mG)φm/2 and their evolution is shown in Fig. 3.7. Close to

the critical point they behaves as φm ∼ (QR −QR 0)
m/2 as follows by considering

that φm couples with φm
1 in the quartic term of Eq. (3.1) and close to QR 0 the

density φ1 ∼ (QR −QR 0)
β with the critical exponent β = 1/2 as in ordinary second-

order phase transitions. Higher harmonics proliferate as QR is decreased and their

relative weight φm/
∑

m′ φm′ converge to the harmonic weights of a rectangular profile

of alternating φ = ±1 layers corresponding to the macroscopically phase separated

state at QR = 0 (the horizontal lines in Fig. 3.7).

The above discussion provides the complete phenomenology of domain pattern

formation in isotropic systems. We have shown that the systems never reaches the

second-order Gaussian instability line except for a critical point in the phase diagram:

the Gaussian instability is preempted by a first-order phase transition [68]. This result

shows that the stability of the homogeneous phase ensured at the gaussian level by

the finiteness of the charge susceptibility is irreparably undermined when accounting
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for the non-gaussian cubic and quartic terms of Eq. (3.7). In the next section we

will account for anisotropic systems and analyze if the anisotropy leads or not to

qualitative changes of the phase diagram Fig. 3.5.

3.2.2 Anisotropic systems

In this section we discuss the phenomenology of domain patterns in systems with

intrinsic anisotropic effects due for example to the underlying crystal field. A simple

way to account for the latter effects is to introduce an anisotropy in the gradient term

of the model Eq. (2.6). We substitute the gradient term by

c⊥ |∇⊥φ (x)|2 + c‖
∣∣∇‖φ (x)

∣∣2
where x =

(
x⊥,x‖

)
is divided intom perpendicular “soft” direction andD−m parallel

“hard” directions. The model can be taken in the dimensionless form as before.

Here we measure lengths in unit of the bare correlation length in the perpendicular

directions ξ⊥ =
√

2c⊥/|α| and free energy in unit of [α2/(4β)] ξD
⊥ to get:

H̃an
2 =

∫
dx |∇⊥φ (x)|2+λ

∣∣∇‖φ (x)
∣∣2+[φ2 (x)− 1

]2
+
Q2

R

2

∫
dx′
[
φ (x)− φ

] [
φ (x′)− φ

]
|x− x′|

(3.12)

where λ measure the degree of anisotropy and corresponds to the ratio of the stiffness

vector parallel component c‖ to c⊥. Finally, as for the isotropic case, we introduced

the rescaled Coulomb coupling that measures the competition between short- and

long-range interactions that in our present anisotropic model reads

Q2
R =

2e2

ε0 |α|
ξD−1
⊥ (3.13)



Chapter 3: Domain pattern formation in systems with negative compressibility 46

In the limit λ → ∞, the modulation in the parallel direction are forbidden pre-

serving their translational symmetry and pattern formation can occur only in the soft

perpendicular directions. Thus one is left with an effective m-dimensional problem

in the perpendicular soft directions. It is worth to mention that the solutions can

be given in a different interpretation. Consider a m-dimensional system subject to a

fictitious m-dimensional Coulomb interaction defined by:

∇2vm (x⊥ − x′⊥) = −4πδ(m) (x⊥ − x′⊥) (3.14)

Then in momentum space we get vm(q⊥) = 4π/q2
⊥ corresponding to the 3D Coulomb

interaction provided one takes q‖ = 0 or equivalently λ = ∞ in Eq. (3.12). Domain

pattern formation for this class of systems, has been considered in Ref.[32]. A detailed

analysis has been provided for the case of two-dimensional systems embedded in a

weak two-dimensional interaction. In the following section, we will generalize this

analysis to all regime of couplings.

One “hard” direction

The case of one hard direction and two soft isotropic directions is straightforwardly

tractable. Indeed in the strong-coupling regime, our weakly-first-order transition

approximation is rigorously valid 4 once one notice that the reciprocal lattice choice

is restricted in this case to a triangular lattice alone. From Eq. (3.10) the weakly-

first-order transition line is given by:

QRt

QR 0

= 1− 3φ
2
+

8

15
φ

2
(3.15)

4We would notice that the isotropic assumption in the “soft” plane is essential to describe via
Eq. (3.9) the transition line.
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Figure 3.8: The full phase diagram in the m = 2 anisotropic case. The full thin
and thick lines indicate the first-order transitions to rod-like inhomogeneities respec-
tively in the strong-coupling analysis and in the weak-coupling UDA theory. The �
points indicate the same transition line with numerical minimization method. The
dotted-dashed lines and the ♦ points represent the morphological transition to layered
structures in the three approximations.

and is shown with the thin full line in Fig. 3.8. Notice that the appearance of a

SCDW is restricted to the critical point (φ,QR) = (0, QR 0) as for the isotropic case.

A comparison of Eq. (3.15) with the weakly-first-order transition line for isotropic

systems Eq. (3.11) would clarify that anisotropic effects shrinks the region of stability

of the inhomogeneous phase. This is clearly due to the constraint imposed in the hard

direction. In Fig. 3.8 we show the full phase diagram where the first-order transition

to rod-like structures is provided for intermediate and weak couplings by means of

discrete numerical minimization method (� points) and the weak-coupling UDA the-

ory (thick full line). Analogously to the isotropic case, tendency to a morphological

change of the inhomogeneities manifests itself in the full range of QR. We find indeed

both analytically (dot-dashed lines) and numerically (♦ points) a first-order transi-

tion leading to layered structures. As emphasized in the previous section, the phase

diagram of Fig. 3.8 describes well the phenomenology of two-dimensional systems
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Figure 3.9: The phase diagram for anisotropic three-dimensional systems with a
unique soft direction. The thin line is the gaussian instability line that represents the
exact second-order transition line for φ < φT (the black circle) and the metastability
line of the homogeneous phase for φ > φT . The dashed line is the I-order transition
line in the UDA approximation. The � point are the results of numerical minimization
in the first-order region.

subject to a two-dimensional “Coulomb” interaction. In this case rod-like structures

would acquire the meaning of droplet-like patterns while layers should be considered

as stripe-like objects.

Two “hard” directions

In this section we discuss the more interesting case of only one “soft” direction. Since

only one dimensional modulations (layered structures) are allowed, the weakly first-

order transition will be replaced at least in the strong-coupling regime by the second-

order Gaussian instability line QR g shown with the thin full line in Fig. 3.9. The

inhomogeneous phase will thus appear in the form of a SCDW in the soft direction

with vanishing amplitude at the transition and periodicity 2Rc = 2π/k0. The question

then arises of how this is reconciled with the appearance of the strongly anharmonic

inhomogeneous states expected at weak Coulomb couplings. The answer is that
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this happens trough a tricritical behavior. We find, in fact, a change of regime for∣∣φ∣∣ > √
3/5. In this case the transition is again first-order with tricritical points

at
(
φ,QR

)
=
(
±
√

3/5, 16/25QR 0

)
. The position of the tricritical points and the

behavior of the charge density modulation around it, can be studied retaining only

two-harmonics in the density:

φ (x) = φ+ φ1 cos k0x+ φ2 cos 2k0x (3.16)

and below we will assume φ2 << φ1. From Eq. (3.7) and retaining only terms up to

the φ4
1 the modulated phase energy can be expanded as:

δFII

V
' 3

8
φ4

1 + 3φφ2φ
2
1 +

(QR −QR G)

QR 0

(
φ2

1 + φ2
2

)
+

9

8

QR

QR 0

φ2
2 +O

(
φ6

1

)
(3.17)

Near the Gaussian instability line QR ∼ QR g, minimization with respect to φ2 implies:

φ2 = −4

3

QR 0

QR

φφ2
1 (3.18)

Using this condition we can consider Eq. (3.17) as an expansion in φ1 up to φ4
1 thus

justifying the order of the next subleading term indicated. Upon reinserting Eq. (3.18)

in the expression for the modulated free energy density we finally obtain a Landau-like

free energy in the order parameter φ1 that can be put as:

δFII

V
= rφ2

1 + u4φ
4
1 + u6φ

6
1 (3.19)

with the quadratic coefficient r = (QR −QR g) /QR 0 whereas for the coefficient u4 of

the quartic term we get:

u4 =
3

8
− 2φ

2 QR 0

QR

(3.20)

where we have neglected a term of order (QR −QR g). For u4 > 0, the value of the

order parameter φ1 can be obtained by minimization of Eq. 3.19 neglecting the sixth
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Figure 3.10: Left panel: Evolution of the amplitudes of the first four harmonics for
φ = 0.1. The dashed lines are fitted lines with critical exponents βm = m/2. Right
panel: Evolution of the finite harmonic amplitudes of the nucleated layered structure
along the first-order transition line starting from the tricritical point. Notice the
square root law for the amplitude φ1 as follows from the Landau free energy expansion
Eq. (3.19)

order term. Thus the transition is determined by the Gaussian instability line i.e.

QR = QR g (r = 0). By following the second-order transition line, we find that the

quartic coefficient u4 vanishes for φ = φT = (
√

3/5) indicating a tricritical point that

is shown with the black circle in Fig. 3.9. Thus for φ > φT the transition turns

out to be first-order like. The analytical determination of the first-order transition

line would require knowledge of the subleading terms in our Landau-like free energy

expansion since

QRt −QR g = QR 0
|u4|2

u6

∝ (QR −QR T )2

where QR T = 16/25QR 0 indicates the tricritical Coulomb coupling. In this case

we can again take advantage from numerical discrete minimization. The numerically

found first-order transition line is shown with the � points in Fig. 3.9. Almost the full

first-order transition line is well depicted (dashed line of Fig. 3.9) by the refined UDA

approximation of Chapter 4. In the second-order transition region, the evolution of
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the SCDW is controlled by a continuous proliferation of harmonics. This is analogous

to the behavior found below the critical point in isotopic systems in Sec.3.2.1. The

first harmonic grows as (QR g −QR)1/2 as follows for ordinary second-order phase

transition. This yields the second-harmonic amplitude to grow linearly by means of

Eq. (3.18). By numerically analyzing the behavior of higher order harmonics one finds

that, generally, the critical exponents of the order m harmonic amplitude behaves as

φm ∝ (QR g −QR)βm where the m-th harmonic critical exponent βm ∼ m/2 (see left

panel of Fig. 3.10). This follows from the fact that the m-order harmonic couples

with φm
1 in the cubic term of Eq. (3.7).

In the first-order region, the nucleated layered structure acquire a more prominent

anharmonic behavior by deviating from the tricritical point. This is because the finite

harmonic amplitudes at the transition progressively grows as shown in Fig. 3.10.

3.3 Temperature-driven transitions to charge in-

homogeneous states

As yet emphasized in Chapter 2, the model presented in Sec. 3.1 can be derived

by expanding the coarse grained energy of a system around a reference density inside

a negative compressibility density range. In general the inverse short-range electronic

compressibility α and the bare correlation length ξ will depend upon external pa-

rameters like pressure. They can be even taken temperature dependent as in Landau

theory where H has to be interpreted like a free energy and the model becomes a

mean-field description of a temperature driven transition to an inhomogeneous state
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which can be useful, for example, to model inhomogeneities appearing below some

temperature in manganites [33]. In this section we discuss the case in which the refer-

ence density would correspond to a critical liquid-gas point with diverging short-range

electronic compressibility at a critical temperature Tc. Close to Tc, the parameter α

can be taken as linearly dependent on the temperature as α = α′ (T − Tc) with α′

constant [71, 42]. It can be useful to obtain the phase diagram as a function of the

normalized “temperature” T/Tc and the global density deviation ∆n = n− nc. Here

we will present the temperature dependent phase diagram for the case of anisotropic

three-dimensional systems with one soft direction but a straightforward generaliza-

tion would yield to derive the phase diagrams in the temperature-density plane for

isotropic systems.

We start by considering that the dimensionless density φ and the rescaled Coulomb

coupling Q2
R are temperature dependent since they have been defined in terms of

the inverse short-range compressibility and the bare correlation length. Restoring

dimensions and assuming β and the stiffness constant c⊥ constant, one obtains the

following equations for the dimensionally correct global density and the bare Coulomb

coupling:

φ(T ) =
∆n

∆n0(T = 0)

[
1− T

Tc

]−1/2

(3.21)(
QR(T )

QR 0

)
=

e2

ε0

8π c

α′T 2
c

[
1− T

Tc

]−2

(3.22)

where we have chosen to measure densities in unit of the Maxwell construction density

range at zero temperature ∆n0(T = 0) =
√

2β/(α′Tc. Analogously, we can introduce

a dimensionless parameter Q2
0 = 8π c e2/(α′ε0T

2
c ) that corresponds to the square of

the zero temperature renormalized coupling QR(T = 0) in unit of QR 0 = 1/
√

2π. All
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Figure 3.11: Left panel: Behavior of isochoric lines dot-dashed lines for two values of
Q2

0 = 0.01, 0.2 in the dimensionless coupling-global density plane. Crossing with the
phase diagram determine the transition temperature at fixed global density ∆n.Right
panel: The phase diagram for m = 1 anisotropic systems in the temperature-density
plane for different values of the coupling Q2

0. The full line represents the tricrit-
ical line.The dashed lines are the gaussian instability lines. The dot-dashed lines
are the UDA first-order transitions. Finally the � are the results of the numerical
minimization.

the dependence upon the relevant parameters c , α′ , ε0 , Tc that specifies the intrinsic

properties of a given system is enclosed in Q2
0.

The density-temperature phase diagram can be easily found by crossing of the

QR − φ transition lines of the phase diagram Fig. 3.9 with isochoric trajectories i.e.

