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THE CLASSICAL CASE Gy , < P(AK")

K algebraically closed
R = homogeneous coordinate ring = P~ Ri
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THE CLASSICAL CASE Gy , < P(AK")

R = homogeneous coordinate ring = P~ Ri
Ik,n:{i:(ila---aik) ‘ 1<ip<...< ikSn}
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Grassmann variety

K algebraically closed.
THE CLASSICAL CASE Gy , < P(AK")

R = homogeneous coordinate ring = @~ R

Ik7n:{i:(l'1,...,l'k)|1§i1<...<ik§n}

Ix,n partially ordered set: | <j << i1 < j1,..., 0k < jk

{pi | i € Ixn} Pliicker coordinates C Ry = (AKK")*, dual basis:
NEK™: {ei=ey A...ANej |i €Lk}, K {er,...en},
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K algebraically closed.
THE CLASSICAL CASE Gy , < P(AK")

R = homogeneous coordinate ring = @~ Ri

Ik,n:{i:(ila---aik)‘1§i1<---<ik§n}
Ix,n partially ordered set: i <j < ip <ji,..., 0k < jk

{pi | i € Iy ,} Pliicker coordinates C Ry = (AKK")*, dual basis:
AKK": {eL- =e; N...Ngj | i€ Ik,,,}, K" {e1, R e,,},




some standard monomials
of degree 2

P12P12, P12P13, P12P14, - - -

P13P13, P13P14, P13P15, - - -
P13P25, P13P34, - - -



some standard monomials

\ of degree 2
13 P12p12, P12P13, P12P14; - - -

2 1 }3;;P13, P13P14, P13P15; - - -
\24/ \15

P13P25, P13P34, - - -

34 25 straightening relations
\35/ P23P14 = P13P24 — P12P34
/ P23P15 = P13P25 — P12P35
25 o
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Standard monomial theory

Theorem

(Hodge, Seshadri)
R = ;o Ri = homogeneous coordinate ring of

Gk.n — P(AK")

@ the standard monomials of degree m form a basis of R,

@ straightening relations of degree two (= express non-standard
monomials as sum of standard monomials) generate the
vanishing ideal of Gy , C P(AFK™).

o flat degeneration of Gy , into a union of projective spaces, the
number of irreducible components equals the number of
maximal chains in Iy p.

Peter Littelmann




Generalizations:
«O>r «fF»r < [ 3 Q>



Generalizations:

C. S. Seshadri, C. Musili, V. Lakshmibai, C. De Concini, L, ...
Standard monomial theory for Schubert varieties in G/B
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Some generalizations:

Generalizations:

C. S. Seshadri, C. Musili, V. Lakshmibai, C. De Concini, L, ...

Standard monomial theory for Schubert varieties in G/B

C. De Concini, D. Eisenbud and C. Procesi, Hibi, Chirivi, ...
Hodge algebras (or algebras with straightening laws)

Peter Littelmann



Some generalizations:

Generalizations:

C. S. Seshadri, C. Musili, V. Lakshmibai, C. De Concini, L, ...
Standard monomial theory for Schubert varieties in G/B

C. De Concini, D. Eisenbud and C. Procesi, Hibi, Chirivi, ...
Hodge algebras (or algebras with straightening laws)

We try to get a new approach via
valuation theory and Newton-Okounkov bodies

Peter Littelmann



A family of subvarieties and a family of functions - (affine picture):

X = A3 = <ela 62,e3>, K[X] = K[XI)X27X3]
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A family of subvarieties and a family of functions - (affine picture):
X = A3 = <e]_,62,e3>, K[X] =

K[Xla X2, X3]
Yio3 = A3 fio3 = x1x0X3
Y12 = (e1, &) Y13 = (e1, 3) Y3 = (e2,83) fi2 =x1x
1= (e1) Y2 = (e2)

fi3 = x1x3

Y3 = (e3)

f3 = Xpx3
i =x1

| > >
~J 7

f3=x3

«0O)» «F»

«E)»
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An example

A family of subvarieties and a family of functions - (affine picture):
X = A?’ = <e1, €, e3>, K[X] = K[Xl,XQ,X3]

Yio3 = A3 fi23 = x1x2x3
Yo = (e1, &) Yi3 = (e1, e3) Y3 = (e, e3) fi2 = x1x2 fiz = x1x3 fr3 = xox3
(e1 Y2 = (&) Y3 = (e3) hA=x h=x

B e N

family of functions defining (set theoretically) family of subvarieties.

