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One has:

Theorem

π1(YW) = GW

Known for W finite since Brieskorn, etc., ’71; in general it derives
from the PhD thesis of [Van Der Lek, ’80] (see also [Sal, 94],
[DeCon-Sal, 96]).
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Conjecture (K(π, 1)-conjecture)

The orbit configuration space YW is a K(GW, 1)-space.

Proved for W finite in general by Deligne [’72] (more generally for
simplicial arrangements, after Fox and Neuwirth (case An) and
Brieskorn (cases Cn, Dn, G2, F4, and I2(p))
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Theorem (Paolini, S.)

The K(π, 1) conjecture holds for all affine Artin groups.



It was known for type Ãn, C̃n (Okonek ’79), B̃n (Callegaro, S.
JEMS, 2010)

Few other cases are known.

Configuration spaces of finite complex reflection groups (proved by
Bessis ’15).
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Proofs of the known affine cases are by ad hoc arguments.

Our proof is general (except for few details) so applies to all known
cases.

It is based on recent advances by

McCammond and Sulway, ”Artin groups of Euclidean type”, Inv.
Math. 210 (2017).

which use the theory of dual Artin groups.
They find finite dimensional classifying spaces (but with infinite
number of cells) for affine Artin groups, but they do not relate
them with the orbit spaces.
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We get a much stronger result obtaining finite classifying spaces

(we produce finite complexes whose structure is based on the
”dual” structure of Artin groups,

we simultaneously prove that
well-known finite complexes (Sal. complex), whose structure is
based on the standard structure, are K(π, 1)).
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Let G be a group, with a (possibly infinite) generating set
R = R−1.

∀x ∈ G, denote by l(x) = min{k : r1r2 · · · rk = x, rj ∈ R}.
The group G becomes a poset setting

x ≤ y ⇐⇒ l(x) + l(x−1y) = l(y)

i.e. if there is a minimal length factorization of y that starts with a
minimal length factorization of x.
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Given g ∈ G, denote by [1, g]G ⊆ G the interval between 1 and g

Definition

The interval group Gg is the group presented as follows. Let
R0 = R ∩ [1, g]G. The group Gg has R0 as its generating set, and
relations given by all the closed loops inside the Hasse diagram of
[1, g]G.

The interval [1, g]G is balanced if: ∀x ∈ G, we have
l(x) + l(x−1g) = l(g) if and only if l(gx−1) + l(x) = l(g).
This condition is automatically satisfied if the generating set R is
closed under conjugation

Theorem

If the interval [1, g]G is a balanced lattice, then the group Gg is a
Garside group.
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A Garside group is the fraction group of a Garside monoid:

it is a lattice with respect to left and right divisibility, with left and
right cancellation and with an element ∆ (the Garside element)
whose (left and right) divisors generate the group.
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A Garside group has an explicit classifying space.

For example, the classifying space of the Garside group Gg of a
balanced interval [1, g]G is a ∆-complex whose d-simplices
correspond to the sequences

x1, . . . , xd

where xi ∈ [1, g]G and the product x1 . . . xd is the left part of a
minimal factorization of g.
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Let W, S be a Coxeter group, let R be the set of all reflections

Choose a Coxeter element w ∈W. Then

dual Artin group Ww : is the interval group constructed using R
as a generator set and the interval [1, w]W

So generators are all reflections R0 = R ∩ [1, w]W and relations all
visible paths inside the interval.
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1) There is a natural homomorphism

j : GW →Ww
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another proof in the affine case)

3) When W is finite the interval [1, w]W is a lattice so Ww is a
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In case W affine the situation is more delicate.

Some geometrical study of the affine groups is needed.

Let V = Rn, and let E be the n-dimensional affine space.
To every u ∈ Isom(E) one associates two spaces:

- Mov(u) = {u(a)− a | a ∈ E} ⊆ V

This is an affine subspace of V , and let µ ∈Mov(u) be the unique
vector of minimal norm.