∆n/∆n0 = const at fixed Q2
0. The behavior of such trajectories is showed in the left

panel of Fig. 3.11 and the resulting temperature dependent phase diagram is shown

in the right panel of Fig. 3.11. Upon increasing Q2
0, the maximum transition temper-

ature at n = nc decreases. The change of regime between SCDW and anharmonic

inhomogeneous state is expected on a tricritical line. It happens very close to the

maximum transition temperature for weak Q2
0 and progressively drops out by increas-

ing the Coulomb coupling. At strong couplings, nucleation of inhomogeneous states

is completely suppressed and the transition is always second-order like.
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3.4 A brief discussion of 2D systems

The discussion of an isotropic two-dimensional system subject to the 3D Coulomb

interaction is a generalization of 3D systems. In the strong-coupling regime it is easy

to recover that the second-order SCDW transition at the Gaussian instability line

Eq. (3.5) is preempted by a weakly first-order transition where ordered structures

appear. They present in the form inhomogeneities arranged in a triangular lattice

and are expected in the full range of global densities φ except at the critical SCDW

point φ = 0, QR = QR 0. We thus expect that the phase diagram will be qualitatively

similar to the 3D anisotropic case with two soft direction of Fig. 3.8.

The crossing between the energy of the homogeneous phase and the energy of

the inhomogeneous phase at the weakly first-order transition implies as a general

phenomenon an emergent tendency towards charge segregation since it leads to a cusp

singularity of the minimal free energy at the transition density. Thus striped state of

the homogeneous phase coexisting with the inhomogeneous state could appear. This

feature becomes particularly relevant in two-dimensional systems where we will show

[see Chapter 5] that near a cusp singularity, inhomogeneous state are stabilized no

matter how big the frustrating effects are.

Now we turn to the anisotropic case and look for the crossover from the SCDW

appearing at the Gaussian instability line and the anharmonic inhomogeneous states

generally expected at the weak-coupling regime. To obtain the latter change of regime,

as for the three-dimensional case, it is enough to retain only the contribution of the

first two-harmonics with wave-vectors k0 and k1 = 2k0. The free energy density

Eq. (3.7) comes out:
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(3.23)

The last term that encloses the effect of surface energy plus charging effect has a dif-

ferent power-law behavior with respect to the 3D case due to the different momentum

dependence of the Coulomb interaction. Notice also the period of the charge density

wave Rc is obtained as :

Rc =

[
2π2

Q2
R

]1/3

φ2
1 + 4φ2

2

φ2
1 +

φ2
2

2


1/3

(3.24)

Introducing the dimensionless parameter ε = [Q2
R/Q

2
R 0]

2/3
with εg given in terms

of QR g of Eq. (3.5) and assuming as done for the 3D case φ2 << φ1 from Eq. (3.23)

we get

δFII

V
' 3

8
φ4

1 + 3φφ2 φ
2
1 + (ε− εg)

(
φ2

1 + φ2
2

)
+

2

3
ε φ2

2 +O
(
φ6

1

)
where we have retained only term up to φ4

1. By minimizing with respect to φ2 ∝ φ2
1

we obtain an effective Landau theory in the density φ1 of the form Eq. (3.19). The

quadratic coefficient r becomes negative at the 2D Gaussian instability. Furthermore

the quartic coefficient turns out:

u4 =
3

8
− 27

8

1

ε
φ

2

It becomes negative for φ = 1/(2
√

3) predicting a tricritical point. Thus we can

anticipate that the phase diagram will look like the 3D one of Fig. 3.9.
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Finally we can conclude that pattern formation driven by a negative electronic

compressibility in 2D systems behaves similarly to the 3D case of Sec. 3.2. In Chapter

5 we will show that this similarity does not persists in systems with a cusp singularity

where the dimensionality plays a key role in Coulomb frustrated phase separation

phenomena.



Chapter 4

Surface energy in systems subject

to long-range Coulomb interactions

As emphasized in Chapter 2, in a weakly frustrated phase separated state, there

is a great separation between the typical domain size and the bare correlation length

ξ corresponding to the typical interface width. This allows for approximated sharp

interface treatment that are the most economical choice when attempting to analyze

the phenomenology of charge inhomogeneous states. Still, a precise computation of

the surface energy is needed to make quantitative comparison between the sharp-

interface treatment and the results of the exact models introduced in Chapter 2. So

far, it is not clear how to correctly define a surface tension in systems subject to

Coulomb forces due to the long-range nature of the interaction. Indeed, in previous

works the interface free energy was estimated taking into account only short-range

effects [32, 4]. In this chapter we will go beyond this approximation and will show

how to correctly define the surface energy of a system subject to the long-range

57



Chapter 4: Surface energy in systems subject to long-range Coulomb interactions 58

Coulomb interaction. We will restrict to analyze in detail three-dimensional systems

where the long-range force effect in the interface scale has a trasparent interpretation,

but our analysis could be also extended to two-dimensional systems. In Sec. 4, we

will review the Ginzburg-Landau theory of the surface tension for a flat domain wall

useful to compute the surface tension in ordinary macroscopic phase separation. Next,

starting from the latter theory we discuss how to define a surface tension in systems

with long-range Coulomb interaction in the flat interfaces case (Sec. 4.2) including

moreover finite curvature effects in Sec. 4.3. Finally in Sec. 4.4 we will show that the

simple Uniform-Density-Approximation introduced in Chapter 2 combined with the

previous analysis, turns out to make extremely accurate quantitative predictions in

all the weak-coupling regime.

4.1 Surface tension: the Ginzburg-Landau theory

Let us begin by considering the negative compressibility model defined in its dimen-

sionless form in Eq. (2.7) and solved in the previous chapter. By minimizing with

respect to the charge density profile, one obtains an Euler-Lagrange equation that to-

gether with the Poisson equation for the Coulomb interaction yields to the following

coupled equations :

2∇2φ+ 4φ− 4φ3 +QRψ + µ = 0 (4.1)

∇2ψ − 4πQR

[
φ− φ

]
= 0 (4.2)

where ψ is the dimensionless electrostatic potential and µ is a Lagrange multiplier

needed to ensure charge neutrality. Eq. (4.1) determines how the charge reacts to
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Figure 4.1: Schematic view of a particle moving in the double-well inverted external
potential in the z-time. The density φ indicates the coordinate in which the particle
moves.

the long-range potential while the Poisson equation determines how the long-range

potential is generated by the charge. They should be solved self-consistently in order

to obtain the charge density profile. Obviously, for QR = 0, one is left with the simple

Ginzburg-Landau equation:

2∇2φ+ 4φ− 4φ3 = 0 (4.3)

The latter equation leads to the two uniform symmetry-broken solutions φ = ±1

of zero energy corresponding to the phase-coexistence values in a macroscopically

phase-separated state. In a coexistence state, the φ-distribution is ruled by Eq. (4.3)

when appropriate boundary conditions are imposed. As an example, in a liquid-gas

system gravity determines the appropriate boundary conditions since it “pushes” the

liquid to occupy the lower end of a container leaving the gas phase on the top. It can

be easily found that at the boundary of the two phases, a thin region of ∼ 1 forms

where the substance is neither in one phase nor in the other phase but is somewhere

in between. Since in this region the spontaneous symmetry breaking is reduced, an

higher free energy then either phases is found. This represents the price the system
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has to pay to form a domain wall and is proportional to its area. The correspondent

free energy per unit area is called the surface tension σ.

For a flat interface perpendicular to a z-axis, the appropriate boundary conditions

of Eq. (4.3) for a spatially non uniform state read:

lim
z−→±∞

φ (z) = ±1 (4.4)

By considering the density φ as a spatial coordinate and z a time coordinate,

Eq. (4.3) can be interpreted as the equation of motion 2φ′′(z) = V ′(φ) of a classical

particle of m = 2 mass moving between the maxima φ = ±1 of a “inverted” double-

well external potential −V (φ) = − [φ2 − 1]
2

as schematically sketched in Fig. 4.1.

Since the potential is “time-independent”, the latter equation can be easily integrated

and one gets for the “velocity” of the particle φ′ (z) =
√
V (φ) + E, where E ≡ 0 for

the “velocity” of the particle to vanish at φ = ±1 (z = ±∞). It is thus simple to

show that the motion of the particle subject to the boundary condition Eq. (4.4) is

ruled by the equation:

φ (z) = tanh [z − zI ]

where zI in the particle motion language would corresponds to the time at which

the particle is in the minimum of the inverted potential whereas in the domain wall

language indicates the interface location. The behavior of the order parameter profile

is shown in the top panel of Fig. 4.2. The surface tension σ is then determined by

the free energy excess per unit area of the spatial non-uniform state and thus

σGL =

∫ ∞

−∞
dz

[(
dφ

dz

)2

+
(
φ2 − 1

)2]
=

∫ ∞

−∞
dzfI (z − zI) (4.5)
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Figure 4.2: The behavior of the order paramter profile (left panel) and the interface
free energy density fI (right panel) for a domain wall in the Ginzburg-Landau theory
of neutral systems.

where the terms in the square brackets indicates the φ4-model free energy functional

corresponding to the negative compressibility model Eq. (2.7) in absence of the long-

range Coulomb interaction. Finally fI indicates the interface energy density across the

interface and is shown in the bottom panel of Fig. 4.2. Two contributions determine

the interface energy density of Eq. (4.5). The first one comes from the spatial variation

of φ (“kinetic energy”). The other is due to the deviations of φ from the minima

(“potential” energy) . Both terms are equal in magnitude and one then obtains the

well-known surface tension σ = 8/3 of a phase-coexistence state in the Ginzburg-

Landau theory. Starting from the latter derivation of the surface tension in neutral

system, in the following section we will address a generalization to the case of systems

subject to long-range Coulomb interactions.
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4.2 Surface energy in charged systems

In charged systems, the order parameter profile is ruled by the coupled equations

Eqs. (4.1), (4.2) that can be regarded as a pair of reaction-diffusion equations[86, 87,

88, 89]. In the latter context it has been showed by singular-perturbation method

treatments [90, 91] that a strong separation of the typical length scales allows to

brake up the solution into an interface solution and a domain solution. The interface

solution varies on the length scale of order ∼ 1 and describes the variation of φ in the

vicinity of the domain interfaces whereas the domain solution varies on the length

scale ld of the characteristic size of the domains and describes variation of the order

parameter away from the interfaces. The great advantage of the latter separation of

the solutions is that the rapid variations of the interface solution near the domain

walls, could be integrated out to yield an effective interface free energy. Still, the

presence of the long-range Coulomb interaction, makes the definition of an interface

free energy a quite difficult job.

In a mesodomain state, domains walls coexist. Albeit this would lead to a system

of interacting interface solitons, the strong separation between the interface typical

width ξ and the typical domain size ld ensures that the domain walls would be far

apart. Thus in the following we will neglect short range interaction effects among

domain walls.

In the following, we will consider the flat interface case leaving a discussion of finite

curvature effects in the following section. We thus consider a mesoscopic cell of area

Σ and length Rc with two coexisting A-phase (φ < 0) and B-phase (φ > 0) layers. In

addition we will label φA and φB the equilibrium densities of the coexisting-phases
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away from their separating domain wall. This would represent the analog of the

boundary conditions Eq. (4.4) for system not subject to long-range forces, necessary

to fully determine the density profile. The presence of the “time-dependent” potential

ψ in Eq. (4.1) does not allow for an exact solution of the differential equation. Thus

we attempt a variational solution with a form for the density profile similar to the

one of the neutral case but with variational parameters:

φI (z) =
φB + φA

2
+

∆φ

2
tanh

(z − zI)

ξ̃
(4.6)

where ∆φ = φB − φA to satisfy the boundary conditions introduced above and ξ̃ is

the interface thickness in unit of the bare correlation length ξ that can be determined

variationally. We assume ξ̃ of order 1 to be much smaller than R̃c ∼ l̃d with R̃c = Rc/ξ.

Thus in the following we will neglect correction of the order e−Rc/ξ. Since charge

neutrality is needed to avoid a diverging Coulomb cost, we must impose the constraint:

1

Rc

∫ Rc

0

d zφI (z) = φ (4.7)

that fixes the parameter zI of Eq. (4.6) as a function of Rc, the two equilibrium

electronic densities φA,B and the background global density φ. To proceed further,

we will consider the case of three-dimensional systems where by means of the Poisson

equation for the dimensionless electric field:

∇ · E (z) = 4πQR

[
φ− φ(z)

]
(4.8)

we can eliminate the charge density in favor of the electric field in the non-local long-

range interaction term of the negative compressibility model Eq. (2.7). Therefore,

the dimensionless free energy of an inhomogeneous layered state reads:

Φ = A

∫ R̃c

0

dz |∇φ (z)|2 +
[
φ (z)2 − 1

]2
+
|E (z)|2

8π
(4.9)
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Figure 4.3 shows the different components of the free energy density across an

interface. The main difference respect to the short range case is that in the latter

the free energy density converges to the same constant in the two phases far from the

interface. Thus the energy of an interface can be represented as a constant plus the

energy localized at the interface without the need to determine precisely the position

of the interface. For example in Fig. 4.2 the surface energy is defined by the area

between the constant (zero) and the bell shape of fI . In the present case, the energy

density including the long-range Coulomb interaction is not even constant far form

the interface. Thus a sharp interface model needs to deal with a discontinuity of

the short range part of the free energy at the interface. This is a problem because

the difference in free energy between a step distribution and a smooth distribution

depends on the relative position between the two steps suggesting that the surface

energy is not well defined. We write the density profile of the sharp distributions as:

φS (z) =
φB + φA

2
+

∆φ

2
sign

(
z − R̃d

)
(4.10)

where R̃d fixes the domain wall location. The problem is how to fix R̃d respect to zI .

Fortunately a precise criterion exists because we must require that the long range part

of the energy is equal in the two descriptions. Thus we need to impose the equality

of the electric field far form the interface. This leads to

Rd ≡ zI

In Fig. 4.3 we show the electric fields for the sharp and the smooth distribution φI .