Peter Littelmann



X C P(V) embedded projective variety

R = K[X] homogeneous coordinate ring
A4Or «Fr «=) « = = Q>
Peter Littelmann
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X C P(V) embedded projective variety
R = K[X] homogeneous coordinate ring

A finite partially ordered set,
graded, unique minimal element + maximal element
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The general picture

X C P(V) embedded projective variety
R = K[X] homogeneous coordinate ring

A finite partially ordered set,
graded, unique minimal element + maximal element

@ {Y,}peca family of projective subvarieties of X
Yomn =Pt Yo, =X, Yo 2 Yo & p>q

Pmin max

@ {f,}pca family of homogeneous functions (on V') such that
o frly, Z0
o Y, ={x€ X|fy(x)=0Vq £ p} (set theoretically)

o Hp={[v] e P(V) | f,(v) = 0}
Hy MY, =, Yq, p covers g (set theoretically)
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The general picture

X C P(V) embedded projective variety
R = K[X] homogeneous coordinate ring

A finite partially ordered set,
graded, unique minimal element + maximal element
@ {Y,}peca family of projective subvarieties of X
Yomn =Pt Yo, =X, Yo 2 Yo & p>q

Pmin max

@ {f,}pca family of homogeneous functions (on V') such that
o foly, Z0
o Y, ={x€ X|fy(x)=0Vq £ p} (set theoretically)
o Hp={[v] e P(V) | f,(v) = 0}
Hy MY, =, Yq, p covers g (set theoretically)
@ to make presentation more consistent, we assume in the following

the Y, are projectively normal, in applications we do not need it

Peter Littelmann



X = Gy,n Grassmann variety,

A=Ik’n={i=(l’1,...,ik) |1<i<...<ix<n}
Yp's = {X(i) | i € Ixn} Schubert varieties
fo's = {pi | i € I n} Pliicker coordinates .

v
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X = Gy,n Grassmann variety,

A=Ik’n={i=(l’1,...,ik) |1<i<...<ix<n}
Yp's = {X(i) | i € Ixn} Schubert varieties
fo's = {pi | i € I n} Pliicker coordinates .

X =G/B CP(V(}N)).
A = W Weyl group, Bruhat order.
Yp's = X(7) Schubert varieties, T € W.

fo's = {pr}rew duals of extremal weight vectors T(vy)




Hasse graph G4 of A with weights: assume p > g and p covers g:

p LA q where b= vanishing multiplictity of f,|Y}, in Y

v
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Hasse graph G4 of A with weights: assume p > g and p covers g:
b _ .

p——>¢q where b= vanishing multiplictity of f,|Y, in Y,

X = G/B: Ga = Bruhat graph, weights = Pieri-Chevalley formula
5L3/B — P(5[3)




In the following: N = lcm(weights in Ga).
Q: .

Fix a maximal chain € in A: (maximally linearly ordered subset of A)
: Pr

> Pr—1 >...>p > po
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In the following: N = lcm(weights in Ga).
Q: .

Fix a maximal chain € in A: (maximally linearly ordered subset of A)
: Pr >Pr-1 >...>pP1 >Po
sub—

varieties X=Y, DY, , D...DY,

O Yy=npt
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In the following: N = lcm(weights in Ga).