- Min(u) = {a ∈ E | u(a) = a+ µ} ⊆ E. This is an affine
subspace of E.
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There is an orthogonal decomposition

V = Dir(Mov(u))⊕Dir(Min(u))

An isometry u ∈ L is called elliptic if it fixes at least one point,
and hyperbolic otherwise.

If u is elliptic, then Mov(u) is a linear subspace, µ = 0, and
Min(u) coincides with the set of fixed points of u, which we
denote by Fix(u).
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For example: choose one Coxeter element w ∈W, where W is an
irreducible affine Coxeter group acting as a reflection group on an
n-dimensional affine space E, where n is the rank of W .

w is a hyperbolic isometry of reflection length n+ 1, and its
min-set is a line ` called the Coxeter axis.

See the example G̃2, Ã2.
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Figure: Coxeter complex of type Ã2.



Let us call a reflection r ∈ [1, w]W horizontal if its fixed set is
parallel to `, otherwise it is called vertical.

In general, an isometry u ∈ [1, w]W is horizontal if it moves all
points in a direction orthogonal to ` (in other words DirMov(u)
is orthogonal to Dir(`)) otherwise it is vertical.
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Coarse combinatorial structure of the interval [1, w]W :

the
elements u ∈ [1, w]W are split into 3 rows according to the
following cases (let v be the right complement of u):

(top row) u is hyperbolic and v is horizontal elliptic.

(middle row) both u and v are vertical elliptic;

(bottom row) u is horizontal elliptic and v is hyperbolic;

The bottom and the top rows contain a finite number of elements,
whereas the middle row contains infinitely many elements.
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The roots corresponding to horizontal reflections form a root
system Φh ⊆ Φ, called the horizontal root system associated with
the Coxeter element w ∈W .

It decomposes as a disjoint union of orthogonal irreducible root
systems of type A, as shown in the table.
The number k of irreducible components varies from 1 to 3.
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Type Horizontal root system

Ãn ΦAp−1 t ΦAq−1

C̃n ΦAn−1

B̃n ΦA1 t ΦAn−2

D̃n ΦA1 t ΦA1 t ΦAn−3

G̃2 ΦA1

F̃4 ΦA1 t ΦA2

Ẽ6 ΦA1 t ΦA2 t ΦA2

Ẽ7 ΦA1 t ΦA2 t ΦA3

Ẽ8 ΦA1 t ΦA2 t ΦA4

Table: Horizontal root systems. In the case Ãn, the horizontal root
system depends on the (p, q)-bigon Coxeter element.



Fact: Let W be an irreducible affine Coxeter group, and w one of
its Coxeter elements. The interval [1, w]W is a lattice (and thus
Ww is a Garside group) if and only if the horizontal root system
associated with w is irreducible. This happens in the cases C̃n, G̃2,
and Ãn if w is a (n, 1)-bigon Coxeter element.



Since the interval [1, w]W is not a lattice in general, in
[mccammond2017] a new group of isometries C ⊇W is
constructed, with the property that [1, w]C is a balanced lattice
and [1, w]W ⊆ [1, w]C .

The corresponding interval group Cw (called braided
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This concludes the recall of what previous works did.

In our proof of the K(π, 1) conjecture, one of the key points is to
show that KW is a already a classifying space for Ww, for every
affine Coxeter group W , even when [1, w] is not a lattice.
This can come as a surprise since the standard argument to show
that KW is a classifying space heavily relies on the lattice property.
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Then we show that KW is homotopy equivalent to the orbit
configuration space YW .

For this, we introduce a new family of CW models X ′W ' YW ,
which are subcomplexes of KW whose structure depends on the
dual Artin relations in Ww rather than on the standard Artin
relations in GW .

Using discrete Morse theory (one of the main new tools of the
proof), we prove that KW deformation retracts onto X ′W .

This completes the proof of the K(π, 1) conjecture, and at the
same time, it gives a new proof that the dual Artin group Ww is
naturally isomorphic to the Artin group GW (in the affine case).
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Among the several technical intermediate steps, may be one of the
most important to our proof of the deformation retraction
KW ' X ′W , is to construct an EL-labeling of the poset [1, w]W .