Notice the matching away from the interface. The above discussion leads to a surface
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Figure 4.3: (a): The sharp φS (green line) and the smooth φI (red line) interface dis-
tribution across a domain wall. The two equilibrium values away from the interfaces
have been chosen as φA = −0.8 and φB = 0.9. (b): The double-well potential profile
across a domain wall for the latter density distributions. (c): The gradient term free
energy contribution in the smooth interface distribution.(d) Behavior of the electric
fields EφI

(the red thick line) and E(φSH) (the green thick line) in unit of EI for
ν = 1−Rd/Rc = 0.3 and Rd = 10ξ′.
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tension for charged systems defined by the difference:

σ =

∫ ∞

−∞
dz |∇φI (z)|2 + [f (φI)− f (φSH)] +[

|EφI
(z)|2

8π
− |EφS

(z)|2

8π

]
(4.11)

where f(φ) = [φ2 − 1]2 and we have translated the z-axes by R̃d to fix the domain

wall at z = 0. Finally EφI
(EφS

) indicates the macroscopic electric field generated by

the interface distribution φI (φS) plus the fixed background φ.

The first two terms of Eq. (4.11) are analogous to the terms of Eq. (4.5) of the

Ginzburg-Landau theory. By computing the integrals in Eq. (4.11) we obtain the

density depend surface tension contribution:

σ′GL =
∆φ2

3ξ̃
+ ξ̃ g (φB, φA,∆φ) (4.12)

where the function g reads:

g (φB, φA,∆φ) = 2 log 2∆φ
(
φ3

A − φA − φ3
B − φB

)
+ ∆φ2 (2 log 2− 1)

(
−1 +

3

2
φ2

B +
3

2
φ2

A

)
+∆φ4

(
7

12
− log 2

)
For φA,B = ∓1, Eq. (4.12) reduces to the surface tension value for neutral systems

upon optimization with respect to the thickness ξ̃.

The third term of Eq. (4.11) represents the novel electrostatic contribution due

to the rounding of the cusp singularity of the sharp interface electric field when

accounting for the smooth interface distribution φI (x) [see panel (d) of Fig. 4.3].

The difference between the two charge distributions δφ = φI − φS can be accounted

by a dipole layer. By using the superposition principle for both the electric field

and the density distribution and introducing δE [see Fig. 4.4] as the electric field
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Figure 4.4: The electric field correction δE to the macroscopic electric field due to the
presence of the dipole layer at the interface for the same parameters of Fig. 4.3. For
convenience δE has been measured in unit of the sharp electric field at the interface
EφS

(0) = EI .

generated by the interface dipole layer, the electrostatic contribution to the surface

tension reads:

σE =

∫ ∞

−∞
dz

1

8π
|δE(z)|2 +

1

4π
[EφS

(z) · δE(z)] (4.13)

The first term represents the self-energy of the dipole layer appearing at the inter-

face whereas the second-term accounts for its interaction with the electric field at

the interface computed in the sharp interface approximation. The appearance of an

electrostatic contribution to the surface tension has been discussed in electron-hole

droplets in semiconductors [92, 93] and in two-components liquid of charged particles

[94]. In the latter systems, however, away from the interfaces the net charge density

goes to zero and the whole electrostatic contribution reduces to the self-energy of

the dipole layer. In the present case, the mismatch between the background density

and the electronic density at length scales much greater than the interface thickness

provide the additional contribution δE · EφS
due to the presence of a macroscopic

electric field.
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The electric fields appearing in Eq. (4.13) are straightforwardly found from Gauss

theorem:

EφS
(z) = 4π QR ν∆φ R̃d + 4π QR ν∆φ z − 4πQR∆φ z θ (z) (4.14)

δE (z) = −2πQR ∆φ ξ̃ f0

(
z

ξ̃

)
(4.15)

where θ, as usual, represents the unit step function, f0(y) = log 2 cosh y − |y| and

we have introduced the volume fraction of the B-phase ν = 1 − Rd/Rc. As shown

in Fig. 4.4 , the electric field δE is peaked at the interface with a broadening of

the ξ̃ order. By performing the integrals in Eq. (4.13), we obtain the electrostatic

contribution to the surface tension:

σE = −2πQ2
R(ξ̃)2∆φ2νRd

∫ ∞

−∞
f0(y)dy+π Q

2
R ∆φ2 (ξ̃)3

[
2

∫ ∞

0

yf0 (y) +
1

2

∫ ∞

−∞
f 2

0 (y)

]
(4.16)

where the first term comes out from the interaction between the dipole layer and the

“external” sharp local electric field at the interface EφS
(0) = EI . It can be regarded

as a dipole energy per unit area −p · EI/Σ once one introduces the dipole moment:

p =
1

2
QR∆φ(ξ̃)2Σ

∫ ∞

−∞
f0(y)dy (4.17)

The most important point is that the interface electric field EI grows linearly with the

domain size R̃d and thus the dipole energy above introduced grows with the volume of

the mesoscopic cell. This is a quite unexpected behavior since as discussed in Sec. 4.1

the energy that the system has to pay to create a domain wall is proportional to

its area in neutral systems. We can interpret this new behavior by considering that

the appearance of a long-range term represented by the macroscopic electric field

propagates interface effects to the system scale.
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It is also interesting to consider the dipole energy per unit volume that comes out:

−p · EI

V
= −2π Q2

R (ξ̃)2 ∆φ2 ν (1− ν)

∫ ∞

−∞
f0(y)dy (4.18)

Notice that in this form, the dipole energy term is independent on the geometrical

parameters Rd and Rc at the mesoscopic scale and takes the same form of a phase

separation energy gain depending upon the phase-separated state bulk properties.

We thus expect this term to appear also for more complicated domains with finite

curvatures as we will verify in the following section.

4.3 Finite curvature effects: the droplet case

Although the results of the previous section are rigorously valid for domain walls with

flat interfaces, a straightforward generalization to systems with nearly flat interfaces

can be addressed. In this section we will consider the case of spherical droplets that

in the weak coupling regime are expected to have a typical radius Rd >> ξ but

similar ideas could be applied to rod-like inhomogeneities and to more complicated

morphologies. The advantage of considering droplet-like domain is that the spherical

symmetry allows to restrict the calculation in the radial direction alone. In addition

in the nearly flat interface limit, one can assume the interface distribution to be again

described by Eq. (4.6)[32]. The total interface free energy then reads:

FI =

∫ R̃c

0

d3r |∇φI (r)|2 + [f (φI)− f (φS)] +[
|EφI

(z)|2

8π
− |EφS

(z)|2

8π

]
(4.19)

where R̃c indicates the radius of a neutral spherical cell in the Wigner-Seitz approxi-

mation [13, 58]. Finally the interface distributions φSH and φI are ruled respectively
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by Eqs. (4.10), (4.6) with z → r. As in the previous section, the relative position of

the interfaces in the two descriptions is determined by the matching of the electric

fields away from the interface. This fixes the domain wall location R̃d = Rd/ξ as:

R̃d = rI

[
1 +

π2

4

ξ̃2

R̃2
d

]1/3

(4.20)

where rI is the analogous of zI in the flat interface case. An exact computation of

the interface free energy Eq. (4.19) requires then numerical exploitation. Still, in

the nearly flat interface limit, we can expand Eq. (4.20) in power of ξ̃/R̃d since the

variational parameter ξ̃ ∼ 1. From Eq. (4.20) we thus obtain:

rI ∼ R̃d

[
1− π2

12

ξ̃2

R̃2
d

+ . . .

]
(4.21)

where the . . . indicate higher order terms in the expansion parameter. A similar

expansion is needed to provide the electric field correction δE to the macroscopic

sharp electric field. The leading order term is given by:

δE (r) = −2πQR∆φξ̃

r2
R̃2

df0

(
r − R̃d

ξ̃

)

where f0(y) = log 2 cosh y− |y| as found for the flat interface case. At this point, the

perturbative computation of the interface free energy requires quite lengthy but simple

algebra and we will only mention the different term then arises. The leading order is

represented by a dipole energy ∝ R̃3
d. As for the flat interface case it is due to the

interaction between the local sharp electric field at the interface EI = 4π/3QRν∆φR̃d

and the dipole electric field δE. As expected, the dipole energy per unit volume

−p · E/V assumes the same expression of Sec. 4.2. Similarly for the next-to leading

order term one finds a surface energy ∝ R̃2
d parameterized by the same short-range
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density dependent surface tension found in the previous section. Finally, the next-to

next-to subleading term turns out ∝ R̃d. It corresponds to a curvature energy, and

must be taken into account to extend the range of applicability of the weak-coupling

theory as we will show in the following section. The energy per unit volume comes

out:

ecur =
hc

(
φA, φB, φ

)
R2

c

(1− ν)1/3

where ν indicates the B-phase volume fraction and hc > 0. As found for the interface

free energy in electron-hole droplets [92], the curvature energy has positive sign and

represents an additional frustrating term to the phase-coexistence phenomenon.

4.4 The refined Uniform-Density-Approximation

The previous theory of the surface energy in charged systems allows to provide

a refined version of the weak coupling Uniform-Density-Approximation discussed in

Sec. 2.4 in the case of three-dimensional systems with a short-range negative com-

pressibility density region. By neglecting the curvature energy for rod-like and droplet

like inhomogeneities, the free energy of a phase separated state reads:

f̃ = νf̃ (φB) + (1− ν) f̃ (φA) + emix −
p · EI

V
(4.22)

where the last term indicates the dipole energy term whereas emix is the mixing en-

ergy due to the competition between short-range interface and long-range charging

effects. It can be again put as Eq. (2.19) but now the surface tension has an ex-

plicit density dependence and an electrostatic contribution. This refinement makes

the UDA an extremely powerful tool to describe the domain pattern formation phe-
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Figure 4.5: The first-order transition line separating the homogeneous phase from
layered inhomogeneities in the weak-coupling regime. The � points represent the
result of the numerical minimization method. The long-short dashed line is the result
for a UDA with the surface tension of the ordinary GL theory. Finally the dashed
line is the result of the refined UDA.

nomenon in the weak-coupling regime. In Fig. 4.5, we compare the transition lines

in the density-Coulomb coupling plane from the homogeneous phase to a layered mi-

croemulsion phase as obtained in the refined UDA (the dashed line) and in the direct

discrete numerical minimization of the model Eq. (2.7) (the � points) obtained in

Chapter 3. At very weak Coulomb couplings QR < 0.05, the transition line is cor-

rectly determined by neglecting the electrostatic contributions to the surface tension

and assuming the surface tension of the Ginzburg-Landau theory of neutral systems

(the short-long dashed line of Fig. 4.5). Still, by increasing QR the dipole energy term

and the explicitly density dependence of the surface tension start to cover a prominent

role and a huge discrepancy between the two versions of the UDA approximation is

observed. Remarkably the transition line in the refined UDA is practically identical

to the exact numerical result. It is obvious that for layered structures the refined

UDA has an extended range of applicability because of the exact computation of the
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Figure 4.6: First-order transition at weak coupling from homogeneous to droplet-like
domain phase. The � are the exact result of numerical minimization. The full line
is the result of the UDA computed at σ = σGL. The dashed line is the UDA with
interface effects neglecting curvature effects. Finally the dotted-dashed line is the
result taking also into account the curvature energy.

interface free energy. For non-flat domains, by increasing the Coulomb coupling the

curvature term must be at least included to correctly follow the transition line. In-

deed, by increasing the effect of the long-range interaction term, the typical domain

size Rd in the inhomogeneous phase decreases and the finite curvature effects become

important. This is shown in Fig. 4.6 where we report the first-order transition line to

droplet-like domains. Notice that also in this case, the UDA with a constant surface

tension breaks down at moderate Coulomb couplings showing again the importance

of charging effects in the surface energy.



Chapter 5

The cusp singularity model

As remarked in Chapter 2, charge inhomogeneous states are expected to appear with

local densities close to the minima of the double-well in the weak-coupling regime and

thus the behavior of systems with a cusp singularity is expected to be the same of

systems with a negative compressibility density region analyzed in Chapter 3. In the

strong coupling regime, instead, the local densities of the coexisting domains approach

the maximum of the double well and the specific form of the free energy becomes rel-

evant. In this chapter we will analyze the behavior of systems with a cusp singularity.

We will provide the complete phase diagram both in 2D (Sec. 5.2) and in 3D (Sec. 5.3)

for electronic systems undergoing a putative electronic first-order phase transition be-

tween two homogeneous phases discussing the interplay between the screening and

the size of the mixed states. We show the key role of the system dimensionality paying

particular attention to the striking behavior of two-dimensional systems that can be

even anticipated by means of the Uniform-Density-Approximation Sec. 5.1. Finally

in Sec. 5.4 we generalize the 2D behavior by discussing the charge density behavior in

74
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metallic-insulating striped phases. The results of Sec. 5.2, 5.3 appeared in Ref. [69]

whereas the analysis presented in Sec. 5.4 is a portion of Ref. [52].