Fix a maximal chain € in A: (maximally linearly ordered subset of A)
¢ pPr >p—1 >...>p1 >
sub—
varieties X=Y, DY, , D...DY, DYy=pt
valuation
ass.to vy Vr—1
divisor

L1
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In the following: N = lcm(weights in Ga).

Fix a maximal chain € in A: (maximally linearly ordered subset of A)
¢ pPr >p—1 >...>p1 >
sub—
varieties X=Y, DY, , D...DY, DYy=pt
valuation
ass.to v, Vpr_1 .. 1z
divisor
functions fo, for_s f fro
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In the following: N = lcm(weights in Ga).

Fix a maximal chain € in A: (maximally linearly ordered subset of A)
¢ pPr >p—1 >...>p1 >
sub—
varieties X=Y, DY, , D...DY, DYy=pt
valuation
ass.to v, Vpr_1 .. 1z
divisor
functions fo, for_s f fro
Idea: use v; and fp, to define a Q" *'-valued valuation on R

«40>» «Fr « E» < > Q>



Fixed maximal chain € — affine cones:
sub—
varieties X

=Y, DY, D...0Y, DY
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Fixed maximal chain € — affine cones:
sub—
varieties X =

Yy DVYp, D...0YV, DYo
h regular — h,=h hy_1 hy hg
function
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Fixed maximal chain € — affine cones:
sub—
varieties X =

Yy DVYp, D...0YV, DYo
h regular — h,=h hy_1 hy hg
function
hr—1,..., hg are rational functions on Yy, ..., Yp, Yp,-
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Fixed maximal chain € — affine cones:
sub—
varieties X =

Yy DVYp, D...0YV, DYo
h regular — h,=h hy_1 hy
function

ho

hr—1,..., hg are rational functions on Yj, |,

u.<>

P> Yo
AN

h'_1 = J

! prVj(hj)/ by

Pj—1

«40O> 4AFr «=)>» « =) = Q>




Forget about the numbers, but keep in mind: by Nagata, Rees and
Samuel on asymptotic theory of ideals:

Given h homogeneous, there exists always a maximal chain such that
Vj=0,...,r: hj is a regular homogeneous function on Yy,
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Forget about the numbers, but keep in mind: by Nagata, Rees and
Samuel on asymptotic theory of ideals:
Given h homogeneous, there exists always a maximal chain such that
Vj=0,...,r: hj is a regular homogeneous function on Yy,
Let Ve : R — {0} — Q! be defined by
h— (cvr(hy), crmavr(hr—1) . .., coo(ho))

where vo(ho) is the vanishing order of hg in the origin of Yo.

Cry- .., Co are renormalization factors.

«40O> 4AFr «=)>» « =) = Q>




The renormalization factors ¢;,..., ¢y are chosen such that the
functions f,,, ..
standard simplex:

., fp, are mapped onto the corners of the
Ve(fy) = (0,...,0,1,0,...,0)

Jj+1

«40O> 4AFr «=)>» « =) = Q>




The renormalization factors ¢;,..., ¢y are chosen such that the
functions f,,, ..., fp, are mapped onto the corners of the
standard simplex:

Ve(fy) = (0,...,0,1,0,

...,0)
———
Jj+1
Ve : R— {0} — Q! is a valuation with at most one-dimensional
leaves.
40> AF>» «=)>» « =) = Q>
Peter Littelmann




Ve induces filtration, but:
in general difficult to prove that gr «R finitely generated.
A4Or «Fr «=) « = = Q>
Peter Littelmann
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Ve induces filtration, but:

in general difficult to prove that gr «R finitely generated.
Non-negativity often helps:
regular functions = non-negative valuations.

v
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Quasi-Valuation

Ve induces filtration, but:
in general difficult to prove that gr «R finitely generated.

Non-negativity often helps:
regular functions = non-negative valuations.

Endow Q'*! with a lexicographic order, and define:

Peter Littelmann



Quasi-Valuation

Ve induces filtration, but:
in general difficult to prove that gr «R finitely generated.

