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Overview

g symmetrisable Kac–Moody algebra

U~g quantum group corresponding to g/C[[~]]

Goal: establish a good equivalence

representations of U~g←→ representations of g (/C[[~]])
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Known equivalences

Theorem (Drinfeld–Kohno, Kazhdan–Lusztig) If dim g <∞,
there is an equivalence of braided tensor categories

(Reps. of U~g, R)↔ (Reps. of g, monodromy of the KZ equations)

Remark If dim g =∞, g and U~g have different abelian categories of
representations ⇒ DKKL equivalence cannot hold as stated. However,

Theorem (Etingof–Kazhdan ’96–’08) For any symmetrisable Kac–Moody
algebra g, there is an equivalence of braided tensor categories

F EK : (Cat. O for U~g, R)↔ (Cat O for g, monodromy of KZ equations)

Corollary If V1, . . . ,Vn ∈ Og, the action of the braid group Bn by
monodromy of the KZ equations on V1 ⊗ · · · ⊗ Vn is equivalent
to its R–matrix action on F EK(V1)⊗ · · · ⊗ F EK(Vn).
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An extended equivalence?

W Weyl group of g

BW corresponding generalised braid group,
with generators {Si}i∈I and relations

SiSj · · ·︸ ︷︷ ︸
mij

= SjSi · · ·︸ ︷︷ ︸
mij

for any i 6= j , mij = order of si sj in W

BW acts on any V integrable representation of U~g by
Lusztig’s quantum Weyl group operators

BW acts on any V integrable representation of g by
monodromy of the Casimir connection

Goal find an equivalence which is equivariant for these actions

Remark Neither action of BW is built out of the braided tensor
structure ⇒ need to extend rather than modify the DKKL
equivalence.
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The quantum Weyl group action

V integrable repr. of U~g

Thm. (Lusztig) ∃{Si}i∈I ⊂ Aut(V) satisfying the braid relations

SiSj · · ·︸ ︷︷ ︸
mij

= SjSi · · ·︸ ︷︷ ︸
mij

The corresponding action λ~ : BW → Aut(V) is s.t. λ~|~=0

is the action of (a finite extension W̃ of) W on the integrable
g–module V/~V.
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The Casimir connection ∇C

dim g <∞ for now

h ⊂ g Cartan subalgebra, hreg = h \
⋃
α∈R Ker(α)

V integrable g–module

∇C is a meromorphic connection on V × hreg → hreg,

∇C = d − h

2

∑
α∈R+

dα

α
Kα

h ∈ C deformation parameter

Kα = xαx−α + x−αxα (truncated) Casimir operator of slα2 ⊂ g

Theorem (De Concini, Millson–TL, Felder–Markov–Tarasov–Varchenko)

The connection ∇C is flat, and W̃ –equivariant for any h ∈ C.

Monodromy µh
V : BW = π1(hreg/W ) −→ GL(V ) deforms W̃ � V .
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Why study ∇C?

The Casimir connection is related to

1 Quantum integrable systems of Gaudin type related to g
(Rybnikov, Feigin–Frenkel–TL)

2 Wess–Zumino–Witten model corresponding to g
(Fedorov, Feigin–Frenkel–TL)

3 Isomonodromic deformations of irregular connections on P1

(Boalch, Xu–TL)

4 Wall–crossing & stability conditions
(Joyce, Bridgeland–TL)

5 Enumerative geometry (q. cohomology) of Nakajima quiver varieties
(Maulik–Okounkov)
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Monodromy theorem

GL(V [[h]]) V ∈ Repfd(g), formal Taylor series of µh
V at h = 0

BW

µV 55

λV
))
GL(V) V ∈ Repfd(U~g), qWeyl group action

Theorem 1 (TL, Conj. De Concini, TL)
Assume dim g <∞. Set ~ = 2πιh, and assume that V/~V ∼= V .

1 The representations µV and λV are equivalent.

2 The monodromy of ∇C is defined over Q[[~]].

Theorem 2 (Appel–TL, 2019) A similar result holds for an arbitrary
symmetrisable Kac–Moody algebra.

Remark The statement of Thm. 2 is conceptually simpler, and much
stronger than Thm. 1, even for dim g <∞.
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Strategy of proof

Both µV and λV deform W̃ � V .

Look for an appropriate rigidity result
(cf. Drinfeld’s computation of the monodromy of
the KZ equations in terms of the R–matrix of U~g).
Problem find an algebraic structure which

1 accomodates both µV and λV
2 has trivial deformation theory

1st attempt Look at actions of BW on a fixed vector space

V/C[[~]] which deform a given action of W̃ . This satisfies
1), but not 2) (H1(BW ,V ) is very big).

Definition/Theorem (Appel-TL)

1 Oint

U~g
is a braided Coxeter category.