5.1 The Uniform Density Approximation close to

a cusp singularity

Before analyzing the exact result of the model, we can invoke the Uniform-Density-

Approximation keeping in mind that in this case, since we are far from the Maxwell

construction limit, the results should be taken with a pinch of salt. Indeed we will

see that special care is needed in D = 2. We recall that the free energy density of a

phase coexistence state in the UDA can be put in dimensionless form as:

f̃ = (1− ν) f̃A (φA) + νf̃B (φB) +Q
2/D
R u(ν)δφ2/D (5.1)

where f̃A/B = (φ ± 1)2, δφ = φB − φA and ν indicates the volume fraction of the

B-phase domains. In the following, for simplicity we fix the global density at the

crossing point φ = 0 and look for the energetic stability of a striped (D = 2) or

layered (D = 3) mixed state. By symmetry ν = 1/2 and the free energy density

behaves as

δf = −|δφ|+ 1

4
δφ2 +Q

2/D
R u(1/2)δφ2/D (5.2)

The first term represents the phase separation energy gain, the second term is an

energetic cost due to compressibility effects and the last term is the UDA mixing

energy. The condition of stability of mixed states reads δf̃ < 0. In D = 3 the

last term is dominant at small δφ and combined with the linear term produces an
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Figure 5.1: Schematic view of the stability condition in the UDA approximation in
3D systems (left panel) and in 2D systems (right panel). The red full lines are for
QR < QR c whereas the green dashed lines indicates unstable inhomogeneous phases.

energetic barrier between the homogeneous state (δφ = 0) and the inhomogeneous

state (δφ 6= 0) [see left panel of Fig. 5.1]. The quadratic term ensures stability for

large δφ. Clearly the transition will be first order with a critical frustration QR,c =

√
27/[4u(1/2)]3/2 ∼ 0.7. We will show that, apart form small numerical corrections,

this result coincides with the exact solution. The different power dependence of the

phase separation energy gain and the mixing energy cost makes the UDA reliable.

For D = 2 there is a delicate balance between the first and the third terms in

Eq. (5.2) which are of the same order [see right panel of Fig. 5.1]. The transition

looks second order with QR,c = 1/u(1/2) ∼ 1.2. However, in this case, we are in a

marginal situation 1. It becomes clear by referring to a long-range interaction 1/rα

and looking for the energetic stability of a mixed state. The free energy density

behaves in this case as:

δf̃ = −|δφ|+ 1

4
δφ2 + Q̃

2/(3−α)
R δφ2/(3−α) (5.3)

1For a proof of the marginality in D-dimensional systems subject to a D − 1 dimensional inter-
action see Appendix D
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where we have inserted the mixing energy density dependence for general long-range

interactions. Two distinct behaviors than arises. For α > 1, the dominant term at

small δφ is the phase separation energy gain. No matter how big the frustration

degree is, there is an enough small δφ for which the mixed state becomes stable. On

the contrary for α < 1, we recover the behavior of 3D systems characterized by first-

order transitions with a critical frustration. To answer the question of which one of

the two latter behaviors the marginal Coulomb case will follow, one has to take into

account charge relaxation effects. Fortunately the model Eq. (2.9) is exactly solvable

for stripes and layered states that are the expected morphologies close to φ = 0.

5.2 The phase diagram of 2D systems

In this section, we consider the cusp singularity model whose Hamiltonian reads:

H̃1 = Σ +

∫
dDx[φ(x)− s(x)]2 +

Q2
R

2

∫
dDx

∫
dDx′

[
φ (x)− φ

] [
φ (x′)− φ

]
|x− x′|

(5.4)

where s = ±1 corresponds to a classical Ising spin and we are measuring lengths in

unit of the bare correlation length ξ. As emphasized in Chapter 3 an anisotropy of

the stiffness constant can favor certain orientations of the interfaces. In the following,

we will consider the case in which the modulation of the charge density is restricted

to only one “soft” direction. In this case, we will provide the full phase diagram to be

compared, for instance, with the anisotropic phase diagram found in Chapter 3. Still,

since layered and striped structures are the expected morphologies close to φ = 0

even in a isotropic system, we will be able to clarify the behavior of the system at

strong frustration .
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Since the Hamiltonian Eq. (5.4) is a quadratic function of φ, density fluctuations

can be easily integrated out to yield an effective model for the spin field alone. Indeed,

for each charge inhomogeneous state, the geometry of the domains defines s(x) and

its Fourier transform s(q). Uniform phases correspond to the ↑ and ↓ ferromagnetic

phases in s. Writing the energy in the Fourier space, the q = 0 component of the

Coulomb term is canceled to ensure charge neutrality. At q 6= 0, upon minimizing

with respect to the charge distribution, one gets:

2φ(q)− 2s(q) =
2D−1πQ2

R

|q|D−1
φ(q) (5.5)

Notice that for a fixed domain configuration s(r),

µ (r) ≡ 2φ(r)− 2s(r)

represents the local chemical potential and the electrostatic potential can be put as:

ψ (r) =

∫
dr′v (r− r′)φ (r′) .

with v (r) the Fourier transform of

v(q) ≡ 2D−1πQ2
R/|q|D−1,

as follows from Poisson equation in three and two-dimensional systems [see Appendix

A] in the presence of the 3D Coulomb interaction playing the role of the “effective”

Coulomb interaction. With these definitions Eq. (5.5) states that the local electro-

chemical potential is constant. The latter condition is the generalization to electronic

systems of the Maxwell condition for neutral fluids that is enforced by the constancy

of the local chemical potential across different phases.
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Figure 5.2: The phase diagram for the stripe solution in 2D. The ↑ and ↓ indicate the
uniform ferromagnetic phase. The central region corresponds to the mixed state (MS).
The thick line is the exact solution of the present model with finite compressibility,
the thin full line is the κ→∞ limit taking the short distance cutoff of Ref. [73] equal
to the present screening length ls. The dashed line is the UDA. The inset shows an
enlargement near the crossing density nc where the UDA predicts a critical value of
the frustrating parameter.

We can now use Eq. (5.5) to eliminate the charge degrees of freedom from the

energy and obtain an effective Hamiltonian depending upon the interface locations:

H̃eff
1 = Σ + V

[
φ

2
+ 1
]
− 2s0φ−

1

V

∑
q6=0

sqs−q

1 +
[
l̃D−1
s |q|D−1

]−1 (5.6)

where we introduced the dimensionless screening length l̃s defined by Eq. (2.15). The

first term in Eq. (5.6) is the surface energy of the sharp interfaces. The second and

third terms are the q = 0 contribution from the bulk free energy of the competing

phases. The last term comes from the q 6= 0 contribution of the last three terms of

Eq. (5.4) after eliminating the charge via Eq. (5.5) and represents an interaction term

between the coexisting domain walls. It takes the particularly simple form coming
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back in the real space:

−
∫ ∫

dxdx′ |∇s(x)|u (x− x′) |∇s(x′)|

where u(x) is an effective interaction that for a mixed state of alternating s = 1 (↑)

stripes of width 2Rd and s = −1 (↓) stripes of width 2(Rc −Rd) can be defined as:

u

(
x

R̃c

,
Rc

ls

)
≡ 1

2R̃c

∑
n6=0

ei qn xuqn qn ≡
πn

R̃c

with n running over nonzero integers, R̃c = Rc/ξ and for two-dimensional systems

uq ≡
1

|q|
(
1 + l̃s|q|

) . (5.7)

This effective interaction coincides in this case with an effective 3D screened Coulomb

interaction in two-dimensional electronic systems. From Eq. (5.6), the energy density

of a mixed state can be finally cast as:

f̃ = πQ2
R

ls
Rc

+ 1− 2φ (2ν − 1) + φ
2 − 8

ls
2Rc

[
u

(
0,
Rc

ls

)
− u

(
2ν,

Rc

ls

)]
(5.8)

where we introduced the volume fraction ν ≡ Rd/Rc of the s = 1 (↑) phase and we

have chosen to measure lengths in unit of the screening length ls. The dimensionless

free energy density, Eq. (5.8), depends upon QR, φ, ν and Rc/ls. Minimizing with

respect to the volume fraction ν and Rc/ls, we obtain the phase diagram in the

renormalized coupling-density plane shown in Fig. 5.2 with the thick lines. Increasing

the frustration, the region of stability of the uniform phases is increased. Noticeably,

there is no direct first-order transition between the two homogeneous phases no matter

how big the frustration is. Indeed the transition line is logarithmically singular at

φ = 0 and thus for large QR the mixed state is enclosed in the exponentially narrow
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Figure 5.3: Charge density modulation for a cut perpendicular to a stripe in 2D at
φ = 0 , Rd = Rc/2 and three different values of the screening length corresponding
to QR ∼ 0.2 (Rc = ls), QR ∼ 0.7 (Rc = 10ls) and QR ∼ 1.1 (Rc = 100ls). In the
case Rc/ls →∞ the charge density diverges at the boundary. A finite ls removes the
divergence.

range

|φ| < 2

π
e−[(πQR/2)2+1−γE ]. (5.9)

Here γE ∼ 0.57 indicates the Euler gamma constant. As frustration decreases, the

range of densities of the mixed state grows and converges to the Maxwell construction

range when QR → 0.

For high frustration the phase diagram of the exact model is well represented by

the “small” screening length limit i.e. Rc >> ls phase diagram (thin full line in

Fig. 5.2) where the free energy of a striped phase Eq. (5.8) takes the following simple

form:

f̃ = πQ2
R

ls
Rc

+ 1− 2φ (2ν − 1) + φ
2 − 8

ls
2πRc

[
γE + log

Rc

πls
+ log 2 sinπν

]
(5.10)

Remarkably, the striped phase free energy Eq. (5.10) coincides with the result ob-

tained by Jamei et al. [73] in the case of infinite compressible κ = ∞ phases provided
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Figure 5.4: Behavior of Rd (log scale) at the crossing density as a function of the
frustrating parameter. The thick line is the exact solution of the present model while
the thin line is the infinite compressibility limit [73]. The UDA is the dashed line.

one takes the short-distance cutoff, needed to avoid the singularity of the unscreened

effective interaction Eq. (5.7), equal to ls. This agreement is due to the fact that in

the highly frustrated regime, the physics is determined by the slow power-law relax-

ation of the charge (Fig. 5.3) far from the stripe boundary. In fact the stripe width

is much larger than the screening length and indeed behaves as (c.f. Fig. 5.4)

Rd =
Rc

2
∼ lse

(πQR/2)2+1−γE (5.11)

whereas the finite compressibility of the present model affects the charge only in a

range of order ls from the boundary. Its effect is to remove the unphysical divergence

of the charge density at the stripe boundary arising when ls = 0 (Fig. 5.3). On the

contrary, for low QR the stripe size is of the order of the screening length Rd ∼ lsQR

(Fig. 5.4) and the finite compressibility is relevant.

We have compared the exact solution with the uniform density approximation.

The phase diagram in this case is plotted in Fig. 5.2 with a dashed line. The UDA
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Figure 5.5: Behavior of the width (top panel) and periodicity (bottom panel) of ↑
stripes in 2D systems for different values of λ < 1. The dashed lines correspond to
the uniform density approximation whereas the full line is the exact solution. Notice
that the ↑ stripes are the minority phase for φ < 0 and the majority phase for φ > 0.

gives very accurate results in a wide range of the phase diagram except around the

crossing density, where it misses the logarithmic singularity since it predicts a critical

value QR c of the frustrating parameter (as anticipated in Sec. 5.1) and a first order

phase transition among the two homogeneous phases would occur (see the inset of

Fig. 5.2). Approaching QR c from below, the MS disappears with a divergent stripe

size (see Fig. 5.4) in contrast with the exact results where the MS persists with a

finite stripe size.

For QR < QR c, at the onset of the mixed state the UDA predicts a first-order

transition with the minority phase stripe size and the stripe periodicity that stay finite

(see Fig. 5.5). Taking into account the local dependence of the electronic density, the

jump in the periodicity of the stripes at the transition is substituted by a square root

divergence. Thus the uniform-mixed state transition is characterized by a finite value

of the minority phase stripe size and a divergent periodicity which corresponds to a

second-order transition. This situation is reminiscent of the transition in a type II
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superconductor as a function of field at Hc 1 , which according to Ginzburg-Landau

theory is second-order although normal state “drops” (the vortex core) have a finite

radius ξ [84].

Although the transition is second order like, for strong frustration, the effect of the

mixed state solution is to produce an exponentially small rounding of the singularities

in thermodynamic quantities quite hard to distinguish from a first order jump. On

the other hand, an important difference from a true first order transition is that the

latter shows hysteresis when driven at a finite rate whereas here hysteresis will be

absent due to the fact that the surface energy is effectively negative.

Apart from the singularity at the transition between the uniform phase and the

stripe phase, the behavior of the mixed state for not so large frustration is very well

represented by the UDA (Fig. 5.4, 5.5).

Now we discuss the thermodynamic stability. For finite QR the energy vs. density

has a negative curvature in the mixed state indicating a negative electronic com-

pressibility [c.f. Fig. 2.4]. For large QR, the short-range electronic compressibility

in the mixed state corresponds to the inverse of the second derivative of the highly

frustrated striped phase free energy Eq. (5.10) optimized with respect to ν and Rc/ls.

We thus get:

κ−1
MS = κ−1

e

1− e(π2Q2
R/4+1−γE)√

1− π2φ
2
/4 e2(π2Q2

R/4+1−γE)

 (5.12)

where κ−1
e = 2 indicates the homogeneous phase negative electronic short-range com-

pressibility in dimensionless form. The striped phase electronic compressibility neg-

atively diverges at the uniform-mixed state transition and is exponentially large and

negative for φ ∼ 0. A negative divergence of the compressibility with a 1/2 critical
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exponent also arises at the uniform-stripe transition for small frustration but with

a strength that vanishes when QR → 0. In the present model the background is

assumed to be incompressible (kb = 0) but real systems will have a small background

compressibility kb > 0 and the system will become unstable when the total inverse

compressibility k−1
b +k−1

e < 0. This will lead to a volume instability [29], substituting

the stripe transition with a volume collapse transition and reintroducing hysteresis

[95]. This is the most likely behavior to be found in real systems specially for large QR

where the electronic compressibility is large and negative in the whole mixed state

stability range. An incompressible background may seem unphysical according to

the above discussion. However in some cases a sufficient separation of energy scales

may avoid a volume instability if singularities in the compressibility are rounded by

extrinsic effects. For example in ruthanates and in the 2D electron gas the relevant

electronic phenomena occurs at temperatures below a tenth of a Kelvin to be com-

pared with melting temperatures of the material of the order of hundreds of Kelvin.