Non-negativity often helps:
regular functions = non-negative valuations.

Endow Q'*! with a lexicographic order, and define:
Definition

A quasi-valuation:
h— min{V¢(h) | € maximal chain}

V:R-{0} - Q!

Peter Littelmann



Quasi-Valuation

Ve induces filtration, but:
in general difficult to prove that gr «R finitely generated.

Non-negativity often helps:
regular functions = non-negative valuations.

Endow Q'*! with a lexicographic order, and define:

Definition
A quasi-valuation:

h— min{V¢(h) | € maximal chain}

V:R—{0} - Q!

non-negativity: Rees

Peter Littelmann



@ The quasi-valuation induces a filtration of R, such that the
associated graded gry,R is finitely generated.
40> AF>» «=)>» « =) = Q>
Peter Littelmann




Quasi-Valuations

Theorem

@ The quasi-valuation induces a filtration of R, such that the
associated graded gry,R is finitely generated.

@ The irreducible components of the associated variety are in
bijection with maximal chains in the partially ordered set A.

Peter Littelmann



Quasi-Valuations

Theorem

@ The quasi-valuation induces a filtration of R, such that the
associated graded gry,R is finitely generated.

@ The irreducible components of the associated variety are in
bijection with maximal chains in the partially ordered set A.

@ The irreducible component associated to a maximal chain € is
the toric variety associated to the semigroup

Fe :={V(h) | h € R homogeneous, V¢(h) is minimal} C Q'Z'Bl

Peter Littelmann
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@ If g is homogeneous and Ve (h) = (ar, . .., a) is minimal, then

degg = apdegfy, + ardegfy + ...+ a degf, .
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@ If g is homogeneous and Ve (h) = (ar, . .., a) is minimal, then

degg = apdegfy, + ardegfy + ... + a-degfy,

® IfVe(h) = (ar,...,a) is minimal, then AN = fNar ... fN0 jn gr R




@ If g is homogeneous and Ve (h) = (ar, . .., a) is minimal, then

degg = apdegfy, + ardegfy + ... + a-degfy,

® IfVe(h) = (ar,...,a) is minimal, then AN = fNar ... fN0 jn gr R

@ /fg,h € R have NO common maximal chain € such that Ve(g) and
Ve(h) are minimal then gh =0 in gry,R.




Remark

@ If g is homogeneous and Ve(h) = (ar, ..., a0) is minimal, then

degg = apdeg fy, + ardegfy + ... + ardegf,, .

@ IfVe(h) = (a,...,a0) is minimal, then hN = Fp’:""' e ,?plglao in gryR

@ /fg,h € R have NO common maximal chain € such that Ve(g) and
Ve(h) are minimal then gh =0 in gry,R.

Remark

Grassmann variety, G, p; Pliicker coordinate:

Ve(pi) is minimal if and only if i € €.

So pip; =0 in gryR < i and j are not comparable.

Further N = 1, so all elements in gry R are standard monomials.

Peter Littelmann




X = A3 = (ela e2,e3), K[X] = K[X1’X27X3]

«0>» «Fr «E» «E» .



X = A3 = (ela 62,e3>, K[X] = K[X15X27X3]

X3

Applying the machinery to this example = cutting a cone into 6 pieces

i

{Xf1X232X§3 | a1, dz,as € N}

U ap a3 | ay, a, a3 €N,
ses; (X1 X2 X3
R

a,(1) < a(2) < Ao(3) }
grR

«0O)» «F»

«E)»
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Open question:
generators of the semi-group ¢? (= semigroup, irr. comp. — gr R)

it
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A kind of root operator

Open question:
generators of the semi-group lNe? (= semigroup, irr. comp. — gr R)

We assume in the following: our familiy of projective subvarieties and the
functions {f,},ca satisfies in addition the following condition:

@ all f, have the same degree (not really necessary)

@ for every p —P g, one can extract a root, i.e 37 € K(Yp), such:

f
b_Tq
77 - fp|Yp'

Lemma

The functions fy, nfy, 1fy, . .., nPf, = fy regular homogeneous functions
of the same degree on Y,,.

