Splines, Representation theory and Geometry: September 2019

Series of articles on splines

- I.J. Schoenberg (1973): Cardinal Space Interpolation I,II,III,...
- Dahmen-Micchelli (1985): On the solution of certain systems of partial difference equations and linear dependance of translates of Box Splines.
- Many articles (C. De Concini+C.Procesi+MV) around 2008 Vector partition functions and generalized Dahmen-Micchelli spaces, Vector partition functions and index of transversally elliptic operators, ...
- Loizides-Paradan-Vergne (2019) Semi-classical analysis of piecewise quasi-polynomial functions

Functions on a lattice and difference equations

V real vector space of dimension d, with lattice $\Lambda \subset V$ $\mathcal{F}(\Lambda)$: the space of \mathbb{Z} -valued functions on Λ .

Difference operator

$$\nabla_{\alpha}(f)(\lambda) = f(\lambda) - f(\lambda - \alpha)$$

Periodic functions on Λ : functions on $\Lambda/D\Lambda$, for some D > 0.

Quasi polynomial functions

 $\mathcal{QP}(\Lambda)$ the algebra generated by polynomials functions on Λ and periodic functions on Λ .

Example $\Lambda=\mathbb{Z}$:

$$f(n) = \frac{n}{2} + \frac{3}{4} + (-1)^n \frac{1}{4}$$

Dahmen-Micchelli space

 $\Phi = [\alpha_1, \alpha_2, \dots, \alpha_N]$ list of vectors in Λ spanning V

 $A \subset \Phi$ is called short if A does not generate V.

 $B \subseteq \Phi$ is called long if $\Phi - B$ does not generate V.

 $\nabla_{\mathcal{B}} = \prod_{\alpha \in \mathcal{B}} \nabla_{\alpha}$

Definition

 $DM(\Phi)$ is the space of \mathbb{Z} -valued functions f on Λ which are solutions of the system of difference equations :

$$\nabla_B(f)=0$$

for all long subsets of Φ .

Theorem: Dahmen-Micchelli (1985)

The space $DM(\Phi)$ is free over \mathbb{Z} of finite rank, and consists of quasi-polynomials.

Examples

$$\Phi = [\omega, \omega] \text{ in } \Lambda = \mathbb{Z}\omega.$$

One equation $\nabla^2_{\omega} \cdot f = 0$

Basis of $DM(\Phi)$ over \mathbb{Z} :

$$\{f_1(n) = n+1, \quad f_2(n) = 1\}.$$

$\Phi = [\omega, 2\omega]$

One equation $\nabla_{\omega}\nabla_{2\omega}\cdot f=0$

Basis of $DM(\Phi)$ over \mathbb{Z} :

$$\{g_1(n) = \frac{1}{2}n + \frac{3}{4} + \frac{1}{4}(-1)^n, \ g_2(n) = \frac{1}{2} - \frac{1}{2}(-1)^n, \ g_3(n) = 1\}$$

Geometry : $M(\Phi) = \bigoplus_{\alpha \in \Phi} \mathbb{C}_{\alpha}$

T torus with lattice of characters $\Lambda \subset V : Lie(T) = V^*$; $M(\Phi) = \{m = \sum_{\alpha \in \Phi} z_{\alpha}e_{\alpha}, z_{\alpha} \in \mathbb{C}\}$: a complex vector space;

$$T$$
action : $X \in V^*$: $\exp(X) \cdot m = \sum_{\alpha \in \Phi} z_{\alpha} e^{i\alpha(X)} e_{\alpha}$;

Moment map $J: M(\Phi) \rightarrow V$

$$J(m) = \sum_{\alpha \in \Phi} |z_{\alpha}|^2 \alpha$$

Image of J:

Cone(
$$\Phi$$
) = { $\sum_{\alpha \in \Phi} t_{\alpha} \alpha, t_{\alpha} \ge 0$ }

Equivariant topological K-theory of $M_f(\Phi)$

Open subset $M_f(\Phi)$ of $M(\Phi)$ where T acts almost freely.

$$M_f(\Phi) = M(\Phi) \setminus \bigcup_{A \text{ short subsets}} M(A)$$

complement of an arrangement of vector spaces.

Theorem (DPV 2008)

s = dimV. The space $K_T^s(M_f(\Phi))$ is isomorphic to $DM(\Phi)$.