The group enlargement C ⊃W is obtained by enlarging the set T
of translations contained in [1, w]W : for each translation t ∈ T
one gets a finite number of extra translations t1, . . . , tk which
factorize t.

Let TF ⊃ T be this bigger set of translations (called
factored translations).
So C is generated by R ∪ TF .

By denoting Rhor, Rver ⊂ [1, w]W the reflections which divide w,
one constructs several groups:
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C generated by Rhor, Rver, TF

W generated by Rhor, Rver

F generated by Rhor, TF

D generated by Rhor, T



The interval groups are related as follows:

[1, w]C = [1, w]W ∪ [1, w]F

[1, w]D = [1, w]W ∩ [1, w]F .



The intervals [1, w]D and [1, w]F are finite, whereas [1, w]W and
[1, w]C are infinite.

The intervals [1, w]F and [1, w]C are balanced lattices
On the other hand, the intervals [1, w]D and [1, w]W are lattices if
and only if the horizontal root system Φh is irreducible, in which
case D = F and W = C.
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Construct the interval groups Dw, Fw, and Cw.

The inclusions between the four intervals induce inclusions between
the corresponding interval groups: Dw ↪→Ww, Dw ↪→ Fw,
Ww ↪→ Cw, and Fw ↪→ Cw
Since the intervals [1, w]F and [1, w]C are lattices, the interval
groups Fw and Cw are Garside groups and the corresponding
interval complexes KF and KC are classifying spaces.
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A consequence of the relations between the four intervals is that

KC = KW ∪KF

and
KD = KW ∩KF



Lemma (P.S.)

KD is a classifying space for Dw.

This is obtained by explicitly finding a K(π, 1)-space which covers
KD.
That is KH × R, where KH ⊂ KD is the subcomplex given by all
simplices [x1| . . . |xd] such that x1 . . . xd belongs to the subgroup
H ⊂ D generated by Rhor.

We show that KH decompose as a product K1 × · · · ×Kk of
subcomplexes, each of them being a classifying space of a group of
type Ãki , according to the decomposition into irreducible
components of the horizontal root system. Therefore KH is a
K(π, 1)-space.
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Theorem (P.S.)

Let W be an irreducible affine Coxeter group, and w one of its
Coxeter elements. The interval complex KW is a classifying space
for the dual Artin group Ww.

This is obtained by a Mayer-Vietoris argument applied to the
universal covering and using that KC , KF and KD are K(π, 1)
spaces.
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Now remind that d-simplices in KW are sequences [x1| . . . |xd]
such that the product x1 . . . xd appears as a left factor of a
minimal factorization of w.

We want to identify a much smaller complex inside KW .
Fix a set of simple reflections S = {s1, s2, . . . , sn} ⊆ R, and a
Coxeter element w = s1s2 · · · sn.
Let

∆W = {T ⊆ S | the standard parabolic subgroup WT is finite}.

For every T ∈ ∆W , denote by wT the product of the elements of
T in the same relative order as in the list s1, s2, . . . , sn.
Then wT is a Coxeter element of the parabolic subgroup WT , and
it belongs to [1, w]W .
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One can see that for every T ⊆ S we have [1, wT ]WT = [1, wT ]W ,
and the length functions of WT and W agree on these intervals.

Definition

Let X ′W be the finite subcomplex of KW consisting of the
simplices [x1|x2| · · · |xd] ∈ KW such that x1x2 · · ·xd ∈ [1, wT ] for
some T ∈ ∆W .
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Remark that if W is finite, then S ∈ ∆W and therefore
X ′W = KW .

In this case, the interval complex KW is a classifying space for the
dual Artin group Ww , which is naturally isomorphic to the Artin
group GW .
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For every T ∈ ∆W , the complex X ′W has a subcomplex consisting
of the simplices [x1|x2| · · · |xd] such that
x1x2 · · ·xd ∈ [1, wT ] = [1, wT ]WT .