2 Oint
g is a braided Coxeter category.

3 Braided Coxeter category structures on Oint
g are rigid.

Remark The definition (to follow) of Coxeter category is inspired by the
De Concini–Procesi wonderful model of a hyperplane complement.
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Coxeter categories

What is a braided tensor category C good for?
For any V ∈ Ob(C), n ≥ 1, there is an action

ρb : Bn → Aut(V⊗n
b )

which depends on the choice of a bracketing b ∈ Bn on the
(non–associative) monomial x1 · · · xn.
Example b = ((x1x2)x3) ∈ B3, V⊗3

b = ((V ⊗ V )⊗ V ).
For any b, b′ ∈ Bn, V⊗n

b and V⊗n
b′ are isomorphic as Bn–modules,

via an associativity constraint: Φb′b : V⊗n
b → V⊗n

b′ .

What is a Coxeter category Q good for?
For any V ∈ Ob(Q), there is an action

λF : BW → Aut(VF )

which depends on the choice of a ’W–bracketing’ F .
(A Sn–bracketing is the same as an element of Bn.)
For any W –bracketings F ,G, VF and VG are isomorphic as
BW –modules, via a prescribed isomorphism ΦGF : VF → VG .
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Bracketings revisited: D = Dynkin diagram of type An−1

pair of parentheses on x1 · · · xn ←→ connected subdiagram of D.

p = x1 · · · xi−1(xi · · · xj)xj+1 · · · xn ←→ B = [i , j − 1] ⊂ D

Example (((x1x2)x3)x4)←→ [1, 1], [1, 2], [1, 3] ⊆ [1, 3].
p, p′ are consistent parentheses ⇐⇒ B,B ′ ⊆ D are compatible, i.e.,

B ⊂ B ′ or B ′ ⊂ B, or
B⊥B ′: B ∩ B ′ = ∅, and no vertex in B is linked to a vertex in B ′ by
an edge of D.

Examples
1 (x1x2)(x3x4)←→ [1, 1] ⊥ [3, 3] ⊆ [1, 3].
2 (x1(x2)x3x4)←→ [1, 1] ⊥�[2, 3] ⊆ [1, 3].

Definition (De Concini–Procesi)/Proposition

1 A nested set on D = [1, n − 1] is a collection of pairwise compatible,
connected subdiagrams of D.

2 There is a bijection

{bracketings on x1 · · · xn} ←→ {maximal nested sets on [1, n − 1]}
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W –bracketings (=nested sets)

D diagram (unoriented graph, no loops, no multiple edges)

Example D=Dynkin diagram of W

Definition (De Concini–Procesi) A nested set on D is a collection
F = {B} of pairwise compatible, connected subdiagrams of D.
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Nested sets and chains

A chain from B ⊆ D to ∅ is a sequence of (not necessarily connected)
subdiagrams

B = B1 ) B2 ) · · · ) Bm = ∅
Lemma There is a surjection ı : {chains B → ∅} −→ Ns(B) given by

ı (B1 ) B2 ) · · · ) Bm) =
m−1⋃
i=1

connected components of Bi

Examples

1 [1, 3] ⊃ [1, 2] ⊃ [1, 1] −→ {[1, 3], [1, 2], [1, 1]}
2 [1, 3] ⊃ ([1, 1] t [3, 3]) ⊃ [1, 1] −→ {[1, 3], [1, 1], [3, 3]}
3 [1, 3] ⊃ ([1, 1] t [3, 3]) ⊃ [3, 3] −→ {[1, 3], [1, 1], [3, 3]}

Nested sets on B/B ′ (B ′ ⊆ B) correspond similarly to chains

B = B1 ) B2 ) · · · ) Bm = B ′

V. Toledano Laredo Northeastern University

Coxeter categories (with Andrea Appel)



Topological & Geometric interlude

{bracketings on x1 · · · xn} ←→ Stasheff associahedron An

←→ exceptional divisor in M0,n+3

D=Dynkin diagram of g

{maximal nested sets on D} ←→ De Concini–Procesi associahedron AD

←→ divisor in the DCP wonderful model of hreg
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Coxeter categories: fiber functors

One crucial difference between braided and Coxeter categories

In a braided tensor category C, Bn acts by morphisms in C.

In a Coxeter category Q, BW does not act by morphisms in Q.

Toy example

The Weyl group action of Sn on a GLn(C)–module is not through
morphisms in Q = Rep(GLn(C)), but through morphisms of the
underlying vector space. In other words, there is a forgetful functor

F : Q → Vec = Q∅
and a map Sn → Aut(F ).

In general, in a Coxeter category Q
1 There is a family of forgetful functors FF : Q → Q∅ (Q∅ = Vec in

examples), labelled by maximal nested sets F on D.