Peter Littelmann



A kind of root operator

Lemma

Let g € R be a homogeneous function. Let € = (p;,...,po) be a
maximal chain in A such that Ve(g) = (ar, - .., a0) is minimimal.
Set £ = a,b where p, =" p,_1).

@ the functions below are homogeneous regular functions on Y,,, of
the same degree as g:

8,187’8 -1’8,

@ the last function does not vanish on Yp, ;.

° V(1/g) =V(g) — £ (e — e 1) forj <

Peter Littelmann



Using an inductive procedure....

The semigroup ¢ is contained in
ar
fe CQv=1] :

r+1
ao

brar € Z
br—1(ar+ar—1) €Z

b1(3r+3r—1+---+31)ez
apdeg fp, +ardegfy + ...+ a,degf, €N

«40O> 4AFr «=)>» « =) = Q>




Equality holds!

e =

Vv =

brar € Z
by_1(ar +a,1) €Z

bi(ar+a_1+...+a1)€EZ
aodegfpo +31degfp1 + ...+ ardegfy, €N

«Or «Fr < > > a
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Equality holds!

ar bra, € Z
. r+1 br—1(ar +a,—1) €Z
rQ: =] vV = : c Q>0 - -

= ar+a_1+...+a1) €L

a0 ag deg fpy +ay degfp + ...+ ardegfp, €N

@ Get standard monomial theory (ordered monomials in the f,’s + a
finite number of extra elements)




Some conjectures

Conjecture
Equality holds!
ar bra, € Z
by_1(ar +a,-1) €Z
° = bi(ar+ar—1+...+a)€Z
a0 apdeg fpy +aydegfp, + ...+ ardegf, €N

Expected consequences (up to glueing!!)

@ Get standard monomial theory (ordered monomials in the f,’s + a
finite number of extra elements)

@ Get a Newton-Okounkov body A(R) C QIAl (bigger ambient space!)

Peter Littelmann



Some conjectures

Conjecture
Equality holds!

ar brar € Z
b_1(ar +a,_1) €EZ
- o . r+1 r—1\ar r
rg— V—< : )6@20

bi(ar+ar—1+...+a)€Z
aodegfpoJraldegfpl+...+a,degfp, eEN

Expected consequences (up to glueing!!)

@ Get standard monomial theory (ordered monomials in the f,’s + a
finite number of extra elements)

@ Get a Newton-Okounkov body A(R) C QIAl (bigger ambient space!)
@ Proj(gr R) is a flat degeneration of X.
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Some conjectures

Conjecture
Equality holds!

ar bra, € Z
b_1(ar +a,_1) €EZ
- o . r+1 r—1\ar r
rg— V—< : )6@20

bi(ar+ar—1+...+a)€Z
aodegfpoJraldegfpl+...+a,degfp, eEN

Expected consequences (up to glueing!!)

@ Get standard monomial theory (ordered monomials in the f,’s + a
finite number of extra elements)

@ Get a Newton-Okounkov body A(R) C QIAl (bigger ambient space!)
@ Proj(gr R) is a flat degeneration of X.
@ the degree of X C P(V) is equal to

Z H(Weights on the chain)

maximal chains

Peter Littelmann



o If all weights are equal to 1 (and hence N = 1), the conjecture

and the expected consequences hold (~ Hodge algebra case)




Conjecture holds:

Remark

e If all weights are equal to 1 (and hence N = 1), the conjecture
and the expected consequences hold (~ Hodge algebra case)
e If X = X(7) is a Schubert variety (G symmetrizable

Kac-Moody), then the conjecture and the expected
consequences hold!