The isomorphism is via equivariant index theory. More later :

Example
$$\Phi = [\omega, \omega]$$
, $M(\Phi) = \mathbb{C}^2$, and $f_1(n) = (n+1)$

$${|z_1|^2+|z_2|^2=1}.$$

The tangential Cauchy-Riemann $\overline{\partial}$ operator has index

$$\operatorname{index}(E_{\alpha})(e^{i\theta}) = \sum (n+1)e^{in\theta}.$$

Vector partition functions

Consider the case where Φ generates an acute cone and $\lambda \in \Lambda$.

The Vector Partition function

$$\mathcal{K}(\Phi)(\lambda) = \text{Cardinal}(\{\sum_{\alpha \in \Phi} x_{\alpha} = \lambda\}); x_{\alpha} \text{ non negative integers}$$

Kostant Partition function when $\Phi = \Delta_{\geq 0}(\mathfrak{k},\mathfrak{t})$ positive root system.

Examples $\Lambda = \mathbb{Z}\omega$.

$$\mathcal{K}[\omega](n) = 1, n \ge 0,$$
 $\mathcal{K}([2\omega])(n) = \frac{1}{2} - \frac{1}{2}(-1)^n, n \ge 0,$ $\mathcal{K}[\omega, \omega](n) = n + 1, n \ge 0,$ $\mathcal{K}([\omega, 2\omega])(n) = \frac{1}{2}n + \frac{3}{4} + \frac{1}{4}(-1)^n, n \ge 0$

Representation theory

Action of T on $\operatorname{Sym}(M(\Phi))$: polynomials functions on the complex space $M(\Phi)^*$:

$$\mathit{Tr}_{\mathrm{Sym}(M(\Phi))}(t) = \sum_{\lambda} \mathcal{K}(\Phi)(\lambda) t^{\lambda}$$

So $\mathcal{K}(\Phi)(\lambda)$ is the multiplicity of the character t^{λ} in $\mathrm{Sym}(M(\Phi))$. Morally :

$$Tr_{\operatorname{Sym}(M(\Phi))}(t) = \frac{1}{\prod_{\alpha \in \Phi} (1 - t^{\alpha})}$$

The Partition function is a locally quasi-polynomial function

 V_{reg} : the set of regular values of the moment map $J: M \to V$. Each connected component τ is the interior of a convex polyhedral cone $\overline{\tau}$.

$$V_{reg} = \cup_{ au} au$$

union over its connected components τ .

Theorem (Dahmen-Micchelli, Brion-V, Szenes-V, ...)

 $\mathcal{K}(\Phi)(\lambda)$ coincide on $\overline{\tau} \cap \Lambda$ with a Dahmen-Micchelli polynomial belonging to $DM(\Phi)$.

So $\mathcal{K}(\Phi)(\lambda)$ is a piecewise quasi polynomial function **and** is "continuous" on $Cone(\Phi) \cap \Lambda$.

Example : $\Lambda = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$

$$\Phi = [\omega_1, \omega_2, \omega_1 + \omega_2]$$

Zeroes of the moment map

Consider now ANY set $\Delta \subset \Lambda$ without assuming that Δ spans an acute cone.

For example $\Delta = \Phi \cup -\Phi$, so $M(\Delta) = T^*M(\Phi)$.

 $Z = J^{-1}(0)$ the set of zeroes of the moment map is a convex cone, and Z/T has the structure of a "stratified" symplectic space.

Example
$$\Delta=[\omega,-\omega]$$

$$Z=\{|z_1|^2-|z_2|^2=0\}$$
 $Z/T=\{0\}\cup T^*S^1.$

A remarkable space of \mathbb{Z} -valued functions on Λ

Consider the space $\mathcal{S}(\Delta)$ of functions on Λ generated by all functions $\mathcal{K}(A)$ for $A \subset \Delta$ generating an acute cone, and all their translates.

Conjecture of Boutet de Monvel

The equivariant theory of $K_T^0(Z)$ is isomorphic to $S(\Delta)$

Evident if Δ generates an acute cone.

Theorem DPV

Assume that $\Delta = \Phi \cup -\Phi$. Then this is true.

Proof via transversally elliptic equivariant index theory.

$$\sum_{n\in\mathbb{Z}}(n+1)z^n="\frac{1}{(1-z)^2}"-"\frac{1}{(1-z)^2}".$$

Piecewise quasi polynomial functions and asymptotics

Many multiplicity functions in representation theory lead to piecewise quasi-polynomials. Geometry leads to locally polynomial functions such as Duistermaat-Heckman measures. Relation via asymptotics.