2 BW acts on each FF . In other words, for any V ∈ Q, F ∈ Mns(D),

VF := FF (V ) λF : BW → AutQ∅(VF )
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Tensor categories with many fiber functors

Algebra Tensor category C with one fiber functor f : C → Vec

Example C = Rep(A), A a Hopf algebra, f = forgetful functor

Topology Tensor category C with many fiber functors C → Vec

Example

X = topological space

X0 ⊆ X given collection of basepoints

π1(X ;X0) fundamental groupoid based at X0

C = Rep(π1(X ;X0)) = Fun(π1(X ;X0),Vec)

{fx}x∈X0 : C → Vec collection of fiber functors, fx(V) = Vx .

γ ∈ π1(X ;X0) Φγ ∈ Hom(fγ(0), fγ(1)), natural transformation.

V. Toledano Laredo Northeastern University

Coxeter categories (with Andrea Appel)



Coxeter categories

Definition (ATL, Selecta 2019)
A braided Coxeter category of type D consists of 5 pieces of data.

1. Diagrammatic categories.

For any subdiagram ∅ ⊆ B ⊆ D, a braided tensor category QB .

Examples

1 QB = (RepU~gB ,RB), gB = 〈ei , fi , hi 〉i∈B .

2 QB = (RepUgB , monodromy of the KZ equations for gB).

2. Restriction functors.

For any B ′ ⊆ B, and F ∈ Mns(B,B ′), a (not necessarily braided)
monoidal functor FF : QB → QB′

Examples

1 QB = RepU~gB , FF = (naive) restriction (independent of F).

2 QB = (RepUgB , e
~/2ΩgB ,ΦgB

KZ )
FF needs to be constructed (ΦKZ

B 6= ΦKZ
B′ ).
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Coxeter categories

3. Associators. For any B ′ ⊆ B and F ,G ∈ Mns(B,B ′), an isomorphism
of monoidal functors ΦGF : FF ⇒ FG such that

ΦHG · ΦGF = ΦHF

4. Joins. For any B ′′
F ′

⊆ B ′
F
⊆ B an isomorphism aFF ′ : FF ′ ◦ FF ⇒ FF ′∪F

of monoidal functors QB → QB′′ satisfying

1 Vertical factorisation
CB

CB′

CB′′

FF

��

FG

��

FF′

��

FG′

��

FF′∪F

&&

FG′∪G

xx

ks ΦF′ G′

ks ΦF G

px ΦF′∪F G′∪G

2 Associativity For any B ′′′
F ′′

⊆ B ′′
F ′

⊆ B ′
F
⊆ B,

aF
′∪F
F ′′ ◦ aFF ′ = aFF ′′∪F ′ ◦ aF

′

F ′′

as isomorphisms FF ′′ ◦ FF ′ ◦ FF ⇒ FF ′′∪F ′∪F .
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Coxeter categories

Definition

1 A labelling on D is the data of mij ∈ {2, . . . ,∞}, for any
i 6= j ∈ I = V (D), such that mij = mji and mij = 2 if i ⊥ j .

2 The Artin braid group corresponding to D and its labelling is

BD = 〈Si 〉i∈I/SiSj Si · · ·︸ ︷︷ ︸
mij

=SjSiSj · · ·︸ ︷︷ ︸
mij

5. Local monodromies.
Elements SQi ∈ Aut(F∅i ), i ∈ I, satisfying

1 Braid relations. For any i 6= j ∈ I,

SQi SQj SQi · · · = SQj SQi SQj · · ·

and any F 3 {i},G 3 {j}, the following holds in Aut(F∅D)

Ad(ΦGF )(SQi ) ·SQj ·Ad(ΦGF )(SQi ) · · · = SQj ·Ad(ΦGF )(SQi ) ·SQj · · ·

V. Toledano Laredo Northeastern University

Coxeter categories (with Andrea Appel)



Coxeter categories

Definition

1 A labelling on D is the data of mij ∈ {2, . . . ,∞}, for any
i 6= j ∈ I = V (D), such that mij = mji and mij = 2 if i ⊥ j .

2 The Artin braid group corresponding to D and its labelling is

BD = 〈Si 〉i∈I/SiSj Si · · ·︸ ︷︷ ︸
mij

=SjSiSj · · ·︸ ︷︷ ︸
mij

4. Local monodromies.
Elements SQi ∈ Aut(F∅i ), i ∈ I, satisfying

1 Braid relations. For any i 6= j ∈ I,

SQi SQj SQi · · · = SQj SQi SQj · · ·

and any F 3 {i},G 3 {j}, the following holds in Aut(F∅D)

Ad(ΦGF )(SQi ) ·SQj ·Ad(ΦGF )(SQi ) · · · = SQj ·Ad(ΦGF )(SQi ) ·SQj · · ·

V. Toledano Laredo Northeastern University

Coxeter categories (with Andrea Appel)



Coxeter categories

4. Local monodromies ctd.

2 Coproduct identity (compatibility of BW and Bn actions).
For any i ∈ I, and U,V ∈ Qi , the following is commutative

F∅i (U)⊗ F∅i (V )

SQ
i ⊗S

Q
i

��

J∅i // F∅i (U ⊗ V )

SQ
i

��
F∅i (U)⊗ F∅i (V )

c∅

��

F∅i (U ⊗ V )

F∅i (ci )

��
F∅i (V )⊗ F∅i (U)

J∅i

// F∅i (V ⊗ U)

(analogue of ∆(Si ) = R−1
i · Si ⊗ Si ).
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Coxeter categories: representations of BW

Proposition. Let Q be a braided Coxeter category of type D.