Peter Littelmann




Conjecture holds:

Remark
e If all weights are equal to 1 (and hence N = 1), the conjecture
and the expected consequences hold (~ Hodge algebra case)

e If X = X(7) is a Schubert variety (G symmetrizable
Kac-Moody), then the conjecture and the expected
consequences hold!

e semigroups — recover the Lakshmibai-Seshadri path model
theory in an algebraic-geometric context
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Conjecture holds:

Remark

e If all weights are equal to 1 (and hence N = 1), the conjecture
and the expected consequences hold (~ Hodge algebra case)
e If X = X(7) is a Schubert variety (G symmetrizable
Kac-Moody), then the conjecture and the expected
consequences hold!
e semigroups — recover the Lakshmibai-Seshadri path model
theory in an algebraic-geometric context
o Newton-Okounkov body A(R) — recover polytope with
integral structure constructed by R. Dehy
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Conjecture holds:

Remark

e If all weights are equal to 1 (and hence N = 1), the conjecture
and the expected consequences hold (~ Hodge algebra case)

e If X = X(7) is a Schubert variety (G symmetrizable
Kac-Moody), then the conjecture and the expected
consequences hold!

e semigroups — recover the Lakshmibai-Seshadri path model
theory in an algebraic-geometric context

o Newton-Okounkov body A(R) — recover polytope with
integral structure constructed by R. Dehy

o flat degeneration — recover LS-Algebra structure by R. Chirivi

Peter Littelmann




Conjecture holds:

Remark

e If all weights are equal to 1 (and hence N = 1), the conjecture
and the expected consequences hold (~ Hodge algebra case)

e If X = X(7) is a Schubert variety (G symmetrizable
Kac-Moody), then the conjecture and the expected
consequences hold!

e semigroups — recover the Lakshmibai-Seshadri path model
theory in an algebraic-geometric context

o Newton-Okounkov body A(R) — recover polytope with
integral structure constructed by R. Dehy

o flat degeneration — recover LS-Algebra structure by R. Chirivi

e combinatoric implies Cohen-Macaulayness etc.
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Conjecture holds:

Remark

e If all weights are equal to 1 (and hence N = 1), the conjecture
and the expected consequences hold (~ Hodge algebra case)

e If X = X(7) is a Schubert variety (G symmetrizable
Kac-Moody), then the conjecture and the expected
consequences hold!

e semigroups — recover the Lakshmibai-Seshadri path model
theory in an algebraic-geometric context

o Newton-Okounkov body A(R) — recover polytope with
integral structure constructed by R. Dehy

o flat degeneration — recover LS-Algebra structure by R. Chirivi

e combinatoric implies Cohen-Macaulayness etc.

e So far our proof of the conjecture uses quantum groups at
roots of unity.

Peter Littelmann




Conjecture holds:

Remark

e If all weights are equal to 1 (and hence N = 1), the conjecture
and the expected consequences hold (~ Hodge algebra case)

e If X = X(7) is a Schubert variety (G symmetrizable
Kac-Moody), then the conjecture and the expected
consequences hold!

e semigroups — recover the Lakshmibai-Seshadri path model
theory in an algebraic-geometric context

o Newton-Okounkov body A(R) — recover polytope with
integral structure constructed by R. Dehy

o flat degeneration — recover LS-Algebra structure by R. Chirivi

e combinatoric implies Cohen-Macaulayness etc.

e So far our proof of the conjecture uses quantum groups at
roots of unity. “Bad news"”: Not available in the general
context

Peter Littelmann




To do

Remark
@ further candidates for theory: Richardson varieties,
Bott-Samelson varieties, complete symmetric spaces, . ..
Most of them are known to have a standard monomial theory.
Uniform construction?

@ are the “algebraic geometric root operators” invertible?

@ connection with cluster varieties? Even not clear for
Grassmann varieties.

Peter Littelmann




Il Happy Birthday Corrado !!

Il Best wishes for Elisabetta !!

=} =

Peter Littelmann