5.3 3D systems and the maximum size rule

In this section we discuss the case of three-dimensional systems. For weak frustra-

tion, the behavior of 3D systems is expected to be similar to the one of the negative

compressibility model for anisotropic systems analyzed in Chapter 3. From the effec-

tive Hamiltonian Eq. (5.6), it is simple to show that the dimensionless energy of a

layered mixed state is given by:

f̃ =
1

R̃c

+ 1− 2φ (2ν − 1) + φ
2 − 8

l̃2s

2R̃c

[
u
(
0, R̃c, l̃s

)
− u

(
2ν, R̃c, l̃s,

)]
(5.13)
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Figure 5.6: The phase diagram in the QR-dimensionless density plane for three-
dimensional systems. The thick lines correspond to the second-order transitions from
the homogeneous phase to the layered phase characterized by a divergent periodicity
and a finite minority phase layer size. The thin line represents the first order transition
between the two homogeneous phases that occurs for QR > QR c.

where the effective interaction u (q) is given by

u (q) = (1 + l2sq
2)−1.

Notice that the standard 3D screened Coulomb interaction is given by u (q) /q2.

The different nature of the screening in two- and three- dimensional systems affects

strongly the properties of the mixed state. At the crossing density φ = 0, the exact

expression for the energy density of a layered state is minimized for ν = Rd/Rc = 1/2

and takes the following simple form:

f̃ = 1 +
1

R̃c

[
1−

√
2√

πQR

tanh
Rc

2ls

]
(5.14)

The energy density of the uniform state is given by f̃ = 1, hence for a layered state

to be possible, the term in the brackets in Eq. (5.14) must become negative. This

condition is equivalent to the existence of a critical frustrating parameter QR c as it

was derived within the UDA and now showed in an exactly solvable model.
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in 3D (thick line) and 2D systems (dashed line).

The full exact 3D phase diagram for the layered state in the QR-density plane is

shown in Fig. 5.6. As expected, it is very similar to the one obtained within the UDA

in Refs. [29, 31]. The only difference is that in the UDA the uniform-inhomogeneous

transition resulted weakly first order whereas here it is second-order like due to a

divergence of Rc/Rd as in 2D.

The main difference with the 2D case is that the two second order transition lines

from the homogeneous phase to the mixed state touch each other at QR = QR c. For

QR > QR c the systems has no intermediate state between the uniform phases and a

direct first-order transition appears among them. In this case the cusp singularity at

φ = 0 which produces a Dirac function like negative divergence of the compressibility,

leads to a volume instability analogously to two-dimensional systems[29, 95].

Minimizing Eq. (5.14) respect to R̃c one finds that R̃c is smaller than a few screen-

ing lengths except in the unphysical case in which QR is fine-tuned exponentially close

to QR c. This is in contrast with the 2D case where Rc is unbounded for a generic
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Figure 5.8: Charge density modulation for a cut perpendicular to the layers in 3D
systems (thick line) and 2D systems (dashed line) at φ = 0 and a layer period Rc =
20ls.

large QR (Fig. 5.7).

This result is due to the different screening effect at strong frustration in three-

dimensions with respect to the 2D case. To illustrate this difference we plot in

Fig. 5.8, the charge density in 2D and 3D in a cut perpendicular to the stripe/layer for

Rc = 20ls. The electronic charge density behavior inside the domains is dramatically

different in 3D with respect to 2D. In the latter case, in fact, the charge density inside

one stripe decays with a power-law from the interface and the local electronic charge

density differs from the background density (i.e. n (x) 6= n) over the entire stripe

width. As emphasized in Chapter 2, the phase separation energy gain stems from the

regions where the local density n(x) is significantly different from the global n value.

Thus domains gain phase separation energy in all the region and there is no limitation

for their size. This also explains why the mixed state can appear independently on

how strong the frustration is.

In 3D the charge density decays exponentially from the interface over a distance
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of the order of the screening length. Thus the local electronic charge density and

the background density are substantially different only in a region of width ls around

the interface. For QR < QR c the phase separation energy gain from these regions

compensates the surface and Coulomb energy cost and makes inhomogeneities possi-

ble. Instead the central region in the 3D case of Fig. 5.8 produces an exponentially

small phase separation energy gain and therefore one never finds inhomogeneities with

Rc >> ls, as in the figure, unless QR is exponentially close to QR c. Indeed one can

check from Fig. 5.7 that this is the case for the present value of Rc/ls.

As a consequence, the system is forced to satisfy a “maximum size rule”[29, 31]

that states that for generic parameters, the inhomogeneities cannot have all linear

dimensions much larger than the 3D screening length l3D
s . This allows for arbitrary

large inhomogeneities in 2D since one of the dimensions is already smaller than l3D
s

as indeed found (Fig. 5.5).

The physics found in this section is not expected to change if the compressibility

of the phases is different unless one goes to the extreme case in which one the phases

is fully incompressible. The latter case will be analyzed in the following section

5.4 Charge relaxation in 2D metal-insulator striped

phases

Because of the importance of the different charge relaxation in 2D systems contrary

to 3D ones and the related “maximum” size rule, in this section we analyze the charge

density behavior in 2D striped states of a compressible and an incopressible (κ = 0)
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phase. This would correspond to a frustrated phase separation between a metallic

and an insulating phase as relevant for example in doped Mott insulators.

Since the insulator is incompressible and thus electrostatiaclly inactive, we must

consider only the excess density of mobile electrons counting from the insulating state.

Within this scenario, we are thus reduced to study the problem between a metallic

phase coexisting with voids.

Without loss of generality we can thus choose nA = 0 and fA = 0 respectively for

charge density and the free energy of the insulating phase [see Fig. 5.9].

Indicating with VB the B-phase domain volume of the compressible “metallic”

phase and with V the total system volume, the total free energy of a striped phase

can be put within a Local-Density-Approximation approach:

F =

∫
r εB

fB (nB (r)) d 2r + σΣA B +
1

2 ε0

∫∫
e2

|r1 − r2|

[nB (r1)− n] [nB (r2)− n] d 2r1d
2r2 (5.15)

where n is the global density, while ΣA B is the total interface surface. We still assume

a sharp interface due to short range forces with the parameter σ parameterizing the

surface energy. The constraint of charge neutrality of the system reads:∫
r εB

nB (r) d 2r = nV (5.16)

Obviously, by minimizing with respect to the local density we recover the electro-

chemical potential constancy equation:

µB (r)− e

ε0

φ (r) = µe ∀ r εB (5.17)

where φ (r) indicates the electrostatic potential generated by the charge distribution

[nB (r)− n]. This equation has to be solved together with the neutrality condition
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f
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Figure 5.9: Sketch of the free energies of the uniform metallic B-phase in the parabolic
approximation (red line) and the insulating A-phase (green line)

Eq. (5.16). Assuming for the metallic B-phase the following free energy expansion :

fB = µ0

(
nB − n0

B

)
+

1

2κ

(
nB − n0

B

)2
shown schematically in Fig. 5.9, one obtains an equation relating the local density to

the potential in terms of the compressibility:

nB (r)− n0
B = κB

[
e

ε0

φ (r)− (µ0 − µe)

]
∀ r εB (5.18)

or in terms of the screening length

φ (r)− ε0

e
(µ0 − µe) = 2πels

[
nB (r)− n0

B

]
∀ r εB (5.19)

In the limit of infinite compressibility i.e. zero screening length, the electrostatic

potential is constant on the metallic regions and therefore nB (r) corresponds to the

distribution of a metal for which the 3D Laplace equation ∇2φ = 0 is supplemented

by the boundary condition φ = const on the domains. In this limit, the problem can

be solved analytically for the stripes geometry. In fact, the Coulomb potential can
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Figure 5.10: The excess charge density profile nls=0
B (x′) /n − 1 in the direction per-

pendicular to the stripe for ν = 1/4. x′ is the component of r/Rd perpendicular to
the stripe.

be calculated by using the Schwarz-Christoffel conformal transformations [96] in this

case. The B-phase density spatial dependence comes out:

nlS=0
B (x′) = n

∣∣∣∣cos
πx′ν

2

∣∣∣∣√
sin2 πν

2
− sin2 πx

′ν

2

(5.20)

where x′ indicates the x component of the dimensionless coordinate r′ defined by

r′ = r/Rd. In Fig. (5.10) we show the spatial dependence of the excess charge

density nls=0
B (x′) /n− 1 in one unit cell.

Keeping in mind that the charge in the stripe region is undercompensated by the

background, one finds that at this level of approximation the metallic stripe behaves

as a macroscopic charged metallic strip. The density accumulates on the border of

the stripe and decays with the power law 1/
√
x towards the center. Thus one can

conclude that the power law charge relaxation in 2D has a general character and

depends upon the macroscopic electrostatics.

Of course the divergence of the electronic density at the surface of the stripe [see
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Fig. 5.10] is unphysical and will be cutoff by a microscopic length (see below) but

this does not affect the behavior of the charge far from the surface that is essential

for our argument.

To clarify this point, now we calculate the charge density profile for lS 6= 0 . The

unphysical divergence of the metallic density will be removed. We restrict to the

stripe geometry as above but the same method can be used for other geometries.

Using the superposition principle both charge and potential can be written as the

sum of the terms evaluated above for infinite compressibility (i.e. for ls = 0) plus a

correction, which we wish to compute:

φ (r) = φlS=0 (r) + δφ (r) (5.21)

nB (r) = nlS=0
B (r) + δnB (r) (5.22)

The correction δφ (r) satisfy the effective Poisson equation:

|q|δφ (q) = −2πeδnB(q) (5.23)

as follows from the effective 2D Poisson equation in momentum space. The unknown

Lagrange multiplier µe has to be determined by fulfilling the neutrality condition and

can also change as ls is increased from zero:

µe = µls=0
e + δµe.

Eq. (5.19) can be put as

δnB (r) =
1

2πe lS
δφ (r)− nlS=0

B (r) + ne

∀ r ε B (5.24)
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Figure 5.11: Left panel: Comparison between the electronic charge density at lS/Rd =
0 and lS/Rd = 0.03 evaluated at ν = 1 and n = 1. Right panel: Expansion near the
inhomogeneity surface.

where we have absorbed the Lagrange parameter in the constant ne = n0
B + ε0

2πe2ls
δµe.

In Fourier space we get:

δnB (q) =
1

2πe lSRc

∑
q′

δφ (q′)
sin [(q − q′)Rd]

(q − q′)

− nlS=0
B (q) + ne

2 sin(qRd)

q
. (5.25)

Eq. (5.23)and Eq.(5.25) are a closed system since the quantities with lS = 0 are

known from the previous treatment. In the case Rc, Rd >> lS one can substitute∑
q → 2Rc

∫
dq/(2π) and make the approximation:

2 sin [(q − q′)Rd]

(q − q′)
→ 2πδ (q − q′) . (5.26)

Using Eq. (5.23) we obtain:

δnB (q) =
2ne sin(qRd)/q − nlS=0

B (q)

1 + 1/(lS|q|)
(5.27)

In the limit q → 0 we obtain δnB → 0. The uniform component of the charge

does not change and therefore δµe = 0 and ne = nB
0 . We have evaluated the above
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expression via a discrete Fourier transform in the limit in which the stripes are far

apart (Rc/Rd → ∞ i.e. ν → 0). This corresponds to solve the problem for a single

stripe. The electronic density at lS = 0 can be put as:

nlS=0
B (x′) =

2n

πν

1√
1− (x′)2

In Fig. 5.11 we show the total electronic charge density for lS/Rd = 0.03. The main

difference with respect to the lS = 0 case is that the unphysical divergence of the

density at the stripe surface is removed and the density tends to a finite value at

the stripe boundary. Notice that at distances from the interface larger than lS the

charge density at lS 6= 0 practically coincides with the one at lS = 0 as expected. Our

previous conclusion regarding the absence of upper bounds for the size of the domains

remains unchanged. In the entire domain, the local density differs from the average

density and therefore the phase separation energy gain comes from the whole domain

and not from the electric field penetration depth as it happens in the 3D case.



Chapter 6

Anomalous dimensions of N = 4

SYM from the Hubbard model

The N = 4 super Yang-Mills (SYM) theory has a well-known duality to strings

in a AdS5 × S5 background. [100, 101, 102, 103, 104]. In particular, the anomalous

dimensions of long composite operators in the planar limit correspond to masses of

string states with large angular momentum. The calculation of anomalous dimensions

in specific sectors of the N = 4 theory can be cast in algebraic form by computing the

loop corrected dilatation operator [105]. At one-loop, the dilatation operator can be

identified with the Hamiltonian of the integrable XXX spin 1/2 lattice model [106].

As the loop order increases, the dilatation operator can be identified with the Hamil-

tonian of a spin chain with an increasing range of the spin interaction. Since the spin

model is nothing but the strong coupling expansion of an itinerant fermion model , it

has been proposed [107] the one-dimensional (twisted) Hubbard model hamiltonian

as the correct all loops dilatation operator of the N = 4 SYM. The analysis of the

96
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Hubbard states can be performed via the Lieb-Wu equations which encode integra-

bility (Sec. 6.1). We will explore these equations for the case of two particular states ,

the so-called antiferromagnetic state (AF) [108] (Sec. 6.2) and the folded-string state

(FS) (Sec. 6.3) [109]. A large portion of this chapter appeared in Refs. [110, 111].

6.1 The twisted Hubbard model

The correspondence between the Hamiltonian of a spin-chain model and the di-

latation operator of the N = 4 SYM allows for the knowledge of the anomalous

dimensions in the gauge theory. In the SU(2) sector, the Hubbard model should

predict at all loops and non-perturbatively the anomalous dimensions of gauge oper-

ators of fixed length L [107]. In the following we will consider an half-filled Hubbard

Hamiltonian :

H = H0 +

√
λ

4π
H1

where λ = g2
YMN indicates the ’t Hooft coupling, H0 contains the on-site Coulomb-

type interaction:

H0 = L−
L∑

i=1

n↑,i n↓,i, nσ,i = c†σ,i cσ,i

while H1 is the free fermion part:

H1 =
∑
σ=↑,↓

(
L−1∑
i=1

c†σ,i cσ,i+1 + eiφc†σ,L cσ,1

)
+ h.c.