This is exactly the interval complex associated with [1, wT ]WT ,
which coincides with X ′WT

and is a classifying space for the Artin
group GWT

.
By definition, X ′W is the union of all subcomplexes X ′WT

for
T ∈ ∆W .
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There is a well known complex XW whose cells are indexed by the
simplicial complex ∆W , and which is known to be homotopy
equivalent to the orbit configuration space YW of W.

Similarly to X ′W , the complex XW is the union of the complexes
XWT

for T ∈ ∆W .

Each XWT
is a classifying space for GWT

, because the K(π, 1)
conjecture holds for spherical Artin groups .
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Our second main step is:

Theorem

For every Coxeter group W , the complex X ′W is homotopy
equivalent to the complex XW and so to the orbit configuration
space YW.
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As an alternative description of X ′W we have

Remark

Let W be an irreducible affine Coxeter group, with a set S of
simple reflections and a Coxeter element w obtained as a product
of the elements of S. Denote by C0 the chamber of the Coxeter
complex associated with S. A simplex [x1|x2| · · · |xd] ∈ KW

belongs to X ′W if and only if x1x2 · · ·xd is an elliptic element that
fixes at least one vertex of C0.



Now we come to the last step of our proof: we show that the
complex KW contracts to the finite subcomplex X ′W .

This is done by using discrete Morse theory: this is a combinatorial
version of classical Morse theory, mainly Morse theory for
CW -complexes K, which consists essentially in assigning a
coherent sequence of contractions which reduce the complex to a
smaller one.
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The retraction of KW onto the finite complex X ′W is done in two
steps.

The first one reduces KW into a finite complex K ′ ⊃ X ′W .

For this, we need to look carefully at the Hasse graph Γ.

For every d-simplex σ = [x1| . . . |xd] ⊂ KW such that
x1 . . . xd = w, we consider the left and right boundary faces
[x1| . . . |xd−1] and [x2| . . . |xd]
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[x1| · · · |xd]

[x2| · · · |xd][x1| · · · |xd−1]



Let ϕ : [1, w]C → [1, w]C be the conjugation by the Coxeter
element w: ϕ(u) = w−1uw.

Then we get factorizations:

w = x1 . . . xd = x2 . . . xdϕ(x1) = x3 . . . xdϕ(x1)ϕ(x2) = . . .

and

w = x1 . . . xd = ϕ−1(xd)x1 . . . xd−1 = ϕ−1(xd−1)ϕ
−1(xd)x1 . . . xd−2 = . . .

so a piece of the Hasse diagram is given by
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One can show:

Lemma

The component C of [x1| . . . |xd] is infinite iff one xi is vertical
elliptic (so all xj are elliptic).

Every component C intersects F(X ′W ).

There are a finite number of components.
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Now let K ′ ⊂ KW be the finite subcomplex such that:

- F(K ′) contains all the finite components of K;

- for every infinite component C, one has that F(K ′) ∩ C is the
path going from the leftmost to the rightmost element of
F(X ′W ) ∩ C.

So K ′ ⊃ X is an approximation of X ′W but it is larger.
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Coxeter elements. There exists a total ordering on
R0 = R ∩ [1, w]W (the axial ordering) which makes the poset
[1, w]W EL-shellable.

The EL-shellability of [1, w]W for finite W was already known.
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Recall that a poset P is EL-shellable (edge-lexicographic-shellable)
if there exists a weight function λ : E(P)→ Q (Q a poset) such
that:

- each interval [u, v] ⊂ P contains a unique weight-increasing
maximal chain C;

- C is the minimum maximal chain with respect to lexicographic
ordering.
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Let ` be the Coxeter axis, and fix an axial chamber C0 of the
Coxeter complex.