A space of quasi-polynomial functions on cones and depending of a parameter $k \ge 1$

We now consider $E = V \oplus \mathbb{R}$, with $\Lambda \oplus \mathbb{Z}$. P: a rational closed polyhedron in V, $\sigma \in V$ rational.

$$C(P,\sigma):=\{[tv+\sigma,t],v\in P;t\geq 0\}.$$

 $[C(P, \sigma)]$: the characteristic function of $C(P, \sigma) \cap (\Lambda \oplus \mathbb{Z})$.

Definition

The space $\mathcal{L}(\Lambda)$ consists of functions m on $\Lambda \oplus \mathbb{Z}_{>0}$ of the form

$$m(\lambda, k) = \sum_{P,\sigma} q_{P,\sigma}(\lambda, k) [C(P, \sigma)](\lambda, k)$$

where $q_{P,\sigma}$ are quasi polynomial functions on $\Lambda \oplus \mathbb{Z}$

We allow locally finite sums, but in this talk I restrict myself to finite sums.

$\Lambda = \mathbb{Z}\omega$, $extcolor{black}{P} = [0,1]$, $\sigma = 0,4$

Two cones: we can take any quasi polynomial function, each on one of these cones.

$\Lambda = \mathbb{Z}\omega$, P = [0], $\sigma = 1, 2, 3, 4, 5, 6$

A constant function c_1 , c_2 , c_3 , c_4 , c_6 on each of the 6 vertical lines.

Examples motivated by geometry

K compact group acting on M is compact complex, \mathcal{E} K-equivariant holomorphic vector bundle and $\mathcal{L} \to M$ a holomorphic line bundle. V_{λ}^{K} irreducible representation of K with highest weight λ . $m(\lambda, k)$ the multiplicity of V_{λ}^{K} in

$$\sum_{j=0}^{\dim M} (-1)^j H^j(M,\mathcal{E}\otimes\mathcal{L}^k)$$

is in our space $\mathcal{L}(\Lambda)$.

More generally quantization of M spin manifold with line bundle and proper moment map $J: M \to \mathfrak{t}^*$.

Example $M = M(\Phi)$ and $m(\lambda, k) = \mathcal{K}(\Phi)(\lambda)$.

Asymptotics

 $m(\lambda, k)$ a function on $\Lambda \oplus \mathbb{Z}_{>0}$ φ : a C^{∞} function of compact support on V:

$$\langle \Theta(m;k), \varphi \rangle = \sum_{\lambda \in \Lambda} m(\lambda, k) \varphi(\lambda/k)$$

A not surprising result

If $m \in \mathcal{L}(\Lambda)$, when $k \to \infty$, the family of distributions $\Theta(m; k), k \ge 1$ admits an asymptotic expansion

$$\mathcal{A}(m)(k) = \sum_{j \geq j_0} k^{-j} \theta_j(k)$$

in powers of k^{-1} where the distributions θ_j may be periodic in k (different formulae for k modulo some integer)

The beaded curtain

$$m(2k, 1, 3, 5) = [c_1, c_3, c_5],$$

 $m(2k + 1, 2, 4, 6) = [c_2, c_4, c_6].$

When $k \to \infty$, k even :

$$\langle \Theta(m)(k), \varphi \rangle = c_1 \varphi(1/k) + c_3 \varphi(3/k) + c_5 \varphi(5/k)$$

$$\equiv (c_1 + c_3 + c_5) \varphi(0) + \frac{1}{k} (c_1 + 3c_3 + 5c_5) \varphi^{(1)}(0) + \frac{1}{2k^2} (c_1 + 3^2 c_3 + 5^2 c_5) \varphi^{(2)}(0) + \cdots$$

Series of distributions supported at 0. Similar formula for *k* odd.

A more surprising result

Theorem (Loizides-Paradan-V)

If $m \in \mathcal{L}(\Lambda)$, the function m is determined by its asymptotic A(m)

Example: the beaded curtain.

When $k \to \infty$, k even :

$$\langle A(m)(k), \varphi \rangle = (c_1 + c_3 + c_5)\varphi(0) + \frac{1}{k}(c_1 + 3c_3 + 5c_5)\varphi^{(1)}(0) + \frac{1}{2k^2}(c_1 + 3^2c_3 + 5^2c_5)\varphi^{(2)}(0) + \cdots$$

With 3 terms of the asymptotic expansion, and the Vandermonde determinant, we can determine c_1 , c_3 , c_5 .

Applications to geometric quantization

G torus (or a compact connected group) acting in an Hamiltonian way on a symplectic manifold (M,Ω) ;

 $J: M \to Lie(G)^*$ the moment map. G torus (or more generally a compact connected group) acting in an Hamiltonian way on M symplectic, and $\mathcal{L} \to M$ a Kostant line bundle.