The parameter φ = π/2 arises from an Aharonov-Bohm flux which is needed to repro-

duce the Bethe-Ansatz multiloop BDS equations [112] . In addition, the introduction
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of the twisting phase makes the Hamiltonian invariant under the shift:

cσ,j → eiφ/L cσ,j+1, j = 1, . . . , L− 1,

cσ,L → eiφ(L+1)/L cσ,1, (6.1)

and related transformations for annihilation operators. Information about composite

operators anomalous dimensions can be derived from the analysis of the full Hubbard

model spectrum. The coupling dependent spectrum flow has been evaluated numer-

ically through direct diagonalization method for lattices from L = 4 [113] to L = 8

[110] by considering only states with total spin zero and invariant under the shift

Eq.(6.1). The latter assumption reduces the Hilbert space. For example it has been

shown that in a half-filled L = 8 lattice the total dimension is reduced from 4900

to 226 [110]. Several crossings of the coupling dependent levels have been observed.

This apparent violation of the Wigner-Von Neumann non-crossing rule follows di-

rectly from nontrivial coupling dependent conservation laws and is a characteristic

signature of the one-dimensional Hubbard model quantum integrability [114].

Notice that the fermion Hubbard model introduces states with double occupancy

that do not have a direct correspondence with the gauge theory composite oper-

ators. Below, we will consider the coupling dependent behavior of states that at

λ = 0 reduces to states with no double occupancy, i.e. the states that have classical

anomalous dimensions ∆(λ = 0) = L (the perturbative multiplet in Ref [110]). Nev-

ertheless as the ’t Hooft coupling increases, these states will mix with all the extra

states with double occupancy. We assume an optimistic attitude, waiting for a better

understanding of the role of the Hubbard model.

The direct diagonalization method is clearly turning off for large dimensions of the



Chapter 6: Anomalous dimensions of N = 4 SYM from the Hubbard model 99

Hilbert space. Nevertheless it is possible to investigate longer composite operators

using the integrability of the one-dimensional Hubbard model shown in Ref.[115].

After working out the S-matrix, one needs to diagonalize the multi-particle system

by a nested Bethe Ansatz. The result of this procedure, generalized to the case with

the twisting phase, yields the following Lieb-Wu equations for an half-filled lattice:

L qn = 2π In + 2

L/2∑
j=1

tan−1

[
2(uj −

√
λ

2π
sin(qn + φ))

]
, (6.2)

2π Jk = 2

L/2∑
j=1

tan−1(uk − uj)− 2
L∑

m=1

tan−1

[
2(uk −

√
λ

2π
sin(qm + φ))

]
,

where φ ≡ π/(2L) and the In, Jk are the Bethe quantum numbers. The quantum

numbers qn are the Bethe momenta of the particles while the ui are the spin rapidities

(Bethe roots) and describe the spin state. At λ = 0, the Lieb-Wu equations simplify

since the equations for the momenta and the spin rapidities decouple and can be

solved successively. Together with this decoupling, there is a decoupling of the wave

function into a charge and a spin part that is determined by the Bethe Ansatz of a

Heisenberg spin chain. Once the spin rapidities of a particular state are determined

in the Heisenberg model, it is possible to follow the evolution as the ’t Hooft coupling

increases, and finally to determine the strong-coupling behavior of any state.

6.2 The AF operator

At λ = 0 the state with highest anomalous dimensions corresponds to the ground

state of the one-dimensional Heisenberg antiferromagnet. The Bethe-Ansatz solution

in the thermodynamic limit has been found by Hulthén in 1938 [116]. Instead, we

determine the Bethe roots for L finite and then follow the evolution as the ’t Hooft
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Figure 6.1: Asymptotic free fermion state for the AF operator at L = 20.

coupling increases by solving step by step the Lieb-Wu equations. From the knowledge

at every step of the Bethe momenta, we can determine the weak-strong coupling flow

of the anomalous dimensions for the antiferromagnetic operator. In particular by

determining the asymptotic free fermion state at strong coupling, we can provide a

series expansion in inverse powers of λ:

∆H
AF(λ, L) = a0(L)

√
λ+ a1(L) + a2(L)

1√
λ

+ . . . (6.3)

We find that the asymptotic free fermion state corresponds to the ground state of the

Hubbard hopping term shown in Fig.6.1. This is the state where all positive energy

levels are doubly occupied and thus we have:

|ψAF
0 〉 =

L−1∏
n=1

∏
σ=↑,↓

a†σ,pn
|0〉

where a†σ,pn
is the canonical creation operator in the momentum space. Since the

dispersion relation for the hopping term :

εn = 2 cos

(
2πn

L
+

π

2L

)
,
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we can easily obtain the function a0(L) of the expansion Eq.(6.3):

a0(L) =
1

2π
sin−1 π

2L

In addition, we can compute analytically a1(L) from first-order perturbation theory.

Expressing the Coulombian termH0 of the Hubbard hamiltonian in momentum space,

we obtain:

a1(L) ≡ 〈ψAF
0 |L− 1

L

∑
n,n′,m,m′

δ (n− n′ +m−m′) a†↑,na↑,n′a†↓,ma↓,m′|ψAF
0 〉

It is easy to verify that the latter expression reduces to:

a1(L) ≡ 〈ψAF
0 |L− 1

L

∑
n,m

a†↑,na↑,na
†
↓,ma↓,m|ψ

AF
0 〉 = L− 1

L

(
L

2

)2

=
3

4
L

Finally the next-to next-to leading order coefficient can be put as:

a2(L) = 2
√

2π δAF,L L

with δAF,L numerically evaluated for finite L ∈ 4N up to L = 32 (see Fig.6.2) It is

interesting to compare our expansion with the prediction of the AF state anomalous

dimensions calculated via the BDS multi-loops Bethe Ansatz equations. In this case

a series expansion in inverse power of L is available. Thus:

∆BDS
AF (λ, L) = b0(λ)L+ b1(λ) + b2(λ)

1

L
+ . . . (6.4)

The leading order coefficient corresponds to the solution of the BDS Bethe Ansatz in

the thermodynamic limit L→∞ [108]. It reads:

b0(λ) = 1 +

√
λ

π
f

(
π√
λ

)
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Figure 6.2: Behavior of the next-to subleading term coefficient at strong coupling and
finite L ∈ 4N.

where

f(x) =

∫ ∞

0

dk

k

J0(k) J1(k)

1 + e2 k x
,

and the Jν(x) are the Bessel functions of the first kind. In order to obtain the next-

to and the next-to next-to leading order of the expansion Eq.(6.4), one has to take

into account finite size correction to the thermodynamic limit. It has been showed

[117, 111] that the subleading order

b1(λ) ≡ 0

whereas the next-to subleading order coefficient results:

b2(λ) =

√
λ

12

I1

(√
λ

2

)
I0

(√
λ

2

) ,
where Iν(x) are the modified Bessel functions of the first kind. We can match the

two expressions in the double limit λ, L→∞. Within the Hubbard formulation, the

anomalous dimensions Eq.(6.3) can be expanded at large L to obtain:

∆H
AF =

[
L

π2
+

1

24L
+ o

(
1

L

)]√
λ+

3

4
L+ (δAF,∞ + . . .)

2
√

2π√
λ

L (6.5)
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where the coefficient δAF,∞ ∼ 0.0240(1) has been found from a simple polynomial

extrapolation of δAF,L. On the other hand, the BDS prediction can be computed in

the strong coupling limit. The subleading order coefficient can be expanded asymp-

totically as [118]:

f(x) =
1

π
− x

4
+

N∑
m=1

µmx
2m +O(x2N+2),

where

µm =
(2m− 1)(22m+1 − 1) [(2m− 3)!!]3

23m−1(m− 1)!

ζ(2m+ 1)

π2m+1
, (−1)!! ≡ 1.

and ζ is the Riemann zeta function. In addition, it is easy to verify that the asymptotic

value of the next-to subleading order coefficient is given simply by:

b2 (λ→∞) =

√
λ

12

Inserting the latter expansions in Eq.(6.4), we find that the two Ansatz have a perfect

matching in the terms ∝ L but a discrepancy of a factor 2 arises in the term
√
λ/L.

This shows that only in the thermodynamic limit, the two different approaches give

the same results. The discrepancy in the finite size term may be due both to the

uncontrolled effect of the wrapping interactions which start to contribute at the per-

turbation order o(λL) in the BDS description and to the different order of limits

λ, L → ∞. More interestingly the leading behavior at strong coupling in both de-

scriptions of the anomalous dimensions scales as λ1/2. It seems difficult to recover the

generic Gubser-Klebanov-Polyakov (GKP) law [104]:

∆ ∼ 2
√
nλ1/4

It has been thus proposed to identify the dual string state of the antiferromagnetic

state with slow-moving string solutions [119] that have the same scaling behavior.
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However such string states scale as:

∆ ∼
√
λL

This implies that the string solution has a numerical discrepancy 1/π2 in the numerical

prefactor with the dual gauge operator. Along a different route, one can start from

the classical string theory at large λ and derive string Bethe Ansatz equations which

are expected to match string calculations including leading quantum corrections. The

latter approach has been recently studied and the leading behavior at large λ for the

antiferromagnetic operator has been shown to reproduce the GKP law.

6.3 The FS state

It is well known that Bethe solution of the Heisenberg antiferromagnet admits the

existence of states with spin rapidities that acquire an imaginary part. In this case

the Bethe wave function is made up of plane waves with complex wave vector. These

states are usually named ‘Bethe string solution’ and can be identified with quantum

Bloch wall state [120, 121]. We consider the state with complex spin rapidities that

corresponds to the state with lowest anomalous dimensions in the perturbative mul-

tiplet i.e. the lightest state. For this state, it has been shown that the Bethe roots

(the spin rapidities) condense in the thermodynamic limit in two symmetrical curves

in the complex plane [122] and it is thus named the double contour solution. Its string

state dual is nothing but the folded string state described in Ref.[109]

As for the antiferromagnetic operator, we determine at g = 0 the spin rapidities

considering lattices with L = 12, 20 and determined step by step the evolution at
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Figure 6.3: Free fermion state for the FS. The modes n = ±8 are empty. We show
only a particular spin configuration for the singly occupied levels.

strong coupling of ui as well as of the Bethe momenta qn. For both lattices we find

that in the limit g → ∞, the Bethe momenta flow to a state, shown in Fig.(6.3),

where the positive energy levels with mode numbers n = k, L − k − 1 are doubly

occupied and the negative mirror levels are empties. The other positive levels are

singly occupied as well as their negative mirror levels, thus they do not contribute

to the leading term of the state energy. Since the results are completely identical for

the two lattices we conjecture that for all L = 4(2k+ 1) the pattern will be identical.

From the dispersion relation for the hopping term of the Hamiltonian the leading

term of the anomalous dimensions at strong coupling results:

∆0
FS(λ, L) =

√
2

π
cos

π

2L

√
λ (6.6)

The next-to leading term is computed from perturbation theory. It is easy to verify

that the non-vanishing matrix elements of 〈ψFS
0 |H0|ψFS

0 〉 can be cast as:

∆1
FS(g, L) = 〈ψFS

0 |L− 1

L

∑
n,m

a†↑,na↑,na
†
↓,ma↓,m − 1

L

∑
n,m

a†↑,na↑,ma
†
↓,ma↓,n|ψ

FS
0 〉 (6.7)
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The first two terms have been computed for the AF operator. The third term, contrary

is a spin-flip that gives non zero contribution only between singly occupied mirror

levels. Thus we have:

∆1
FS(g, L) = L− 1

L

[(
L

2

)2

+

(
L

2
− 2

) ]
(6.8)

Finally the series expansion for the folded string anomalous dimensions can be put

as:

∆FS(g, L) =

√
2

π
cos

π

2L

√
λ+

3L2 − 2L+ 8

4L
+ δλ,L

2
√

2π√
λ

L+ · · · , (6.9)

Similarly to the antiferromagnetic state, the next-to next-to leading order coefficient

δλ,L can be computed from the numerical exploration of the Lieb-Wu equation. We

find:

δλ,12 = 0.597(1)

δλ,20 = 0.953(1)

Similarly to the AF state, a different scaling behavior in λ is expected in the string

side [123, 111]. This feature suggests that it seems dangerous to rely on the gauge

Bethe Ansatz equations to estimate the strong coupling limit of general states.



Chapter 7

Conclusions

In this thesis, we analyzed the main aspects of frustrated phase separation in

charged systems considering two kind of compressibility anomalies that generally

occur in strongly correlated systems. For the different coarse-grained models that have

been introduced, the outcome of long-range forces can be measured by a dimensionless

parameter that defines the amount of frustrating effects. Frustration tends to reduce

the range of density where a mixed state appears. Thus uniform phases are possible

at densities where, in the absence of long-range forces, phase separation would occur.

This situation is in accord with capacitive measurements [48, 49] in the uniform two-

dimensional electron gas that have revealed the stability of a homogeneous phase with

negative compressibility.

In the presence of frustration, the mixed state consists of domains of mesoscopic

size with various structures depending on the control parameters. A sequence of

morphological transitions occurs resembling the evolution of domain patterns in other

systems [1, 4].

107



Chapter 7: Conclusions 108

When frustrating effects are a small perturbation upon the phase separation mech-

anism, a universal picture of frustrated phase separation can be achieved. We have

shown that the properties of frustrated phase separated states can be captured by a

simple approximation in which the density inside the domains is assumed constant.

It gives very accurate results once the effect of the long-range Coulomb interaction

upon interface effects is considered. We have shown that this can be easily reached

in three-dimensional systems. The price to pay is that new long-range terms appear

due to the interaction of the field at the interface with the dipole layer. However the

new term is tractable leading to a useful theory.