Definition

An axial ordering of the set of reflections R0 = R ∩ [1, w] is a total
ordering of the following form:

first, there are the vertical reflections that fix a point of `
above C0, and r comes before r′ if Fix(r) ∩ ` is below
Fix(r′) ∩ `;
then, there are the horizontal reflections in Rhor, following
any suitable total ordering ≺hor constructed separately;

finally, there are the vertical reflections that fix a point of `
below C0, and again r comes before r′ if Fix(r) ∩ ` is below
Fix(r′) ∩ `.
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The relative order between vertical reflections that fix the same
point of ` can be chosen arbitrarily, since one sees that such
reflections commute.

The ordering of the horizontal reflections is obtained by ordering
separately each irreducible component: recall that Φhor

decomposes in irreducible root systems of type Ãni , i = 1 . . . , k.
The corresponding reflections are suitably ordered and then one
takes a shuffle ordering of them.
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First, given σ = [x1| . . . |xd] ∈ KW , let π(σ) = x1 . . . xd and let

λ(σ) and ρ(σ)

be the simplex which is immediately at the left (resp. right) of σ
inside its component.

Next define

Definition

Let σ = [x1|x2| · · · |xd] ∈ F(KW ), with π(σ) = w. Define the
depth δ(σ) of σ as the minimum i ∈ {1, 2, . . . , d} such that one of
the following occurs:

(i) l(xi) ≥ 2;

(ii) l(xi) = 1, i ≤ d− 1, and xi ≺ r for every reflection r ≤ xi+1

in [1, w].

If no such i exists, let δ(σ) =∞.
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Definition (Matching function)

Given σ ∈ F(K ′W ) \ F(X ′W ), define µ(σ) ∈ F(KW ) as follows.

(1) If π(σ) 6= w, let µ(σ) = λ(σ).

(2) If π(σ) = w, and π(ρ(σ)) does not fix a vertex of C0, let
µ(σ) = ρ(σ).

Suppose now that π(σ) = w, and π(ρ(σ)) fixes a vertex of C0. Let
δ = δ(σ). Notice that δ 6=∞.

(3) If l(xδ) ≥ 2, define µ(σ) = [x1| · · · |xδ−1|y|z|xδ+1| · · · |xd],
where y is the ≺-smallest reflection of R0 ∩ [1, xδ], and
yz = xδ.

(4) If l(xδ) = 1, define µ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |xd].



Definition (Matching function)

Given σ ∈ F(K ′W ) \ F(X ′W ), define µ(σ) ∈ F(KW ) as follows.

(1) If π(σ) 6= w, let µ(σ) = λ(σ).

(2) If π(σ) = w, and π(ρ(σ)) does not fix a vertex of C0, let
µ(σ) = ρ(σ).

Suppose now that π(σ) = w, and π(ρ(σ)) fixes a vertex of C0. Let
δ = δ(σ). Notice that δ 6=∞.

(3) If l(xδ) ≥ 2, define µ(σ) = [x1| · · · |xδ−1|y|z|xδ+1| · · · |xd],
where y is the ≺-smallest reflection of R0 ∩ [1, xδ], and
yz = xδ.

(4) If l(xδ) = 1, define µ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |xd].



Definition (Matching function)

Given σ ∈ F(K ′W ) \ F(X ′W ), define µ(σ) ∈ F(KW ) as follows.

(1) If π(σ) 6= w, let µ(σ) = λ(σ).

(2) If π(σ) = w, and π(ρ(σ)) does not fix a vertex of C0, let
µ(σ) = ρ(σ).

Suppose now that π(σ) = w, and π(ρ(σ)) fixes a vertex of C0.

Let
δ = δ(σ). Notice that δ 6=∞.

(3) If l(xδ) ≥ 2, define µ(σ) = [x1| · · · |xδ−1|y|z|xδ+1| · · · |xd],
where y is the ≺-smallest reflection of R0 ∩ [1, xδ], and
yz = xδ.

(4) If l(xδ) = 1, define µ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |xd].



Definition (Matching function)

Given σ ∈ F(K ′W ) \ F(X ′W ), define µ(σ) ∈ F(KW ) as follows.

(1) If π(σ) 6= w, let µ(σ) = λ(σ).

