Low pt muon identification

pp \rightarrow J/ $\psi(\mu(6)\mu(3))$ was simulated with initial layout atlsim700.01 bb \rightarrow $\mu(6)X$ background dataset

Release 7.0.1

Natalia Panikashvili Supervisor :Shlomit Tarem The Technion, Israel Institute of Technology

Moore reconstruction

The efficiency of tracks reconstruction in the Muon System vs. \mathbf{p}_t and $\boldsymbol{\eta}$

MUID stand alone

The efficiency of the Muid Stand Alone efficiency vs. \mathbf{p}_t and $\boldsymbol{\eta}$

MUID MuidComb

The efficiency of the MuidComb efficiency vs. \boldsymbol{p}_t and $\boldsymbol{\eta}$

Dimuon $(J/\psi \rightarrow \mu(3)\mu(6))$ reconstruction efficiency

Generated tracks	ID tracks	MOORE tracks	MUID tracks
20000	98%	57%	50%

In 44% of the events only one muon is reconstructed by MUID!!!

My purpose is to find the second muon by using the association between ID tracks and Moore digits

20000 events $pp \rightarrow J/\psi(mu(6) mu(3))$

- Cut 1 Invariant mass window 2-4GeV
- Cut_2 3GeV<pt (ID candidates)<10Ge

89% ID_tracks (ID_candidates) after CUT_1 and CUT_2

Cut_3 ID candidate-MDT digits

(inner station) association or ID candidate-CSC digits association

ID candidates that were associated with MDT digits or CSC digits → ID candidates - RPC/TGC digits

$Pp \rightarrow J/\psi(\mu(6)\mu(3))$ dataset $\sigma = 5nb$

(44% events have only one muon reconstructed by MUID)

	Number of "pseudo -	Number of re-reconstructed
	muons"	MUONS
		PURITY
MDT+CSC	6255 (71.5%) - 100%	6218 – 99.4%
MDT+CSC+PHI	5760(66%) - 100%	5726 – 99.3%

$bb \rightarrow \mu(6)X$ background dataset $\sigma = 3600nb$

(80% events have one muon ...)

Œ,					
		Number of "pseudo-	Number of re-		
		muons"	reconstructed MUONS		
			PURITY		
	MDT+CSC	203(0.85%)-100% -	56 - 27.5% - <mark>27130</mark>		
		<mark>98654</mark>			
	MDT+CSC+PHI	139(0.58%)-100% -	52 - 37.4% - <mark>25176</mark>		
		67317			

Conclusions

- 71.5 % of muons were re-reconstructed (by using only MDT and CSC digits information) with purity 31.7%
- 66% of muons were re-reconstructed (by using MDT, CSC, TGC, RPC digits information) with purity 42.2%

Muon week plan:

- Details of ID- MOORE digits association
- Invariant mass distribution of signal +background