Then if M is compact, one can define a finite dimensional representation of $G: Q^G(M, \mathcal{L})$. If M is Kahler:

$$Q^{G}(M,\mathcal{L}) = \sum_{i=0}^{\dim M} (-1)^{j} H^{j}(M,\mathcal{O}(L)).$$

Our aim : define $Q^G(M, \mathcal{L})$ when M is not necessarily compact, and give character formulae. Example $M = M(\Phi)$, $Q^G(M, \mathcal{L}) = Sym(M)$.

Equivariant cohomology and Duistermaat-Heckman measure

 $X \in Lie(G)$: $\Omega(X) = \langle J, X \rangle + \Omega$ the equivariant symplectic form φ test function on $Lie(G)^*$, $\hat{\varphi}$ its Fourier transform. Then

$$\int \int_{M imes Lie(G)} e^{i\Omega(X)} \hat{arphi}(X) dX = \langle \mathit{DH}, arphi
angle$$

where *DH* is the Duistermaat-Heckman measure, and is piecewise locally polynomial.

Twisted Duistermaat-Heckman distributions

 $H_G^*(M)$, the equivariant cohomology ring. More generally, if $\eta \in H_G^*(M)$, then

$$\int \int_{M \times Lie(G)} e^{i\Omega(X)} \wedge \eta(X) \hat{\varphi}(X) dX = \langle DH(\eta), \varphi \rangle$$

where $DH(\eta)$ is a distribution on $Lie(G)^*$ obtained as a derivatives of piecewise locally polynomial measures.

Quantizing a symplectic manifold with proper moment map

G torus (or more generally a compact connected group) acting in an Hamiltonian way on M symplectic, and $\mathcal{L} \to M$ a Kostant line bundle. Then if the moment map is proper one can associate to it (Formal quantization) a representation of G:

$$Q^{G}(M,\mathcal{L}^{k}) = \sum_{\lambda \in \hat{G}} m(\lambda,k) t^{\lambda}.$$

with the following formula when M is Kahler : consider $M_{\lambda} = J^{-1}(\lambda)/G_{\lambda}$. This is a Kahler manifold (orbifold), when λ is a regular value of J. Then define

$$m(\lambda, k) = \sum_{j} (-1)^{j} H^{j}(M_{\lambda}, \mathcal{O}(L_{\lambda})).$$

If the set of critical point of the norm square of the moment map is compact, the function m belongs to $\mathcal{L}(\Lambda)$

The infinitesimal equivariant Riemann-Roch formula

Consider the equivariant Todd class Todd(X, M). If M is compact, one has the equivariant Riemann-Roch formula (for X small)

$$\mathit{Tr}_{Q^G(M,\mathcal{L}^k)}(exp(X)) = \int_M e^{ik\Omega(X)} \mathit{Todd}(X,M)$$

Now M not necessarily compact, but with proper moment map $J: M \to Lie(G)^*$: Write the equivariant Todd class Todd as $Todd = \sum_{i=0}^{\infty} T_i$ in the graded equivariant cohomology ring $H_G^*(M)$

Theorem (V)

$$\sum m(\lambda, k)\varphi(\lambda/k) \sim \sum_{j=0}^{\infty} k^{-\infty} \langle DH(T_j), \varphi \rangle$$

Morally this is the Riemann-Roch formula for X/k

$$\mathit{Tr}_{Q^G(M,\mathcal{L}^k)}(exp(X/k)) = \int_M e^{ik\Omega(X/k)} \mathit{Todd}(X/k,M)$$

Formal quantization is determined by its asymptotics

Theorem: The above infinitesimal formula (interpreted as asymptotic series):

$$\int_{M \times Lie(G)} e^{ik\Omega(X/k)} Todd(X/k, M) \hat{\varphi}(X) dX$$

determines $Q^{G}(M, \mathcal{L})$.

The right hand side is a series of twisted Duistermaat distributions on $Lie(G)^*$. It is possible to recover $m(\lambda, k)$ from this formula. Application (Loizides): functoriality of formal quantization.

EXAMPLE: recovering multiplicities from asymptotics

F: Flag manifold for SU(3): The Duistermaat Heckman measure for $O(k\rho) \times O(k\rho)$ and the diagonal action of the torus T of SU(3) on $F \times F$:

EXAMPLE: recovering multiplicities from asymptotics

F: Flag manifold for SU(3) We quantize $O(k\rho)$ as the representation with highest weight $(k-1)\rho$.. For k=1, multiplicity should be 0 every where except at $\lambda=0$...