Upon increasing frustrating effects, the situation is more complex and the prop-

erties of mixed states strongly depends upon the particular form of the free energy.

Thus, the two compressibility anomalies represent two different universality classes.

In systems with a cusp singularity, we found the system dimensionality to play a

key role in frustrated phase separation. Two-dimensional systems display a prominent

tendency towards charge inhomogeneous states. No matter how strong the frustrat-

ing effects are, an inhomogeneous state always preempts a direct first-order transition

between two homogeneous phases in accord with Ref.[73]. This result is due to the

macroscopic electrostatic of two-dimensional systems that allows for a charge imbal-

ance in all the domain size. The system gain phase separation energy in the entire

region leading to arbitrary large domains. An opposite feature is instead expected

in three-dimensional systems. Screening effects are dominant and the typical domain

size is bounded by the screening length.

The computation in the exactly solvable model of Chapter 5 confirms the “maxi-
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mum” size rule [29] that states that inhomogeneities cannot have all linear dimensions

much larger than the three-dimensional screening length l3D
s independently of the

frustration degree. Therefore mesoscopic domains can be expected in systems with

small compressibility as bad metals or systems close to metal-insulator transitions

or systems with very anisotropic electronic properties which makes them effectively

two-dimensional (i.e. are nearly insulating in one direction).

Systems with a short-range negative electronic compressibility represent a differ-

ent universality class. A critical value of the frustration QR 0 exists for both two-

and three-dimensional systems. Close to QR 0, the inhomogeneous state are gener-

ally expected as sinuisoidal charge density waves occurring at a charge susceptibility

divergence. We have found that an isotropic system never reaches the Gaussian insta-

bility line except for a critical point. The second-order phase transition to sinuisoidal

charge density waves is always preempted by a first-order phase transition to ordered

structures. Using an approach similar to the mean-field theory of the liquid-crystal

theory [83] we were able to determine the competition between all the expected struc-

tures close to the critical point. The inhomogeneous states appears in the form of

a BCC crystal near QR 0 which is followed by a triangular lattice of inhomogeneities

reminiscent of the Abrikosov vortex lattice in type II superconductors above the lower

magnetic critical field Hc1 . A subsequent morphological transition can lead to a lay-

ered state corresponding to a smectic electronic liquid phase [41]. More complicated

structures as an icosahedral quasicrystal have been found to never become favorable.

At weak couplings, the same structures above discussed appear but in this case they

present in the form of sharply defined droplet, rods, and layered inhomogeneities.
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In solid-state systems an anisotropy in the underlying crystal field can favor cer-

tain orientations of the interfaces that, in turn, can change dramatically the nature

of the transition to mixed states. Indeed it can become second order with a tri-

critical point separating the second-order transition line at strong coupling from the

first-order transition line at weak coupling. This is important for theories of metal-

lic systems where the existence of a second order quantum critical point separating

an homogeneous phase from an inhomogeneous one, can destroy the Fermi liquid

behavior [16].

In two dimensional systems, the phase diagram resembles the phase diagram of an

anisotropic three-dimensional system. However, for a truly two-dimensional system,

a new effect will arise. Indeed, close to the transition from the homogeneous phase

to the inhomogeneous one, a new state is expected to appear. It will be formed

by stripes which have inside smaller inhomogeneities alternated with homogeneous

stripes.

Charge inhomogeneities seems to be related to a number of interesting phenomena

in systems as colossal magnetoresistance manganites, high-temperature superconduc-

tors and other strongly correlated materials. As discussed in the Introduction, the

situation in manganites is quite complex. In layered cuprates one finds striped charge

and spin density waves at small doping and a Fermi liquid at large doping. From the

behavior of the mean-field energy[37], it is quite natural to expect phase separation

among the stripe state and the overdoped Fermi liquid crossing at some density. To

make a rough estimate of the typical size of the domains, we identify the stripe state

as the pseudogap phase. If we assume that the surface energy is of order σ ∼ J/a,
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with J the superexchange constant and a the lattice constant, the typical size of the

domains can be written as [c.f. Chapter2]:

ld ∼
a

∆x

(
ε0aJ

2a0Ry

)
where a0 is the Bohr radius, ∆x ∼ 0.1 is the range of doping where one expects phase

separation according to Maxwell construction. Using J = 0.01Ry, a = 7.2a0, ε0 = 5,

one gets 2Rd ∼ 8a ∼ 30Å which compares well with the inhomogeneities found in

Ref.[21]. Although several indirect manifestation of mesoscopic phase separation are

evident in the literature as discussed in the Introduction, it has been difficult to make

more detailed comparison with experiments. This is mainly because specific probes

of the electronic distribution in the bulk are lacking. Thus one can infer the effects of

mesoscopic phase separation only indirectly by what happens in the surface and by

the anomalous response (often gigantic) to external fields. We hope that our study

stimulates further experimental and theoretical work in this regard.



Appendix A

Effective Poisson equation in

two-dimensional systems

In this appendix, we derive the effective Poisson equation in two-dimensional systems

subject to the three-dimensional Coulomb interaction. Let us begin by considering

the three-dimensional Poisson equation

∇2ψ3D (r, z) = −4πQR

[
φ(z)− φ (r, z)

]
(A.1)

where r is a two-dimensional vector in the plane of the system while z measures the

distance from the plane. In order to keep the notation consistent, we are referring

here to the renormalized Coulomb coupling QR and the dimensionless charge density

φ. Finally the dimensionless electrostatic potential ψ3D is defined as:

ψ3D(r, z) = QR

∫ [
φ(z′)− φ(r, z′)

][
(r− r′)2 + (z − z′)2]

The 3D charge density can be defined as φ(z) − φ (r, z) =
[
φ− φ(r)

]
δ (z) with

φ(r) the 2D in plane electronic charge density and φ its average value. To solve
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Eq.(A.1), we perform a partial Fourier transform in the plane coordinates and define

the Fourier decomposition of the charge density as:

φ3D (r, z) =
1

V

∑
k

eik·r φ3D (k, z) (A.2)

where the k = 0 term φ3D (k, z) = φ(z) to fulfill neutrality of the system. A similar

Fourier decomposition holds for the electrostatic potential. By restricting to one-

dimensional charge modulation, the Poisson equation is then:

∂2ψ3D (k, z)

∂z2
− k2ψ3D (k, z) = +4πQRφ(k)δ (z) k 6= 0 (A.3)

with φ(k) defined as the Fourier transform of the in plane electronic charge density

For z 6= 0 the solution for the potential is ψ3D (k, z) = ψ3D(k, 0)e−|k||z|. Integrating

Eq. (A.3) in a small interval around z = 0, one obtains the boundary condition:

|k|ψ(k) = −2πQRφ(k) (A.4)

with the Fourier transform of the in-plane electrostatic Coulomb potential defined

as ψ(k) ≡ ψ3D (k, 0). This 3D boundary condition Eq. (A.4) corresponds to the

effective 2D Poisson equation. It is also interesting to compare the effective 2D

Poisson equation in momentum space with the 3D analog. In three-dimensional

systems, the momentum space version of the Poisson equation easily reads ψ(k) =

−4πQRφ(k)/|k|2 at finite momentum, thus one can conclude that for D = 2, 3:

ψ(k) = −2D−1πQR

|k|D−1
φ(k) (A.5)



Appendix B

Mixing energy in the Uniform

Density Approximation

In this appendix, we compute the morphological dependence of the mixing energy

Eq.(2.19) in two- and three-dimensional systems subject to the three-dimensional

Coulomb interaction. In the following, we will limit to explicitly consider cylindrical

rods in 3D and disk in 2D but the method can be used for the other relevant geometries

addressed in Chapter[3].

• Three-dimensional systems

We assume cylindrical rods of radius R̃d in unit of ξ and height H̃ with charge density

φB of the B-phase embedded in a homogeneous matrix of the A-phase at charge

density φA. Within the Wigner-Seitz-Approximation, we can divide the system in

neutral cylindrical cells of volume πR̃2
ch = V/Nr with V the system volume and Nr

the number of rods. Finally R̃c is the radius of the cell in unit of the bare correlation

length ξ. Next we compute the electrostatic energy. The cells are globally neutral
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by construction and only the charge density inside the cell contributes to the electric

field in the cell. For the purpose of computing the electrostatic energy, it is convenient

to consider an electronic charge density δφ = φB − φA inside the cylindrical rod and

a background in the entire cell of positive charge density φ − φA. We will call the

former “rod” contribution and the latter “background” contribution.

The total electric field inside the cell can be written as E = Er + Eb where b(r)

refers to the background (rod) contributions that are related to the charge densities

by the dimensionless Poisson equation for the electric field

∇ · Er (r) = −4πQRδφ

∇ · Eb (r) = 4πQR

[
φ− φA

]
Obviously the electric fields depend only upon the radial direction due to the cylin-

drical symmetry. Integrating the square of the electric field inside one cell, we obtain

three different contributions to the electrostatic energy Flr = Fd + Fb + Fd−b, with

Fd =
1

8π

∫
d2rEd(r)

and a similar equation for the background contribution Fb. Finally the interaction

energy can be put as:

Fd−b =
1

4π

∫
d2rEr · Eb

The electric fields can be easily evaluated with Gauss theorem. The total electrostatic

energy per unit cell volume can be finally put as:

flr = −δφ2R̃2
c

[
−πν2 log

√
ν − π

2
ν2 +

π

2
ν3
]

where we have eliminated R̃d =
√
νR̃c and the “background” charge density φ−φA =

νδφ to ensure charge neutrality.
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The total surface energy is given by:

fσ = 2πR̃2
dh
Nr

V
=

2
√
ν

R̃c

By optimizing with respect to the cell radius Rc, one finally obtains the mixing energy

in the form Eq.(2.19) with the function u (ν) given by:

u (ν) = 3ν1/3
[
−πν2 log

√
ν − π

2
ν2 +

π

2
ν3
]1/3

mentioned in Chapter[3]. With the same methods discussed above, it is possible to

easily compute u (ν) also for droplets-like inhomogeneities and alternating layers. A

detailed derivation has been provided in Ref.[29]

• Two-dimensional systems

In the evaluation of the electrostatic energy in two-dimensional systems with the full

3D Coulomb interaction, Gauss theorem is not useful and one should in principle

compute the Coulomb potential ψ generated by the inhomogeneities of all neutral

Wigner-Seitz cells and the electrostatic potential generated by the whole background

charge density. The latter corresponds to the Coulomb potential of an infinite uni-

formly charged plane and can be taken as constant in the plane. Because of the

global neutrality, the value of the constant does not affect the electrostatic energy

and can be put to zero. The inhomogeneity Coulomb potential is the sum of the

N contributions from each cell. It is easy to show that one can separate the total

electrostatic energy in a self-energy contribution (fΣ
lr ) and an interaction contribution

among different inhomogeneities f int
lr . For disks inhomogeneities of size R̃d in unit

of ξ, the latter contribution can be easily found in the limit in which the domains
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are far apart i.e. R̃d << R̃c, with R̃c representing, analogously to three-dimensional

systems, the radius of the neutral circular cell. Indeed the disks can be considered

as negative point charges at distances R̃c and will arrange in a Wigner crystal. The

electrostatic energy is given by:[77]

F int
lr ∝ −α

[
QR R̃

2
d δφ

2
]2

R̃c

(B.1)

Since ν = R̃2
d/R̃

2
c for the disk geometry and referring to the energy per unit volume

one has:

f int
lr ∝ −Q2

Rδφ
2R̃c αν

2 (B.2)

The Coulomb self-energy of a cell of radius R̃d can be evaluated noticing that the cell

charge density can be written in the Fourier space as [97]:

δφ (k) = 2πδφR̃2
d

J1

(
kR̃d

)
kR̃d

−
J1

(
kR̃c

)
kR̃c


The electrostatic energy per unit volume is then:

fΣ
lr =

Q2
R

2π R̃2
c

∫
d2k

(2π)2 δφ(k)2 2π

k

Computing the coulombic self-energy per unit volume in the Fourier-space one ob-

tains:

fΣ
lr = Q2

Rδφ
2R̃c

8

3

[
ν

3
2 + o

(
ν2
)]

(B.3)

where we have kept the dominant contribution when ν → 0 (R̃d << R̃c). Comparing

with Eq. (B.2), we see that in this limit, the self-energy term dominates the electro-

static energy and the intercell interaction can be neglected. Since the surface energy

for a disk is given by:

fσ =
2
√
ν

R̃c



Appendix B: Mixing energy in the Uniform Density Approximation 118

the geometrical factor of the mixing energy is readily found as:

u (ν) =
8√
3
ν

The evaluation of the latter function for stripes inhomogeneities is more complicated

and requires a numerical analysis that has been provided in Ref.[52, 53]. Here we

would notice that at enough low volume fractions the intercell interaction can be

neglected and the mixing energy is again well represented by considering the self-

energy of an isolated stripe.



Appendix C

Negative compressibility model in

the weak-coupling limit

In Chapter 2, we emphasized that for weak frustration a universal picture can be

achieved since the negative compressibility model Eq.(2.7) is formally equivalent to

the cusp singularity model once the free energy of the homogeneous phases are ex-

panded quadratically around the two dimensionless densities of the ordinary Maxwell

construction. In this appendix we study the validity of the latter expansion. Since

for QR << 1, there is a strong separation between the typical domain size ld and the

bare correlation length ξ, in the following we will refer to a sharp-interface version of

the model Eq. (2.7) that can be put as:

H̃SH
2 = σΣ +

∫
dx
[
φ2 (x)− 1

]2
+
Q2

R

2

∫
dx′
[
φ(x)− φ

] [
φ(x′)− φ

]
|x− x′|

(C.1)

where σ represents the short-range surface tension of an isolated domain wall. A

straightforward minimization of Eq. (C.1) with respect to the dimensionless charge
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density profile provide the electrochemical constancy equation:

−4φ (x) + 4φ (x)3 −QRψ(x) = µ (C.2)

where we defined the dimensionless electrostatic potential

ψ(x) = QR

∫
dx′
[
φ− φ(x′)

]
|x− x′|

and µ is a global chemical potential representing a Lagrange multiplier needed to en-

sure charge neutrality. To provide an approximated solution of Eq. (C.2), it is conve-

nient to brake up the dimensionless density profile φ(x) as a distribution φMC(x) = ±1

corresponding to the Maxwell construction plus a correction δφ(x) which we wish to

compute. Linearizing the cubic term of the chemical potential, one obtains the simple

equation:

δφ(x) = κRQRψ(x)− µ (C.3)

where κRQR is basically the coefficient of the linear response for the local theory [32].