1 There is a collection of homomorphisms

λF : BW → Aut(FF )

labelled by maximal nested sets on D, such that for any
F ,G ∈ Mns(D), λG = Ad(ΦGF ) ◦ λF (?)

2 The collection {λF} is uniquely determined by (?), and
the following normalisation condition: if F contains a one
vertex diagram {i}, then

λF (Si ) = SQi

Remark The normalisation condition is analogous to the fact that, in a
braided tensor category, the generator Ti of Bn only acts on the i and
i + 1 tensor copies in V⊗nb if b contains · · · (xixi+1) · · ·
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Main results I: (Quantum) reality check

Proposition (Appel–TL, Selecta 2018) There is a braided Coxeter
category Oint

~ with

Diagrammatic categories
(
Oint

U~gB
,RU~gB

)
, B ⊆ D.

(standard) Restriction functors FF : Oint

U~gB
→ Oint

U~gB′

(trivial) Associators ΦGF = 1ResU~gB′ ,U~gB

(trivial) Joins aFF ′ : ResU~gB′′ ,U~gB′ ◦ResU~gB′ ,U~gB
= ResU~gB′′ ,U~gB

.

Local monodromies: S
Oint

~
i = S~

i , qWeyl group element.
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Main results II: Transfer to Og

Theorem (Appel–TL, Selecta 2019)
Oint

~ is equivalent to a braided Coxeter category Oint
trans with

Diagrammatic categories
(
Oint

gB
, e~/2ΩgB ,ΦgB

KZ

)
.

Restriction functors FF =
(
ResgB′ ,gB

, JF
)

Res is standard restriction, JF some ⊗ structure.

Remarks

1 The tensor structure JF is not trivial: ΦgB
KZ 6= Φ

gB′
KZ .

2 Main ingredients needed (ATL, Selecta 2018)

Oint
gB

FEK
B //

(Res,JF )

��

Oint

U~gB

Res

��
Oint

gB′
FEK
B′

//

uF

3;

Oint

U~gB′
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Main results III: Rigidity

Theorem (Appel–TL, Advances 2019) Braided Coxeter structures with

1 Diagrammatic categories
(
Oint

gB
, e~/2ΩgB ,ΦgB

KZ

)
.

2 Restriction functors FF =
(
ResgB′ ,gB

, JF
)
.

are unique (up to a unique equivalence) provided they are of PROPic
origin.

Theorem (Appel–TL, Selecta 2019) The transferred braided Coxeter
structure Oint

trans coming from U~g is PROPic.
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Main results IV: The Casimir connection

Theorem (TL, arXiv:1601.04076 for dim g <∞, Appel–TL for general g)
There is a braided Coxeter category Oint

∇ with

1 Diagrammatic categories
(
Oint

gB
, e~/2ΩgB ,ΦgB

KZ

)
.

2 Restriction functors FF =
(
ResgB′ ,gB

, JF
)
.

which accounts for

1 Bn � V⊗n[[~]], V ∈ Rep(UgB), monodromy of KZ equations for gB .

2 BW � V [[~]], monodromy of the Casimir equations for g.

Ingredients

The tensor structure JF arises from an ODE on P1 with irregular
singularities (dynamical KZ equations).

The associators ΦGF are constructed from the Casimir connection
by work of De Concini–Procesi.

W –equivariant resummation of the Casimir connection for
dim g =∞ (

∑
α∈R+

dα/α · Kα is an ∞ sum).

Proposition (Appel–TL) The braided Coxeter structure Oint

∇ is PROPic.
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Summary

Theorem (Appel–TL) For any symmetrisable KM algebra g,
there is an equivalence between

1 the braided Coxeter category Oint

~ underlying

Bn � V⊗n, R–matrix action.
BW � V, quantum Weyl group action.

2 the braided Coxeter category Oint

∇ underlying

Bn � V⊗n[[~]], monodromy of KZ equations for g.
BW � V [[~]], monodromy of the Casimir equations for g.

Corollary The monodromy of the Casimir connection on V ∈ Oint
g

is equivalent to the quantum Weyl group action of BW on
F EK(V ) ∈ Oint

U~g
.
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