(2) If π(σ) = w, and π(ρ(σ)) does not fix a vertex of C0, let
µ(σ) = ρ(σ).

Suppose now that π(σ) = w, and π(ρ(σ)) fixes a vertex of C0. Let
δ = δ(σ). Notice that δ 6=∞.

(3) If l(xδ) ≥ 2, define µ(σ) = [x1| · · · |xδ−1|y|z|xδ+1| · · · |xd],
where y is the ≺-smallest reflection of R0 ∩ [1, xδ], and
yz = xδ.

(4) If l(xδ) = 1, define µ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |xd].



Definition (Matching function)

Given σ ∈ F(K ′W ) \ F(X ′W ), define µ(σ) ∈ F(KW ) as follows.

(1) If π(σ) 6= w, let µ(σ) = λ(σ).

(2) If π(σ) = w, and π(ρ(σ)) does not fix a vertex of C0, let
µ(σ) = ρ(σ).

Suppose now that π(σ) = w, and π(ρ(σ)) fixes a vertex of C0. Let
δ = δ(σ). Notice that δ 6=∞.

(3) If l(xδ) ≥ 2, define µ(σ) = [x1| · · · |xδ−1|y|z|xδ+1| · · · |xd],
where y is the ≺-smallest reflection of R0 ∩ [1, xδ], and
yz = xδ.

(4) If l(xδ) = 1, define µ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |xd].



Definition (Matching function)

Given σ ∈ F(K ′W ) \ F(X ′W ), define µ(σ) ∈ F(KW ) as follows.

(1) If π(σ) 6= w, let µ(σ) = λ(σ).

(2) If π(σ) = w, and π(ρ(σ)) does not fix a vertex of C0, let
µ(σ) = ρ(σ).

Suppose now that π(σ) = w, and π(ρ(σ)) fixes a vertex of C0. Let
δ = δ(σ). Notice that δ 6=∞.

(3) If l(xδ) ≥ 2, define µ(σ) = [x1| · · · |xδ−1|y|z|xδ+1| · · · |xd],
where y is the ≺-smallest reflection of R0 ∩ [1, xδ], and
yz = xδ.

(4) If l(xδ) = 1, define µ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |xd].



Definition (Matching function)

Given σ ∈ F(K ′W ) \ F(X ′W ), define µ(σ) ∈ F(KW ) as follows.

(1) If π(σ) 6= w, let µ(σ) = λ(σ).

(2) If π(σ) = w, and π(ρ(σ)) does not fix a vertex of C0, let
µ(σ) = ρ(σ).

Suppose now that π(σ) = w, and π(ρ(σ)) fixes a vertex of C0. Let
δ = δ(σ). Notice that δ 6=∞.

(3) If l(xδ) ≥ 2, define µ(σ) = [x1| · · · |xδ−1|y|z|xδ+1| · · · |xd],
where y is the ≺-smallest reflection of R0 ∩ [1, xδ], and
yz = xδ.

(4) If l(xδ) = 1, define µ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |xd].



Now we show

Theorem

The function µ is an involution on the simplices in F(K ′) \F(X ′W )

Therefor µ gives a perfect matching in F(K ′) \ F(X ′W ).

It remains to show that such matching is acyclic.
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Theorem

The matching M on F(K ′W ) is acyclic.



The proof is technical and consists in finding a sort of ”invariant”
which decreases along an alternating closed path

σ1 m τ1 C σ2 m τ2 C · · ·m τm C σm+1 = σ1

giving a contradiction.
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Theorem

Let W be an irreducible affine Coxeter group, with a set of simple
reflections S = {s1, s2, . . . , sn+1} and a Coxeter element
w = s1s2 · · · sn+1. The interval complex KW deformation retracts
onto its subcomplex X ′W .



Theorem (P.S. )

Let W be an irreducible affine Coxeter group. The K(π, 1)
conjecture holds for the corresponding Artin group GW .



Thank you



Thank you
and



Happy Birthday, Corrado!