κR corresponds to the short-range electronic compressibility in dimensionless units

evaluated at the Maxwell construction density κR = 1/8 reflecting the fact that the

linearization in the chemical potential would correspond to a quadratical expansion

of the homogeneous phase free energy around the minima of the double-well.

Eq. (C.3) must be solved together with the Poisson equation for the dimensionless

electrostatic potential:

∇2ψ (x) = 4πQR

[
φ (x)− φ

]
(C.4)

A solution of Eq. (C.3) in D-dimensional systems subject to a D-dimensional

interaction has been proposed by Muratov [32]. Here both 3D and 2D systems em-

bedded in a 3D-Coulomb interaction will be considered. For simplicity we look for a
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Figure C.1: Behavior of the correction to the Maxwell density profile φMC for QR ∼
0.02. The dashed blue line is for 3D systems for which ls ∼ 2ld. The red full line
indicates the behavior for two-dimensional systems for which the domain size turns
out to be ld ∼ ls/28.

layered in 3D and a striped in 2D charge inhomogeneous state and assume the two

coexisting phases to have an equal size region that we fix as the typical domain size

l̃d defined in Chapter [2]. We thus define the Fourier decomposition of the charge

density as:

δφ(x) =
1

2l̃d

∑
kn

ei kn xδφkn kn =
πn

l̃d
(C.5)

where we recall that lengths are measured in unit of the bare correlation length ξ. In

Fourier space the k = 0 component in the electrostatic potential can make to vanish

by a proper choice of the origin of the potential. At finite momenta it is determined

by the “effective” Poisson equation in 2D [see Appendix A ] and 3D and reads:

ψ(kn) = −2D−1πQR

|kn|D−1
φ(kn)
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Finally, one obtains the following momentum space version of Eq. (C.4):

δφ(kn) =
−φMC(kn)

1 + 2l̃D−1
s |qn|D−1

(C.6)

where we have inserted the screening length definition in systems with a negative

compressibility Eq. (2.16).

In Fig. C.1, we show the correction to the Maxwell density profile at a Coulomb

coupling QR ∼ 0.02. For both two- and three-dimensional systems δφ << 1 that jus-

tifies the linearization of the chemical potential. By requiring δφ < 0.5×10−2φMC , we

find that the approximation is very accurate for QR ∼ 0.21 in two-dimensional sys-

tems (ld ∼ ls/3) and QR ∼ 0.18 in three-dimensional systems (ld ∼ ls), thus making

the phenomenology of inhomogeneous states in systems with a negative compressibil-

ity density region practically identical to systems with a cusp singularity in all the

weak coupling regime.



Appendix D

Mesophase separation in systems

with long-range forces

In this appendix, we depict qualitatively the effect of general long range forces

upon the phase separation mechanism. We consider the free energy expansion intro-

duced in Chapter 2:

fγ = α|n− nc|γ + β(n− nc)
2γ

To address qualitatively, the effect of long-range forces upon the phase coexistence

phenomenon on general perspectives it is convenient to fix the global density n to the

reference density nc for both γ = 1 and γ = 2 where the volume fraction ν = 1/2

and consider the Uniform-Density-Approximation. For a system subject to a general

long-range force, the free energy of a mixed state reads:

fMS =
1

2
[fA (nc −∆n) + fB (nc + ∆n)] + fσ + flr (D.1)
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where the density in the coexisting phases have been rearranged in such a way that ∆n

represents the deviation of the local densities from the average one. In Eq. (D.1), the

first term represents what would have been the gain from phase separation without

long range forces. Indeed for n = nc the uniform phase fA and fB have been defined

in such a way that they have zero energy (fA(nc) = fB(nc) = 0). The second term of

Eq. (D.1) is the short-range contribution due to the surface energy:

fσ =
σ

L
(D.2)

where L indicates the typical size of the A,B-phase region L = V
1/D
A,B being D the

system dimensionality. Finally the last term of Eq. (D.1) is the long-range interaction

term :

flr =
1

LD
g2

∫
drdr′V (r− r′) ∆n(r)∆n(r′) (D.3)

where the interaction kernel V (r) = 1/|r|x and g2 is a coupling strength. In addition,

for the system to have global density nc we must require
∫

∆n(r) = 0. Finally

∆n(r) = ±∆n depending whether one is in a A or B portion of the system. Although

the case x = 1, corresponding to the Coulomb interaction, and x = 3 for which

the dipole-dipole interaction affects the phase-coexistence phenomenon are the most

interesting, physically, here we will consider a generic x. The long-range interaction

term Eq. (D.3) has a very different character depending on whether x is greater or

less than the system dimensionality D.

• The case x < D

In the case x < D the integral Eq. (D.3) can be estimated assuming ∆n constant as

flr = g2(∆n)2LD−x
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In the L→∞ case the long-range free energy density diverges reflecting the fact that

macroscopic phase separation is avoided analogously to the Coulomb interaction.

Thus domain patterns on the mesoscopic scale appears. The characteristic scale

for meso-phase separation is determined by the competition that arises between the

surface cost proportional to the number of domain walls and the long-range effect. It

can be put as:

L0 =

[
σ

g2(∆n)2

]1/(D−x+1)

The combined effect of the surface and the long-range effect can be recast in the

“mixing” energy term:

emix = 2
[
g2σD−x

]1/(D−x+1)
(∆n)2/(D−x+1) (D.4)

It is an additional energy term to the mixed state free energy that introduces frus-

tration in the phase-coexistence phenomenon.

• The case x > D

In this situation both the long and short-distance contribution to the integral Eq. (D.3)

are singular. This requires the introduction of an additional short-range distance cut-

off, with the consequence that the long-range contribution to the free energy comes

out:

flr = g2(∆n)2
[
c′ ξD−x − c LD−x

]
(D.5)

In this case, macroscopic phase separation is not avoided but it is possible that a

mixed state with finite L has lower energy.
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D.0.1 The γ = 1 case

For systems with γ = 1 the mixed state free energy for “frustrated” systems can

be recast as [see Eq. (D.1), (D.4)]:

fγ=1
MS = −∆µc

2
∆n+

1

2κ
∆n2 + 2

[
c g2σD−x

]1/(D−x+1)
(∆n)2/(D−x+1) (D.6)

The first term represents the phase separation energy gain, the second term is an

energetic cost due to compressibility effects and the last term is the mixing energy.

The condition of stability of mixed states reads fMS < 0. Depending on whether

x < D − 1 as for example in the case of three-dimensional systems subject to the

three-dimensional Coulomb interaction or D−1 < x < D, a different behavior occurs.

In the case x < D − 1 indeed, the last term is dominant at small φ and combined

with the linear term produces an energetic barrier between the homogeneous state

(∆n = 0) and the inhomogeneous state (∆n 6= 0). The quadratic term ensures

stability for large ∆n. The transition will be first order with a critical value of the

frustrating parameter λc.

Antithetically, for D− 1 < x < D, the absence of the mixing barrier allows for an

energetically mixed state no matter how big is the frustration degree. The question

that arises is what would be the behavior in the marginal case x ≡ D − 1. In this

situation, indeed, there is a delicate balance between the first and the third terms in

Eq. (D.6) which are of the same order. Thus a more involved analysis that accounts

for the local variation of the density inside the phase-coexistence region is needed as

discussed for the Coulomb interaction case in two-dimensional systems [see Chapter

5].

For long-range interactions with x > D the free energy of a mixed state for the
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γ = 1 case reads:

fγ=1
MS = −∆µc

2
∆n+

1

2κ
∆n2 +

1

L

[
σ − c g2 ∆n2LD−x+1

]
where the compressibility κ has been renormalized by the inclusion of the short-

distance cutoff term of Eq. (D.5), κ−1 → κ−1 + 2g2 c′ ξD−x. For x < D + 1 a macro-

scopic phase separation L → ∞ is not avoided. Still, it is easy to find [98] that a

mixed state with large but finite domains of size L, have lower free energy no matter

how large is g2. For x = D+1 we are again in a marginal situation. This is realized for

two-dimensional systems with dipolar interactions. A detailed analysis of the latter

case has been addressed in Ref.[99].

D.0.2 The γ = 2 case

A straightforward analysis can be provided also for the γ = 2 case. For the mixed

state free energy in the frustrated case x < D we get:

fγ=2
MS = −|a|

2
∆n2 +

b

4
∆n4 + 2

[
c g2σD−x

]1/(D−x+1)
(∆n)2/(D−x+1)

The mixing energy term is dominant for small ∆n and combined with the negative

quadratic term produces an energetic barrier similarly to the γ = 1 case but now it will

present independently upon the power law of the long-range force. This separates, in

a certain sense, the γ = 1 and the γ = 2 case into two distinct classes with different

behaviors. This is also evident when referring to the case of x > D. Indeed the

short-distance cutoff term of Eq. (D.5) adds to the negative compressibility term a

that produce the tendency towards phase separation. This leads to a renormalized
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parameter:

a′ = a− c′ g2 ξD−x

that implies a weakening of the tendency towards charge segregation due to long-range

forces effects.



Appendix E

Negative compressibility model in

the strong coupling limit

In this appendix, we derive the free energy of the modulated phase in the strong-

coupling regime. We start by considering the Fourier decomposition of the free energy

of a modulated phase introduced in Sec. 3.2:

δF

V
=

1

V 2

∑
k6=0

φk χ
−1 (k)φ−k + (E.1)

+
1

V 3

∑
k1,k2,k3 6=0

4φφk1φk2φk3δ (k1 + k2 + k3, 0) +

+
1

V 4

∑
k1,k2,k3,k4 6=0

φk1φk2φk3φk4δ (k1 + k2 + k3 + k4, 0)

Now consider a given set of primitive reciprocal vectors {k}, made up of m vectors

of magnitude k0. As discussed in Chapter 3, m = 2 for inhomogeneities with charge

modulation in one direction, m = 6 for a rod-like structure with a triangular reciprocal

lattice in the modulation plane andm = 12 for a face-centered-cubic reciprocal lattice.
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For any set {k} the quadratic term ∝ φkφ−k of Eq. (E.1) is trivially proportional to

mφ2
k0

. The evaluation of the third-order term is formally identical to the analysis of

the same contribution in the liquid-solid transition [42]. Thus we can follow Chaikin

and Lubensky to obtain the latter term. It is clear that the third-order term gives a

non-vanishing contribution if triads of vectors that add to zero can be constructed.

In the present approximation, the latter triads would correspond to closed equilatelar

triangles. Suppose now that in a given set {k}, p would be the number of triangles to

which each vector belongs. In φk1φk2φk3 , we have m-choices for k1, 2p-choices for k2

and one choices for k3 thus yielding a contribution 2 pmφ3
k0

. The evaluation of the

quartic term is more complicated and requires a detailed analysis. For the quartic

term one has to evaluate two distinct contributions. The first one, hereafter f4 1,

comes from the sets of two and opposite equal vectors while the second one, hereafter

f4 2, comes out from the contribution of the non planar diamonds in the reciprocal

lattices.

Let us first discuss the first term: for the “diagonal” sets of one and its opposite

vector, there are m choices for k1. Once k1 is fixed we have 2 choices for both k2 and

k3 that corresponds to k2,3 = ±k1 and a single choice for k4. However the set with

k2 = k3 = k1 is avoided by the Kronecker delta. Thus the “diagonal” sets yield a

contribution 3mφ4
k0

.

The evaluation of the off-diagonal terms is more complicated. In a single set of

two k’s with k1 fixed, one has 3 possible choices for k2, 2 choices for k3 and one

for k4 thus yielding a multiplicity 6. The total number of the above sets is given

by m (m− 2) /2 since k1 can run over the m vectors while k2 runs over (m − 2)/2
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vectors. This is because we have to exclude the “diagonal” terms k2 = ±k1 and have

to include the factor 1/2 in order to avoid double-counting. Thus the off-diagonal

part yields a contribution 3m (m− 2)φ4
k0

and finally:

f4 1 = [3m+ 3m (m− 2)]φ4
k0

The evaluation of f4 2 follows as for the cubic term. We have m-choices for k1,

3 q choices for k2 where q is the number of non-planar diamonds to which each vec-

tor belongs, 2 choices for k3 and a single choice for k4 thus yielding a contribution

6 q mφ4
k0

. Finally we can write down the free energy of modulated phase in the k0

approximation and from Eq. (E.1) together with the above arguments, we obtain:

δF

V
= χ−1 (k0)mφ

2
k0

+ 8φ pmφ3
k0

+ φ4
k0

[3m (m− 1) + 6qm] (E.2)
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José Lorenzana. for guiding my first steps in scientific research, for always having

time for discussions and for the great deal of physics I learned from. I wish also to

acknowledge Prof. Walter Metzner for his co-report on this thesis.

There are countless others I wish to express my gratitude to but I owe particular

thanks to all my “roman” friends, especially to my housemate Valerio. My mother

and my brother Francesco are my guiding lights. They provided me constant encour-

agement and advices particularly during my hardest time. Finally, a special thank to

Marcella. She has seen my best and my worst and she always supported me to the

end.

140


